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Quantized Faraday effect in (3 + 1)-dimensional and (2 + 1)-dimensional systems
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We study Faraday rotation in the quantum relativistic limit. Starting from the photon self-energy in the presence
of a constant magnetic field the rotation of the polarization vector of a plane electromagnetic wave which travel
along the fermion-antifermion gas is studied. The connection between Faraday effect and quantum Hall effect
(QHE) is discussed. The Faraday effect is also investigated for a massless relativistic (2 + 1)-dimensional fermion
system which is derived by using the compactification along the dimension parallel to the magnetic field. The
Faraday angle shows a quantized behavior as Hall conductivity in two and three dimensions.
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I. INTRODUCTION

Plane-polarized light penetrating in a magnetized trans-
parent charged medium and moving parallel to the magnetic
field B rotates its plane of polarization as a consequence
of birefringence: the incoming wave splits in two opposite
circularly polarized modes moving with different speeds (and
frequencies), and the polarization vector rotates. This is the
Faraday effect [1].

Faraday rotation (FR) is clearly manifest for photon
propagation parallel to the magnetic field. The symmetry
properties behind the Faraday effect are the following: the
field B (which we take along the x3 axis) breaks the Lorentz
symmetry group in two subgroups, the translations along x3

(leading to the conservation of momentum component p3)
and the rotations around x3 (leading to the conservation of
angular momentum J3). The generator of rotations around
J3 is the antisymmetric matrix A3ij = −A3ji = δi1δj2 whose
eigenvectors are proportional to the complex unit vectors
e± = (e1 ∓ ie2)/

√
2, where e± are related respectively to

positive and negative circular polarizations. If the system is
C invariant, both opposite circular polarizations contribute
symmetrically, leading to equal speeds of light propagating
along B. If the system is noninvariant under C, the speeds of
light differ for opposite circular polarizations. The resulting
polarization vector rotates describing a circumference (in
general an ellipse), and the Faraday effect arises.

For propagation perpendicular to B, two elliptically po-
larized modes arise: one of their semiaxes being along the
propagation vector k, the rotation being in the plane orthogonal
to B containing k [2–4].

The FR is indeed a particular case of the general problem of
photon propagation in a charged medium [5]. In nonrelativistic
media, like the ionosphere and insulators, it is a well-known
phenomena where the classical and semiclassical approaches
can be applied successfully [1].

However, FR effects have been also observed in electro-
magnetic waves coming from astrophysical objects [6]. Some
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of these sources are compact objects which are characterized
by high densities and strong magnetic fields that can reach up to
1015 G in magnetars [7]. Hence the physical process involved
in the case of compact objects requires an adequate treatment
from the point of view of a quantum-relativistic approach.

On the other hand, in quasiplanar condensed matter systems
such as graphene (a genuine monolayer of carbon atoms
in a honeycomb array, whose theoretical properties are
essentially described by a two-dimensional relativistic chiral
fermion system [8–10]), FR is observed when light propagates
perpendicular to the graphene layer in the presence of a static
magnetic field with k ‖ B and the relation between the Faraday
angle and the nonstatic (ω �= 0) Hall conductivity has been
pointed out [11–14].

From the point of view of the novel applications of
graphene, magneto-optical phenomena such as Faraday effect
must be understood from both the theoretical and experimental
points of view. Theoretical studies of the conductivity tensor
in the static limit [10,15] and nonstatic regime have been
done [16,17]. Recently, FR has been detected in mono-layer
and multilayered epitaxial graphene [18]. The measurements
report a giant value of the rotation angle which comes
exclusively from the graphene system (the substrate did not
show any FR).

In spite of the differences in contexts, the description of the
Faraday effect in both the astrophysical and graphene scenarios
can be theoretically tackled by considering photon propagation
parallel to the constant magnetic field in quantum-relativistic
dense matter.

The scope of the present paper is to describe the FR
effect and to obtain the Faraday angle for (3 + 1)-dimensional
(3D + 1) and 2 + 1 dimensional (2D + 1) systems, starting
from the same formalism: the relativistic conductivity tensor
in 3D + 1 for a massive fermion system. Our goal will be
to show the connection between Hall conductivity and the
Faraday effect and the quantization of the Faraday angle [19].

In a previous paper [10], the Hall conductivity for a massless
relativistic fermion system was studied by starting from the
quantum-relativistic photon self-energy tensor in the QED
framework using the approach of Ref. [20] to obtain the static
limit. Now, as we are interested in FR, this problem should be
generalized to the nonstatic limit (ω �= 0).

In Ref. [5] a detailed study of the structure of the
photon self-energy in the presence of a magnetic field at
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finite density and temperature was done. Photon self-energy
satisfies properties of gauge and Lorentz and CPT invariance.
General properties of the photon self-energy and the dispersion
equations for photons propagating in the medium were solved
in two cases: photon propagating parallel and perpendicular to
the magnetic field [5].

In this paper we focus on the propagation parallel to the
magnetic field which establishes a relation between the Hall
and Faraday effects, so we take advantage of these calculations.
We have also particularized the study to the 2D + 1 case, with
the aim to describe graphene-like systems.

Our calculations have been done in the imaginary-time
formalism. For 3D + 1 and 2D + 1 systems we have obtained
the FR angle that the light undergoes upon propagating in a
dense fermion system where the chemical potential μ is greater
than temperature T (μ � T ).

The weak-field limit for light propagating in a magnetized
plasma was studied in Ref. [21], taking the dependence of
the self-energy with regard to B in a linear approximation.
In Ref. [22] a calculation of the photon self-energy is made
for strong and moderate fields but μ � eB. In both papers
the Faraday effect is considered in some particular cases and
the semiclassical results have been reproduced. The real-time
formalism was used in Refs. [21,22].

Our findings are relevant for two main reasons: first, we
have extended to them to the nonstatic limit from previous
calculation [10–20] of 3D + 1 relativistic massive fermions
and 2D + 1 relativistic massless Hall and Ohm conductivities.
Second, we have found the connection between the FR angle
and Hall conductivity (the Faraday angle depends on the
admittivity: complex conductivity, but the leading term is pro-
portional to the Hall conductivity). This result for 3D + 1 and
2D + 1 systems shows that it is a consequence of general prop-
erties of QED in external magnetic fields at finite density. The
angle as a function of the photon frequency ω has branching
points for 3D + 1 relativistic dense massive fermion systems as
well as for 2D + 1 massless systems a discrete set of ω values.
Hence, FR shows the effect of quantization of the quantum
Hall effect at nonzero frequency. Our results for 2D + 1
massless systems are in agreement with previous theoretical
work for FR in graphene reported in Refs. [12–14]. The 2D + 1
results have been obtained from 3D + 1 results by dimensional
compactification.

