
PHYSICAL REVIEW A 88, 052121 (2013)

Einstein-Podolsky-Rosen paradox and quantum steering in pulsed optomechanics
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We describe how to generate an Einstein-Podolsky-Rosen (EPR) paradox between a mesoscopic mechanical
oscillator and an optical pulse. We find two types of paradox, defined by whether it is the oscillator or the
pulse that shows the effect Schrödinger called “steering”. Only the oscillator paradox addresses the question
of mesoscopic local reality for a massive system. In that case, EPR’s “elements of reality” are defined for the
oscillator, and it is these elements of reality that are falsified (if quantum mechanics is complete). For this sort
of paradox, we show that a thermal barrier exists, meaning that a threshold level of pulse-oscillator interaction
is required for a given thermal occupation n0 of the oscillator. We find there is no equivalent thermal barrier for
the entanglement of the pulse with the oscillator or for the EPR paradox that addresses the local reality of the
optical system. Finally, we examine the possibility of an EPR paradox between two entangled oscillators. Our
work highlights the asymmetrical effect of thermal noise on quantum nonlocality.
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I. INTRODUCTION

It is an outstanding challenge in fundamental physics to test
quantum nonlocality for mesoscopic, massive systems. The
Einstein-Podolsky-Rosen (EPR) paradox [1] is one of the most
powerful tests of quantum nonlocality. Presented originally as
an argument for the completion of quantum mechanics (QM),
the EPR paradox has been experimentally realized so far only
in optics [2–7].

The observation of an EPR paradox for the position
and momentum of mesoscopic mechanical oscillators would
represent an important advance, since this would demonstrate
the inconsistency of QM with the local reality (LR) of a
massive object. First proposed by Giovannetti et al. [8],
such a realisation would also give an experimental platform
to probe the macroscopic reality of an object, along the
lines suggested by Schrödinger [9–11]. While mesoscopic
superpositions were achieved with ion traps and microwave
oscillators, the use of nanomechanical oscillators creates mass
distribution superpositions, which tests the effects of gravity.

In light of the exceptional importance of these develop-
ments, we examine in this paper the limitations imposed
by thermal noise for achieving an EPR paradox in an
optomechanical system. There have been numerous proposals
and studies, but mainly for the entanglement of optical and/or
mechanical modes [12–22]. Relatively little is known about the
paradox itself. We expect that an EPR paradox for the positions
and momentum of the mechanical oscillator will be strongly
masked by thermal motion. Advances in cooling to the ground
state of mesoscopic oscillators improve the likelihood of the
realization of a massive particle EPR paradox [23].

First, let us recall the important features of the EPR paradox.
The original EPR state was an entangled state of two particles
(which we label A and B) that have perfectly correlated
positions (XA, XB) and momenta (PA, PB). Measurements on
particle A give immediate information about either the position

*qiongyihe@pku.edu.cn
†mdreid@swin.edu.au

or momentum of particle B. The EPR paradox arises because
the assumption that the measurements do not disturb particle
B (local realism) would imply a simultaneous and very precise
predetermination for both of XB and PB . No local quantum
state of the particle B, however, can be consistent with such
precise predetermination, for both momentum and position. In
this way, an inconsistency between local realism (LR) and the
completeness of quantum mechanics is established.

The distinctive feature of the EPR paradox is that, unlike
entanglement, it is a form of quantum nonlocality in which
the roles of the two systems are asymmetrical. In the above
example, an inconsistency of QM with LR is established for
the local system B. The details about the system A—which
acts only to give information about B—are not so important.

The main point of this paper is to understand how to
obtain an irrefutable discrepancy between quantum mechanics
and the local reality of the mechanical oscillator system. We
propose to do this by entangling it with an optical pulse. We
consider an idealized model, developed by Hofer et al. [24],
for pulsed optomechanics on fast time scales [25,26]. The
model introduces only two parameters: the squeeze parameter
r , which is a measure of the pulse-oscillator interaction, and n0,
the thermal occupation number of the mechanical oscillator.
Our main conclusion is that thermal noise provides a strong,
but not insuperable, barrier to the oscillator EPR paradox.
However, the barrier is directional, to prevent “steering” of
the thermally excited mechanical system, in a sense we explain
below.