Astrophysical applications of our findings on the FR angle
can be expected in the context of radiation propagating through
neutron-star magnetospheres. This problem will be discussed
in a forthcoming presentation.

The paper is organized as follows: In Sec. II we start
from the one-loop approximation of the photon self-energy
in the presence of a constant and uniform magnetic field
and obtain the relativistic Hall and Ohm conductivities in the
nonstatic approximation by generalizing the results obtained
in Ref. [20]. In Sec III the 3D + 1 Faraday effect is discussed
and the Faraday angle is obtained to first order as half
of the Hall conductivity. Then, the 2D + 1 massless QED
limit is obtained, and the expression for the Hall and Ohm
conductivities are written in Sec. IV. In Sec. V the Faraday
effect and angle are discussed in 2D + 1 dimensions obtaining
the same dependence with regard to the Hall conductivity as
the 3D + 1 case in the first-order approximation. Finally, in

Sec. VI we state the concluding remarks. Appendices show
the calculations relevant to our results.

II. PHOTON SELF-ENERGY IN PRESENCE OF
MAGNETIC FIELD

The photon self-energy in quantum electrodynamics in an
external magnetic field was calculated at finite temperature and
nonzero density in Ref. [2]. The total electromagnetic field is
written Ae

μ + aμ where Ae
μ refers to the external magnetic

field and aμ to the radiation field. The photon self-energy (also
called the polarization operator) can also be interpreted as
the linear-term coefficient of the functional expansion of the
four-current jμ in powers of the electromagnetic field aμ. That
is, jμ = �μνaν .

The introduction of a chemical potential μ �= 0 is associated
with a non-neutral electron-positron charged medium. The
system is thus assumed as C noninvariant, and total charge
neutrality is guaranteed by the assumption of a hadron
background. This background, however, is not taken into
account in any of the further calculations.

The generalized Furry’s theorem [23] establishes that odd
powers of μ will be associated with odd powers of Ae

μ

through antisymmetric tensor structures. That is, the self-
energy contains antisymmetric odd-in-μ terms. Also, as gauge
invariance is satisfied, it implies that the self-energy tensor
satisfies the four-dimensional gauge invariance condition
�μνkν = kμ�μν = 0. We have for the photon self-energy the
expression1

�μν(x,y) = e2Tr
∫

γμG(x,z)�ν(z,y ′,y)G(y ′,x)d4zd4y ′. (1)

For the calculation of the components of �μν we take Eq. (1)
in the one-loop approximation with the temperature Green’s
functions G(x,y|Ae) being the solution of the Dirac equation
in a constant magnetic field B such that Ae

ν = Bx1δν,2, directed
along the x3 axis[

γν

(
∂ν − ieAe

ν

) + m
]
G(x,y|Ae) = δ(x − y), (2)

where ∂4 = ∂/∂x4 − μ, and μ is the chemical potential for the
electron-positron gas. It is also important to remark that Eq. (2)
defines the fermion temperature-dependent Green’s function
for x4 in the interval −β to β; β = 1/T . In the one-loop
approximation the Fourier transform of the polarization tensor
has the form

�νρ(k4,�x, �x ′|Ae) = e2

β
Tr

∑
p4

γνG(p4,�x, �x ′|Ae)

× γρG(p4 + k4,�x, �x ′|Ae), (3)

where p4 = (2s + 1)π/β and s runs over integers from −∞
to +∞. Substituting the expression of the Green’s function of
fermions G(p4,�x, �x ′|Ae) we obtain the self-energy tensor as

�νρ(k|Ae,μ,β−1)

= e3B

2π2β

∑
p4

∑
n,n′

∫
dp3Cν,ρ[

p∗
4 + ε2

p,n

] [
(p∗

4 + k4) + ε2
p∗

] , (4)

1Unless specified otherwise, we use natural units h̄ = c.
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where p∗
4 = p4 + iμ, εp,n = (p2

3 + m2 + 2enB)1/2εp,n′ =
[(p3 + k3)2 + m2 + 2en′B]1/2, n and n′ are the Landau num-
bers, and in what follows we will use the notation k2

⊥ ≡ k2
1 + k2

2
and k2

‖ = k2
3 + k2

4 . Let us remark that the presence of the
magnetic field in the x3 direction breaks the spatial symmetry,
hence in Eq. (4) only the integral over dp3 has survived. The
integral over

∫
dp⊥ → ∑

n
αneB

(2π)2 where αn = 2 − δn0.

As mention earlier, in Ref. [5] the structure of self-energy of
the photon (4) in presence of a magnetic field at finite density
and temperature was obtained by considering the properties
of gauge and Lorentz invariance and CPT invariance. Six
independent transverse tensors can be built in terms of the four
vectors: the momentum of the photon kμ, the product of the
external electromagnetic field tensor Fμρ and its square by kμ,
leading respectively as Fμρkρ and F 2

μ,ρkρ , and the four-velocity
of the medium uμ (a summary of these properties can be found
in the appendix). As our goal is to study the Faraday effect in
connection to the conductivity tensor we will concentrate on
the case of a photon propagating parallel to the magnetic field
(k⊥ = 0) [5]; in that case only three scalars are independent.
As we will show in the next sections only two of them are
related to the conductivity and also to Faraday effect.

A. Relativistic Hall and Ohm conductivity
in nonstatic limit (ω �= 0)

This section is devoted to studying the 3D + 1 relativistic
Hall and Ohm conductivities in the nonstatic limit (ω �= 0).
The expression for the spatial part of the current density is
linear in terms of the perturbative magnetic field and is given
in terms of the photon self-energy of the medium by [20]

ji = �iνaν, i = 1,2,3, ν = 1,2,3,4, (5)

where a4 = ia0 and k4 = iω, having in mind the transversality
condition given by �μν(k)kν = 0, due to gauge invariance,
Eq. (5) can be written as

ji = YijEj , i = 1,2,3, j = 1,2,3, (6)

where Yij = �ij/(iω) is the admittivity (complex conductivity
tensor) and Ej = i(ωaj − kja0) is the electric field.

We will be especially interested in the real conductivity
σij = Re[Yij ]. The contribution to the current density in Eq. (6)
due to σij can be written as

ji = σ 0
ijEj + (E × S)i , (7)

where σ 0
ij = Im[�S

ij ]/ω and Si = 1
2εijkσH

jk is a pseudovec-
tor associated with σH

ij = Im[�A
ij ]/ω. �A

ij and �S
ij are,

respectively, the antisymmetric and symmetric parts of the
polarization tensor [10,20].

In the particular case where the electric field is the
polarization vector of a transverse wave propagating along
the magnetic field B, being E ⊥ B, the conductivity tensor can
be written in the following way:

σij = σ 0δij + εijσ
H , (8)

where εij is the antisymmetric 2 × 2 unity tensor, ε12 =
−ε21 = 1, and

σ 0 = Im[t]/ω, (9)

σH = Im[r]/ω, (10)

where the scalar quantities r and t depend on the frequency
ω, the momentum k3, and also the temperature, chemical
potential, and magnetic field [5]. From Eq. (8) we can identify
σ 0, σH with the Ohm and Hall conductivities, respectively.
The scalar r can be written as

r(k‖,μ,B,T ) = iIr , (11)

and Ir is the integral

Ir = e3Bω

2π2

√
k2

k2
‖

∑
n,n′

F
(3)
nn′ (0)

∫ ∞

−∞

dp3[k2
‖ + 2eB(n + n′)]

D

× [ne(εp,n) − np(εp,n)], (12)

D = [2p3k3 + k2
‖ + 2eB(n′ − n)]2 − 4ω2ε2

p,n, (13)

for k⊥ ∼ 0, (k2/k‖)1/2 → 1, ne,p(εp,n) = (1 + e(εp,n∓μ)β)−1

are the Fermi-Dirac distribution for fermions and antifermions,
respectively. The scalar t is

t(k‖,μ,B,T ) = −e3B

4π2

∑
n,n′

F
(2)
nn′ (0)It , (14)

where F
(2,3)
nn′ (0) = δn,n′−1 ± δn−1,n′ ,

It =
∫ ∞

−∞

dp3

εn,p

{
1 − (2p3k3 + Jnn′ )[k2

‖ + 2eB(n + n′)]

D

}

× [ne(εp,n) + np(εp,n)], (15)

and Jnn′ = k2
‖ + 2eB(n′ − n).

Thus, we have the expressions for the scalars r and t in
the one-loop approximation for the fermion-antifermion gas,
with the assumption of k⊥ = 0. Now, starting from them we
can study the Hall and Ohm conductivities in some particular
limits which are relevant for applications in astrophysics as
well as in graphene-like systems.

B. 3D + 1 Hall conductivity ω �= 0

The Hall and Ohm conductivities Eqs. (9) and (10) are
given as imaginary parts of the scalars r and t , respectively. At
frequencies different from zero the integrals (12) and (15) have
singularities which come from the zeros of the denominator
D. But the Hall conductivity is the imaginary part of r = iIr ,
thus the contribution to the Hall conductivity comes from the
real part of Ir , which means to consider the principal value of
the integral [see the appendix, first term of (A39)]. The result
is the following:

Im[r(k‖,B,μ,T )] = Re[Ir ], (16)

where

Re[Ir ] = P

{
e3Bω

2π2

∑
n,n′

F (3)
n,n(0)

∫ ∞

−∞
dp3

[k2
‖ + 2eB(n + n′)]

D

× [ne(εp,n) − np(εp,n)]

}
. (17)
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The denominator in Eq. (17) can be written as D = 4k2
‖(p3 −

p
(1)
3 )(p3 − p

(2)
3 ), where p

(1,2)
3 are the roots of the equation D =

0 (see details in Ref. [5])

p
(1,2)
3 = −k3Jnn′ ± ω�

2k2
‖

, (18)

and

� = (
J 2

nn′ + 4ε2
0,nk

2
‖
)1/2

, (19)

and we have for σ 3D
H

σ 3D
H (k‖,B,μ,T ) = Im[r]

ω
= Re[Ir (k‖,B,μ,T )]

ω
. (20)

In the degenerate limit where μ � T and ne(εp,n) are
replaced by a step functions θ (μ − εp,n), np(εp,n) → 0; after
integration we obtain

σ 3D
H (k‖,B,μ,T )

= −e3B

2π2

nμ,n′
μ∑

n,n′
F

(3)
n,n′ (0)

k2
‖ + 2eB(n + n′)

4ω�

×
(

ln

∣∣∣∣∣pf − p
(2)
3

pf + p
(2)
3

∣∣∣∣∣ + ln

∣∣∣∣∣pf + p
(1)
3

pf − p
(1)
3

∣∣∣∣∣
)

, (21)

where pf = (μ2 − m2 − 2neB)1/2 is the Fermi momentum.
As F

(3)
n,n′(0) are given by Kronecker δ expressions and taking

the long-wave limit k3 → 0 we have for σ 3D
H the expression

σ 3D
H (ω,B,μ,0) = e3B

2π2

⎡
⎣ nμ∑

n=0

ω2 − 2eB(2n + 1)

4mnω2

1√(
2eB−ω2

2ωmn

)2 − 1
ln

∣∣∣∣∣∣
pf /mn −

√(
2eB−ω2

2ωmn

)2 − 1

pf /mn +
√(

2eB−ω2

2ωmn

)2 − 1

∣∣∣∣∣∣
−

nμ∑
n=1

ω2 − 2eB(2n − 1)

4mnω2

1√(
2eB+ω2

2ωmn

)2 − 1
ln

∣∣∣∣∣∣
pf /mn −

√(
2eB+ω2

2ωmn

)2 − 1

pf /mn +
√(

2eB+ω2

2ωmn

)2 − 1

∣∣∣∣∣∣
⎤
⎦ . (22)

where mn = (m2 + 2neB)1/2. From Eq. (17) at zero frequency ω = 0 (static limit) we recover the quantum Hall conductivity
obtained in Ref. [20]:2

σ 3D
H (0,B,μ,T ) = e2

h2

nμ∑
n

αn

∫ ∞

−∞
dp3θ (μ − εp,n) = e2

ch2

nμ∑
n

αnpf . (23)

The sum over Landau levels is up to the integer number nμ = I [(μ2 − m2)/(2eB)], n′
μ = nμ + 1.

In Fig. 1, the three-dimensional (3D) nonstatic Hall conductivity is plotted for constant chemical potential and frequency as
a function of the magnetic field. The curved step behavior is illustrated; this behavior is also observed in the static limit [20].