To detect the EPR paradox one must consider nonideal
states, and it is not enough to simply prove entanglement.
Suppose we use scaled quadratures, so that we can write the
Heisenberg uncertainty relation for particle B as �XB�PB �
1. Then the simplest form of an EPR paradox is realized
when an inferred uncertainty relation is “violated” under the
assumptions of LR, so that [27]

EB|A ≡ �infXB�infPB < 1. (1)

Here �infXB and �infPB are the uncertainties associated with
the collapsed wave functions created by local measurements
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(made by “Alice”) on particle A. These uncertainties allow her
to infer either the position or momentum of particle B to a
given accuracy, depending on the choice of her measurements.
The realization of this EPR criterion (1) poses a more difficult
challenge than the realization of entanglement.

There has been a resurgence of interest in this area with
new experiments [28–34] motivated by a realization [35,36]
that the paradox is also an example of the nonlocality referred
to as “steering” [10]. Steering gives a way to quantify how
measurements by Alice can collapse the wave packet of B.
For a paradox achieved by condition (1), we can conclude that
Alice can steer system B [35,37]. The EPR paradox therefore
is a stronger test of QM than entanglement.

Our conclusion is that thermal noise n0 provides a stronger
barrier to the EPR paradox than to entanglement. We identify
two sorts of EPR paradox: Em|c < 1 and Ec|m < 1, where m

and c are the oscillator and cavity field respectively. The most
important is Em|c < 1. By analyzing the “elements of reality”
associated with EPR’s argument, we see it is this paradox
which enables a test of the mesoscopic nonlocality for the
massive system.

Specifically, we find that the thermal noise n0 of the oscilla-
tor induces a threshold for the pulse-oscillator interaction (as
measured by r) if one is to observe the paradox Em|c < 1.
In the limit of large n0, we require r > 1

2 ln 2. Consistent
with the fact that the field is not thermally excited, we
find there is no similar thermal barrier for an EPR paradox
Ec|m < 1, which demonstrates a “steering” of the optical
system. The oscillator-pulse system therefore exhibits regimes
of “one-way” steering [32,38], where only the steering of the
pulse is detectable.

We also find there is no (similar) thermal barrier for
the entanglement between the optical pulse and oscillator.
In this dissipation-free model, entanglement can exist for
any n0 and r > 0. We see, however, that the thermally
insensitive entanglement must manifest in an asymmetric way,
by measurement of the variances of quantities, XA − gxXB ,
PA + gpPB , where gx ,gp are selected real numbers, not equal
to 1.

As a final result of the paper, we examine the possibility
of an EPR paradox between two mechanical oscillators that
are thermally excited. This leads us to distinguish a subclass
of “symmetric” entanglement, which can be detected with
gx = gp = 1, and for which a thermal barrier r > 1

2 ln n0

does exist. We are able to show that this symmetric form of
entanglement is relevant to the creation of entanglement be-
tween two symmetric thermal oscillators and therefore has its
own fundamental significance. The symmetric entanglement is
detected by the criterion of Duan et al. [39]. By examining two
asymmetrically excited oscillators, we conclude that the “EPR
steering” of one by the other can be made largely insensitive
to the level of thermal excitation of one of the oscillators.