C. 3D + 1 Ohm conductivity ω �= 0

Our aim now is to calculate the Ohm conductivity given by Eq. (9). A detailed calculation of Im[t] can be found in Ref. [5].
Its expression comes from the imaginary part of the integral (15), which is related to the singularities due to absorptive process,
and it can be written in two different cases: the first one, where k2

‖ > 0, and absorption is only due to excitation of particles, and
a second one, where k2

‖ < 0 and absorption is due to excitation and also pair creation. In the present study we are going to use
the expression of Im[t] in the region of k2

‖ < 0 because we will take the long-wavelength limit (k3 −→ 0). Furthermore, only the
region of real frequencies, which means k2

3 > k2
‖ , is considered. To find the imaginary part of It the formulas (A38)–(A42) will

be used; after that we have the Ohm conductivity as

σ 3D
0 (ω,B,μ,T ) = Im[t]

ω
= e3B

8πω

∑
nn′

F
(2)
n,n′ (0)[k2

‖ + 2eB(n + n′)]{
[k2

‖ + 2eB(n′ − n)]2 + 4ε2
0,nk

2
‖
}1/2

× {
θ (k2

‖ − k2′′
‖ )

[
N

(
ε(m)
p

) − N
(
ε(m)
p + ω

)] + θ (k2′
‖ − k2

‖)
[
H

(
ε(j )
p

) + H
(
ω − ε(j )

p

) − 2
]}

θ
(
k2

3 − k2
‖
)
, (24)

where

N (εp,n) = ne(εp,n) + np(εp,n),
(25)

H (εp,n) = ne(εp,n) + np(ω − εp,n).

2We have returned to the units h̄ and c to obtain this result.

Equation (24) is written for ω > 0, where ε(m)
p and ε

(j )
p are the

values of the energy at the branching points for the excitation
and pair creation absorption processes, respectively:

ε(m)
p = −ωJnn′ ± k3�

2k2
‖

, m = (1,2),

(26)

ε(j )
p = ωJnn′ ∓ k3�

2k2
‖

, j = (3,4).
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FIG. 1. (Color online) 3D Hall conductivity as a function of the
magnetic field, where B runs between 7 × 1012 and 1014 G and h̄ω =
10−2 MeV.

The step function over k2
‖ in Eq. (24) defines the regions

where excitation and pair creation take place, where k2′
‖ and

k2′′
‖ are the branching points located at the k2

‖ plane:

k2′
‖ = −(ε0,n + ε0,n′ )2, k2′′

‖ = −(ε0,n − ε0,n′ )2. (27)

Now, our attention is focused on the long-wavelength and
degenerate limit; in order to get a better understanding of our
results, we separate them for each region.

Region I: k2
‖ > k2′′

‖ excitation case. In this region absorption
occurs due to only the excitation of particles to higher energy
levels. When k3 → 0 then k2

‖ → −ω2. The solution for the
energy are ε(1)

p = ε(2)
p = Jnn′/(2ω). In order to have positive

energies, which could be important in the degenerate limit, the
sum is restricted to n′ > n. Also, the condition k2

‖ > k2′′
‖ , in this

limit, implies 2eB > ω2. Finally, considering the degenerate
limit, the Ohm conductivity in I is given by

σ 3D
0 (ω,B,μ,0) = e3B

8πω

nmax∑
n=0

2eB(2n + 1) − ω2[
(2eB − ω2)2 − 4ε2

0,nω
2
]1/2

× [
θ

(
μ − ε(1)

p

) − θ
(
μ − ε(1)

p − ω
)]

.

(28)

The sum over the integer n goes to nmax determined by
the restriction imposed by Eq. (27). The combination of the
degenerate functions tells us that the Ohm conductivity does
not vanish if

2eB − ω2

2ω
< μ <

2eB + ω2

2ω
.

Region II: k2′
‖ > k2

‖ pair creation. In this region absorption
may be due to excitation and also to pair creation. The
corresponding solution for the energies are: ε(3)

p = ε(4)
p =

−Jnn′/(2ω). In this case there is no restriction for the sum
over n, and the condition k2′

‖ > k2
‖ , implies 2eB < ω2. Then,

the expression for the Ohm conductivity in the degenerate limit

in II is

σ 3D
0 (ω,B,μ,0) = e3B

8πω

nmax∑
n=0

ω2 − 2eB(2n + 1)[
(2eB − ω2)2 − 4ε2

0,nω
2
]1/2

+
∑
n=1

ω2 − 2eB(2n − 1)[
(2eB + ω2)2 − 4ε2

0,nω
2
]1/2

× [
θ

(
ε(3)
p − μ

) + θ
(
ω − ε(3)

p − μ
)]

,

(29)

and, from the degenerate distribution, we obtain that the Ohm
conductivity does not vanish if

ω2 + 2eB

2ω
> μ or

ω2 − 2eB

2ω
> μ. (30)

Let us remark that, in the static limit, ω = 0 the Ohm
conductivity is zero as was checked in Ref. [20].

III. QUANTUM FARADAY EFFECT FOR RELATIVISTIC
FERMION GAS

Photons propagating in a relativistic fermion-antifermion
(e±) medium at zero temperature and nonzero particle density
(chemical potential μ) is of special interest for astrophysics.
The one-loop diagram describing the process accounting for
the photon self-energy interaction contains, in addition to the
virtual creation and annihilation of the pair, the process of
absorption and subsequent emission of one photon by the
fermions and/or antifermions.

The propagation of an electromagnetic wave in the medium
can be described by the Maxwell equations

∂νFνμ + �μνaν = 0, (31)

which could be written in momentum space as

[(k2
⊥ + k2

‖)gμν − kμkν + �μν]aν = 0. (32)

We will consider in what follows that the photon propagates
parallel to the magnetic field. As in Sec. II, �νρ is the
self-energy of the photon propagating in a magnetized dense
medium, so it depends on T , μ, and magnetic field, apart from
k3 and ω.

To solve the dispersion relation (32) we need to diagonalize
�νρ . The general covariant structure of the photon self-energy
leads to the following expression:

�μν =
3∑

n=0

κi

bμ(i)b∗(i)
ν

b
(i)
μ b

∗(i)
μ

, ν,μ = 1,2,3,4, (33)

where κi y b(i)
μ are the eigenvalues and the eigenvectors of �μν ,

respectively, which satisfies the secular equation

�μνb
(i)
ν = κib

(i)
μ . (34)

In the particular case of propagation along the magnetic field
there are three nonvanishing eigenvalues. The first two are
transverse modes b′(1,2)

μ [2,5] (see appendix for details)

b′(1,2)
μ = (

b(1)
μ ± ib(2)

μ

)
, (35)
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with �b(1)
⊥ = − �k⊥

k⊥
k‖
k
, b

(1)
3,0 = 0,

b
(2)
1 = k2

k⊥
, b

(2)
2 = − k1

k⊥
, b

(2)
3,0 = 0, (36)

which describe a circularly polarized wave in the plane
perpendicular to B with different eigenvalues,

κ1,2 = t ±
√

−r2, (37)

according to the definition given in Eq. (11),

κ1,2 = t ± Ir , (38)

that is, opposite directions, which is the key of the Faraday
effect. Also, there is a third mode corresponding to a
longitudinal wave which propagates along the magnetic field
b3

μ, and κ3 = s is the corresponding eigenvalue.
Let us consider the propagation of an electromagnetic wave,

which at x3 = 0 is linearly polarized along the x1 axes. Note
that, because the system has rotational symmetry with regard
to B(k⊥ = 0), we can choose the direction of the eigenvectors

b1,2
μ arbitrarily orthogonal to B. We can then set

�k⊥
k⊥

= e1 and
decompose the wave into two circularly polarized waves

aμ = [
1
2Aei(k+x3−ωt)b′(1)

μ + 1
2Aei(k−x3−ωt)b′(2)

μ

]
, (39)

where k± are the solutions of the dispersion relations for the
eigenmodes

k± =
√

ω2 + κ1,2 =
√

ω2 + t ± Ir . (40)

In order to solve the dispersion relation, the complex functions
r and t in Eq. (40) are considered in an approximation
independent on k3 [Eq. (35)].

The electric field associated with the wave is given by

E =
[

iω√
2
Aei(k+x3−ωt)e+ + iω√

2
Aei(k−x3−ωt)e−

]
, (41)

where e± = (e1 ∓ ie2)/
√

2 are the polarization vectors of the
left- and right-circularly polarized waves, respectively. So, the
superposition of both modes leads to an elliptically polarized
wave, whose principal axis rotates.

The amount of the FR angle, after traveling a distance L in
the medium, can be obtained from (see also Refs. [21,22])

θ3D
F = 1

2ω(n− − n+)L, (42)

where n± are the refraction indices of the left- and right-
circularly polarized waves, respectively, and can be defined
as [2]

n±(ω,k3) =
(

1 + κ1,2(ω,k3)

ω2

)1/2

. (43)

Using k = nω, then the Faraday angle can be obtained directly
from Eqs. (41) and (42):

θ3D
F = 1

2 (Re [k−] − Re [k+])L, (44)

where

Re[k±] = 1√
2

[
√

(ω2 + Re[κ1,2])2 + Im[κ1,2]2

+ (ω2 + Re[κ1,2])]1/2. (45)

FIG. 2. (Color online) Faraday angle per unit length as a function
of energy, for μ = 1 MeV and B = 1014 G, corresponding to nμ. The
curve was plotted for photon energy h̄ω ∼ 106 eV, which include the
two branching points for the FR.

If Im[κ1,2] � ω2 + Re[κ1,2] we can roughly write

Re [k±] ≈
√

ω2 + Re[κ1,2]

[
1 + Im[κ1,2]2

4(ω2 + Re[κ1,2])2

]1/2

.

(46)

Furthermore, if also Re[κ1,2] � ω2, in the leading-order
approximation

Re [k±] ≈ ω + Re[κ1,2]

2ω
, (47)

and, according to the relation given in Eq. (44), we obtain for
the rotated Faraday angle per unit length3

θ3D
F

L
∼ σ 3D

H

2c
. (48)

Equation (48) shows the relation between Faraday angle and
the Hall conductivity. Let us note that in general the Faraday
angle depends on the terms of the admittivity tensor but the
leading term comes from the Hall conductivity. This result
obtained for 3D + 1 systems shows that it is a consequence of
general properties of QED in an external magnetic field at finite
density. In Sec. V we have obtained in 2D + 1 limit. This result
has been obtained theoretically in 2D + 1 systems [12,13,24].

The Faraday angle in the degenerate limit[σ 3D
H is given by

Eq. (22)] has been depicted in Fig. 2 for nμ = 0 in a wide range
of photon energy. Because the Hall conductivity (22) has two
branching points for nμ = 0, the curve has two peaks related to
excitation [ω = −m + (m2 + 2eB)1/2] and pair creation [ω =
m + (m2 + 2eB)1/2]. Then a resonant behavior for the Faraday
angle is obtained, associated with both absorption processes
[5]. Let us note that the Faraday angle should be a finite value.
The divergences are avoided if we use the solution of the
dispersion equation near the singular points.

The relativistic quantized medium makes the angle depend
nonlinearly on the magnetic field, contrary to the classical case

3We have returned to the units h̄ and c to obtain this result.
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of interstellar medium where the relation with B is linear and
depends on the electron density.

It is worthwhile to point out that Faraday effect is obtained
as the consequence of charge asymmetry of the system μ �= 0.
When the system has charge symmetry the scalar r vanishes
and the Faraday effect is not manifest.

IV. RELATIVISTIC HALL AND OHM CONDUCTIVITIES
IN NONSTATIC LIMIT (ω �= 0: 2D + 1 SYSTEM)

As is well known theoretically, properties of graphene are
essentially described by Dirac massless fermions (electrons)
in two dimensions. This system is relativistic in the sense
that the spectra of electrons and holes can be mimicked as
two-dimensional relativistic chiral fermions where electrons
and holes move at velocities vF ≈ 106 m/s; one hundredth
the speed of light [8]. In this section with the aim of studying
a graphene-like system we are going to obtain the 2D Hall
and Ohm conductivities in the nonstatic limit from the 3D
conductivities obtained in Sec. II. Two considerations can be
made: the first is to do a dimensional compactification [10,20]
and the second one is to take the limit m → 0 [10]. To
consider the first of our assumptions, we assume that the
fermion-antifermion gas is confined to a box of length L3

and the limit L3 → 0 is taken. Then the integral over p3 is
replaced by a sum over the integers s = 0,1,2, . . .. Because
p3 = 2πs/L3 and L3 → 0 only the terms s = 0 remain in
the sum. Then the 2D + 1 limit is obtained taking p3 = 0 and
k3 = 0 and removing from all the expressions the integrals
[1/(2πh̄)]

∫
dp3. With this dimensional reduction and the

consideration of massless fermions in mind for 2D + 1 Hall
conductivity at ω �= 0, we have (Y 2D

ij = L3Yij )

σ 2D
H (ω,B,μ,T ) = Im[r2D(ω,B,μ,T )]

ω
, (49)

and

σ 2D
H = e3B

π

∞∑
n=0

{
[−ω2 + 2eB(2n + 1)]

(−ω2 + 2eB)2 − 4ω2ε2
0,n

−
∞∑

n=1

−ω2 + 2eB(2n − 1)

(ω2 + 2eB)2 − 4ω2ε2
0,n

}
(ne − np), (50)

where ε0,n = √
2neB. As in the earlier section we consider

the zero-temperature limit which means substituting ne(ε) =
θ (μ − ε) and zero contribution of antifermions, since the gas is
completely degenerate. The Hall conductivity has been written
as

σ 2D
H (ω,B,μ,0) = e3B

π

{
−ω2 + 2eB(2nμ + 1)

(2eB − ω2)2 − 4ω2ε2
0,nμ

}
. (51)

Let us remark that at ω = 0 we recover the expression of
quantum Hall conductivity σ 2D

H = 2 e2

h
(nμ + 1

2 ).4The Ohm
conductivity should be obtained doing the dimensional re-
duction in Eq. (15) considering massless fermions. In the

4We have recovered the units h̄ and c to write this result.

FIG. 3. (Color online) Ohm conductivity (solid blue line) as a
function of the photon energy for B = 7 × 104 G, μ = 200 meV,
and ε = 6.8 meV. We use vf = 108 cm/s. We also have plotted the
imaginary part of the conductivity (dashed red line).

degenerate limit, we obtain

σ 2D
0 (ω,B,μ,0)

= e3B

2πω

nμ∑
n=0

ε0,n

{
2ω2 + 4eB[

(−ω2 + 2eB)2 − 4ω2ε2
0,n

]
+ 2ω2 − 4eB[

(ω2 + 2eB)2 − 4ω2ε2
0,n

]}
θ (μ − ε0,n). (52)

Let us note that in Eq. (52) the sum over n goes to nμ = I [ μ2

2eB
].

Although our method of dimensional reduction described
above is valid for getting 2D + 1 limits, it would be interesting
to make a full 2D + 1 analysis of the problem by discussing the
set of independent tensor structures involved and their relation
to the obtained results. Reference [25] is an early attempt to
deal with the 2D + 1 case related to the Chern-Simons addition
to the Lagrangian.

To consider a graphene-like system in Eqs. (51) and (52),
additional considerations must be taken into account. When the
units h̄ and c are recovered, c → v2

f /c (vf is the Fermi veloc-
ity) [10]. The expressions for the Hall and Ohm conductivities
[Eqs. (51) and (52)] must be multiplied by two to account for
the sublattice-valley degeneracy in graphene. The frequency
must be substituted by ω → ω + iε where the imaginary part
ε is a phenomenological parameter associated with system
disorder [13,14]. In Fig. 3 the 2D Ohm conductivity is plotted
as a function of energy for fixed values of B = 7 × 104 G,
chemical potential μ = 200 meV and ε = 6.8 meV, which are
typical values for a graphene-like system [13,14]. The figure
also shows the imaginary part of the conductivity. Our results
obtained with the ansatz of a dimensional compactification
are in agreement with the theoretical studies of the Ohm
conductivity in graphene [14,16].

V. 2D + 1 SYSTEM: FARADAY EFFECT AND ROTATION
FARADAY ANGLE

The purpose of this section is to study the Faraday effect
for a 2D + 1 system (i.e., a graphene-like system) starting
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from the results obtained in Sec. III. Let us suppose that
the graphene plate is located at x3 = 0 and the incoming
electromagnetic wave is linearly polarized along the x1

direction and travels in the positive x3 direction. Due to the
optical Faraday rotation of the polarization vector when the
wave crosses the graphene sheet, both the reflected and trans-
mitted component acquire a component along the x2 direction
[13,14,26].

We can formally follow the procedure of Sec. III by using
the solution of the dispersion relation for a photon in a
stratified medium, given by a 3D + 1 relativistic electron-
positron plasma, situated between x3 = 0 and x3 = L3, in
vacuum.

To describe the propagation of an electromagnetic wave
in the whole space, let us start from the modified Maxwell
equation (31) as

∂νF
νμ + [θ (x3) − θ (x3 − L3)]�μνaν = 0, (53)

where the θ functions account for the inhomogeneity in the
Maxwell equation, which is only at 0 < x3 < L3. The bound-
ary conditions at the medium surfaces imply the continuity of
the electric field

Ei(x3 = 0 − ,L3−) = Ei(x3 = 0 + ,L3+) (54)

and its derivatives

∂3E
i(x3 = 0 − ,L3−) = ∂3E

i(x3 = 0 + ,L3+). (55)

If we consider an incident electromagnetic wave linearly
polarized along the x3 direction,

EI = E√
2
ei(kx3−ωt)e+ + E√

2
ei(kx3−ωt)e−, (56)

the transmitted wave (x3 > L3) can be written as

ET = E+
√

2
ei(kx3−ωt)e+ + E−

√
2
ei(kx3−ωt)e−, (57)

where E± = (E1 ± iE2) are complex amplitudes and e± =
(e1 ∓ ie2)/

√
2 correspond to the left- and right-polarized

waves, respectively [27]. In order to express the ampli-
tudes E± in terms of the medium parameters and the
amplitude of the incident wave E, we can follow the
multiple-reflections method described in Ref. [28]. Let us
define the complex total transmission coefficients amplitudes
T± = ET

±/EI
±,

T± = τ±eik±L3

1 + �±e2ik±L3
, (58)

where the factors

τ± = 4kk±

(k± + k)2
, �± = (k± − k)2

(k± + k)2

come from the boundary conditions (54) and (55) and the
exponentials eik±L3 are related to the FR due to the propagation
in the medium (as was shown in detail in Sec. III). Because T±
are complex numbers, they can be written as T± = |T±|eiθ±

and, using the definition given above for the Faraday angle

FIG. 4. (Color online) Faraday angle as a function of energy for
B = 7 × 104 G, ε = 1 meV, and three different values of the chemical
potential: μ = 30, 110, and 180 meV.

[Eq. (44)],

θF = 1
2 (θ− − θ+). (59)

In the limiting case k±L3 � 1, we can expand the exponentials
in Eq. (58) up to the linear term in L3 and obtain the
approximate expressions

T± ≈ 1

1 − iL3
k2±+k2

2k

= 2

1 + L3
κ1,2

iω
− iL3ω

. (60)

Finally, when L3 → 0, L3
κ1,2

iω
→ Y± = Y 2D

11 ± iY 2D
12 , where

Y 2D
ij are the components of the 2D complex conductivity

tensor, obtained from the 3D ones by the dimensional reduction
prescription described in the previous section. The Faraday
angle in the 2D + 1 limit is then given by

θ2D
F = 1

2 (θ2D
− − θ2D

+ ), (61)

where θ2D
± = arg [T 2D

± ] and

T 2D
± = 2

2 + Y±
. (62)

It is easy to see from the last two equations that, in the leading-
order approximation,

θ2D
F = 1

2σ 2D
H . (63)

This relation between the Faraday angle and the Hall conduc-
tivity has been already obtained in graphene [11,13,14] and
here we have obtained it naturally from the 3D result after a
dimensional compactification.

It can be easily checked that our approach is equivalent to
the one followed in Ref. [13] by taking the limit L3 → 0 in
Eq. (53).

The Faraday angle is plotted in Figs. (4) and (5) in the
degenerate limit [in which the Hall conductivity is given by
Eq. (51)]. Figure (4) shows the Faraday rotation angle versus
ω for a fixed value of the magnetic field (7 × 104 G) and
maximum Landau numbers nμ = 0,1,3, which corresponds to
chemical potentials μ = 30, 110, and 180 meV, respectively.
Each curve shows peaks associated with the poles of the Hall
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FIG. 5. (Color online) Faraday angle as a function of the chemical
potential for B = 4 × 104 G, h̄ω = 150 meV, and ε = 0.5 meV. We
use vf = 108 cm/s.

conductivity (51), showing a resonant behavior for the Faraday
angle when the frequency reaches the values corresponding
to the poles and absorption processes occurs. The curves
were done assuming ε = 1 meV, which is a typical value
of this quantity in graphene-like systems. The maximum
rotation angle for the parameters chosen is in agreement
with the angle predicted by Ref. [15]. In Fig. 5 the Faraday
angle is plotted as a function of chemical potential fixing
B = 4 × 104 G, h̄ω = 150 meV, and ε = 0.5 meV. The curve
shows a quantized behavior in the same way as the Hall
conductivity.

VI. CONCLUSIONS

The study of propagation of an electromagnetic wave
parallel to a magnetic field has been done starting from
quantum field theory formalism at finite temperature and
density. The quantum Faraday effect has been studied in
3D + 1 and 2D + 1 systems. We have obtained the relation
between the FR angle and Hall conductivity (the Faraday
angle is given by the complex conductivity, but the leading
term comes from the Hall conductivity). Our finding shows
that it is a consequence of general properties of propagation of
an electromagnetic wave parallel to a constant magnetic field
in a quantum and relativistic dense system. We have found that
Faraday effect is consequence of the C noninvariance of the
system.

Due to the relation between the Faraday effect and Hall
conductivity we started our calculations studying the conduc-
tivity tensor in the nonstatic limit. Hall and Ohm conductivities

have been calculated in the limit of zero temperature relevant
for applications to astrophysical and graphene-like systems.
The calculations can be extended to the general case of finite
temperature.

Let us remark that in the present paper we have focused on
the real Ohm and Hall conductivities given by the imaginary
part of t and the principal value of the integral Ir , respectively.
A more full discussion of the complex conductivity including
for instance the imaginary part of integral Ir (related to
absorptive processes) and the real part of t will be discussed
in a separate work.

The 2D + 1 quantum relativistic system has also been stud-
ied by introducing the ansatz of dimensional compactification
of the x3 dimension, allowing us to obtain the Hall and Ohm
conductivities in the limit of zero temperature.

The Faraday angle shows a quantized behavior in both
3D + 1 and 2D + 1 relativistic system. The dependence of
the Faraday angle with frequency in graphene-like system is
in agrement with theoretical studies [13,14]. Giant Faraday
angles are found for photon absorption frequencies. The out-
come related to the Faraday rotation angle in the astrophysical
context, in particular in the study of propagation of light in
the magnetosphere of neutron stars, deserves to be carefully
analyzed. A separate study of this topic will be addressed in a
future work.
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APPENDIX: PROPERTIES OF PHOTON
SELF-ENERGY TENSOR

As a starting point we summarize some of the main features
related with the photon self-energy of an electron-positron
plasma in the presence of a constant magnetic field in
the case of nonzero temperature and nonvanishing chemical
potential. Under these conditions the polarization tensor may
be expanded in terms of six independent transverse tensors [5].
As is shown in Ref. [2], symmetric properties in quantum
statistics, corresponding to generalization of the Onsager
relations, reduce the number of the basic tensors from 9 to 6:

�μν =
6∑

n=1

π (i)�(i)
μν, ν,μ = 1,2,3,4. (A1)

The basic tensors are

�(1)
μν = k2gμν − kμkν, �(2)

μν = Fμλk
λF νρkρ, (A2)

�(3)
μν = −k2

(
gμν − kμkλ

k2

)
Fλ

ρ F ρη

(
gην − kηkν

k2

)
, (A3)

�(4)
μν = −[(F 2k)μk2 − kμ(kF 2k)](F ∗k)ν + (F ∗k)μ[(F 2k)νk2 − kν(kF 2k)]

(kF ∗2k){−k2[(kF 2k)]}1/2
, (A4)
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where gμ,ν = (−1,1,1,1) is the metric tensor and F ∗
μν is the

dual of the electromagnetic tensor Fμ,ν .
These tensors are symmetric in the indexes μ, ν while in

the following ones the others are antisymmetric

�(5)
μν = (u · k)(kμFμλk

λ − kνFμλk
λ + k2Fμν), (A5)

�(6)
μν = uλFμλk

λ − uνFμλk
λ − (u · k)Fμν. (A6)

We introduce a set of orthonormal vectors which are the
eigenvectors of �μν in the limit μ = 0 and β−1 = 0 :

b(1)
μ = (F 2k)μk2 − kμ(kF 2k)

[−k2(kF 2k)(kF ∗2k)]1/2
, (A7)

b(2)
μ = (F ∗k)μ

(kF ∗2k)1/2
, (A8)

b(3)
μ = (Fk)μ

(−kF 2k)1/2
, (A9)

b(4)
μ = kμ

(k2)1/2
. (A10)

In the reference system in which the electron positron plasma
is at rest, the vectors b(i)

μ look like

�b(1)
⊥ = −

�k⊥
k⊥

√
k2
‖

k2
, b

(1)
3,0 = k3,0

√
k2
⊥

k2
‖k2

, (A11)

�b(2)
⊥ = 0, b

(2)
3 = k0√

k2
‖
, b

(2)
0 = k3√

k2
‖
, (A12)

b
(3)
1 = k2√

k2
⊥

, b
(3)
2 = − k1√

k2
⊥

, b
(3)
3,0 = 0, (A13)

b(4)
μ = kμ

(k2)1/2
. (A14)

Using these vectors we can derive the scalars

p = b(1)μ�ν
μb(1)

ν , (A15)

s = b(2)μ�ν
μb(2)

ν , (A16)

t = b(3)μ�ν
μb(3)

ν , (A17)

r = b(3)μ�ν
μb(1)

ν , (A18)

and the pseudoscalars

q = b(2)μ�ν
μb(1)

ν , (A19)

v = b(2)μ�ν
μb(3)

ν . (A20)

In terms of these quantities the scalars π (i) in Eq. (A1) may
be written in the rest frame [uν = (0,0,0,1)] as

π (1) = s/k2, (A21)

π (2) = (k2
‖ t − k2p + k2

⊥s)/(B2k2
‖k

2
⊥), (A22)

π (3) = (p − s)/(B2k2
‖), π (4) = q, (A23)

π (5) = − r

Bω(k2k
1/2
‖ )

− v

Bk3(k2
‖k

2
⊥)1/2

, (A24)

π (6) = v

Bk3

k‖
k⊥

. (A25)

The above expression were written taking into account that
the magnetic field is directed along the x3 axis. Then, �μν can
be expressed in terms of the base vectors bi

ν :

�ν
μb(1)

ν = pb(1)
ν + qb(2)

μ + rb(3)
ν , (A26)

�ν
μb(2)

ν = −qb(1)
ν + sb(2)

μ + vb(3)
ν , (A27)

�ν
μb(3)

ν = −rb(1)
ν + vb(2)

μ + tb(3)
ν , (A28)

�ν
μb(4)

ν = 0. (A29)

Finally, the polarization tensor can be expressed in the b(i)
ν

base as

�μν =
⎡
⎣ p q r

−q s v

−r v t

⎤
⎦ . (A30)

From these results the eigenvalues could be determined by
finding the modes of the wave propagating in the medium. In
the case of propagation along the magnetic field, k⊥ = 0, we
obtain q = v = 0 and p = t and Eq. (A30) becomes

�μν =
⎡
⎣ t 0 r

0 s 0
−r 0 t

⎤
⎦ , (A31)

with the eigenmodes b′(1,3) = b(1) ± ib(3) and b′(2) = b(2) and
eigenvalues κ (1,3) = t ± √−r2 and κ (2) = s. Equation (A31)
is equivalent to

�μν =
⎡
⎣ t r 0

−r t 0
0 0 s

⎤
⎦ , (A32)

and the eigenmodes b′(1,2)
μ = b(1)

μ ± ib(2)
μ and b′(3)

μ = b(3)
μ and

eigenvalues κ1,2 = t ± √−r2 and κ3 = s.5

On the other hand, it follows from Eq. (A32) that we can
calculate the scalars r and t , which are given as

r(k | A; μ,β−)

= − e3B

2π2β

∑
p4

∑
n,n′

∫ ∞

−∞

dp3C12,21(
p′2

4 + ε2
p

)[
(p′

4 + k4)2 + ε2
p

] ,

(A33)

where C12,21 = ±i[p4(p′
4 + k4) + p3(p′

3 + k3) + m2]F 3
n,n′

and F 3
n,n′(

k2
⊥

eB
) =| Tn−1,n′−1 |2 + | Tn−1,n′ |2 and

t(k | A; μ,β−)

= − e3B

2π2β

∑
p4

∑
n,n′

∫ ∞

−∞

dp3C11,22(
p′2

4 + ε2
p

)(
(p′

4 + k4)2 + ε2
p

) ,

(A34)

5Equation (A32) corresponds to Eq. (4.38) of Ref. [22]. The
eigenvalues κ1,2 = t ± Ir are their πT ± πP . The scalars t and Ir

correspond to πT and πP , respectively.
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and C11,22 = p′
4[p4(p′

4 + k4) + p3(p′
3 + k3) + m2]F 2

n,n′ and
F 2

n,n′( z2
eB

) =| Tn−1,n′−1 |2 − | Tn−1,n′ |2 , with

Tn,m(p,y) =
∫

eipy�n(x)�m(x + y)dx

=
(

m!

n!

)1/2 (
−y − ip√

2

)n−m

e−ipy− p2+y2

4

×Ln−m
m

(
p2 + y2

2

)
, (A35)

where Ln−m
m are the generalized Laguerre polynomials.

The sum
∑

p4
is done using the Matsubara formalism where

we have ∫ ∞

−∞

dp4

2π
→ 1

β

∑
p4

, p4 = (2n + 1)π

β
,

n = 0, ± 1, ± 2, . . . , (A36)

and the sum is carried out using the prescription

1

β

∑
n

F

(
. . .

2nπ

β

)
= − 1

β

∑
p

f ±(θp)Res{F (. . . θp)},

(A37)

where Res{F (. . . θp)} are the residues of the function F ,

f ± = ± iβ

1 − e∓iβθ

and θp are the poles of F .

1. Calculation of Im[t], σ 0 in 3D + 1: k2
‖ < 0

In order to solve the integrals It and Ir which have
singularities due to the denominator D, which can be written

as

D−1 = 1

8εn′εnω

(
1

εn′ − εn − ω + iε
− 1

εn′ − εn + ω + iε

− 1

εn′ + εn − ω + iε
+ 1

εn′ + εn + ω + iε

)
,

(A38)

where we have added an infinitesimal positive imaginary part
to ω in order to take advantage of the relation

1

s − ω − iε
= P

1

s − ω
+ iπδ(s − ω), (A39)

to extract the imaginary and real part of the integrals. The
first pair of singularities are related to excitation of particles
to higher energies and the second two are connected to the
pair creation. For εn′ > εn the first and the third of these
denominators may vanish only for ω > 0 and the second and
fourth if ω < 0. If εn′ < εn the opposite condition holds.

The imaginary part of the denominator D of the inte-
grals (11) and (15) can be written as [5]

Im[D−1] = ± π

8εnεn′ω
[(δ(εn′ − εn ∓ ω) + δ(εn′ − εn ± ω)

− δ(εn′ + εn ∓ ω)]. (A40)

To calculate the integral over p3 we can use the formula∫ ∞

−∞
dp3f (p3)δ(g(p3)) =

∑
m

f (pm
3 )

| g′(pm
3 ) | , (A41)

where pm
3 are the roots of g(p3) = 0,∣∣∣∣ d

dp3
[g(p3)]

∣∣∣∣ = �

2εm
n εm

n′
. (A42)
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