II. THE HWAH MODEL

We consider a mechanical oscillator coupled to an optical
mode of a cavity [8]. Hofer, Wieczorek, Aspelmeyer, and
Hammerer (HWAH) [24] proposed a scheme (Fig. 1) in
which a light pulse is input to an optomechanical cavity
mode and interacts with the oscillator mirror mode via

FIG. 1. (Color online) Measurement of the EPR paradox between
an oscillator and a pulse: (a) Entangling a pulse with a mechanical
oscillator. Following HWAH, an “entangling” blue-detuned pulse
interacts with an optomechanical system. The output pulse amplitudes
Xout

c , P out
c are EPR correlated with the final quadratures Xout

m ,
P out

m of the mechanical oscillator, according to Xout
c ∼ −P out

m and
P out

c ∼ −Xout
m , in the limit of a large squeezing parameter r .(b) To

verify the EPR paradox. The output pulse amplitudes Xout
c , P out

c are
measured by homodyne detection. The quadratures of the oscillator
can be measured by interacting the cavity with a second “verifying”
red-detuned pulse.

radiation pressure [40]. The pulse emerges from the cavity
with quadratures that are EPR correlated with those of the
oscillator. The effective interaction Hamiltonian [40–42] for
the cavity-oscillator system in a frame rotating at the laser
frequency is

H = ωma†
mam + �ca

†
cac + gR(am + a†

m)(ac + a†
c), (2)

where �c = ωc − ω1 is the detuning of the cavity with
respect to the laser [24]. The boson creation and destruction
operators for the optical cavity and mechanical modes are
a
†
c , ac and a

†
m, am respectively. Quadrature phase amplitudes

Xc/m, Pc/m are defined according to ac = (Xc + iPc)/2 and
am = (Xm + iPm)/2, where the choice of scaling ensures the
normalized EPR inequality �infXB�infPB < 1. The term in
gR describes the linearized optomechanical coupling due to
the radiation pressure and comprises both a beam-splitter-type
coupling (involving a

†
mac + a

†
cam) and a two-mode squeezing

interaction term (involving amac + a
†
ma

†
c) of the type known

to generate EPR entanglement [27,43].
The physical parameters of the HWAH pulse-oscillator

model are the interaction strength gR , the oscillation frequency
ωm with dissipation rate γ , the optical cavity resonance
frequency ωc with decay rate κ , the pulse carrier frequency
ω1, and duration time τ . The initial occupation number n0

of the thermal state of the mirror is a vital number which
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determines the “quantumness” of the system. HWAH propose
the pulse to be either blue-detuned or red-detuned to the cavity
resonance [24], to enhance either the two-mode squeezing
term (for the purpose of generating entanglement) or the
beam-splitter-type term (for the purpose of measurement).

To generate the correlations of the EPR paradox, a blue-
detuned pulse interacts with the oscillator cavity. In the
case where gR � κ � ωm, HWAH derive a set of idealized
Langevin equations for the mode operators. To justify ne-
glecting decoherence, they assume the pulse duration and its
interaction time with the cavity are short compared to the
mechanical decoherence time. The effect of the coupling of
the oscillator to an environmental heat bath is ignored.

For the blue-detuned pulse, after making a rotating wave
approximation (RWA), with an adiabatic solution for the cavity
mode, the simplified Langevin equations lead to solutions for
quadratures Xout

c , P out
c . The solutions are [24,44]

Xout
c = −erXin

c −
√

e2r − 1P in
m ,

P out
c = −erP in

c −
√

e2r − 1Xin
m,

(3)
Xout

m = erXin
m +

√
e2r − 1P in

c ,

P out
m = erP in

m +
√

e2r − 1Xin
c ,

where Xout
m and P out

m are the final quadratures of the mechanical
oscillator, and r = g2

Rτ/κ is the “squeezing parameter.” The
initial quadratures of the oscillator incorporate the effect of the
thermal excitation parameter n0.

The input-output solutions (3) are similar to those of a two-
mode squeezed state [45] and will form the basis for modeling
the fundamental constraints provided by the thermal noise for
an EPR paradox. The solutions (3) in the limit of large r

become Xout
c = −er (Xin

c + P in
m ) and P out

c = −er (P in
c + Xin

m).
The EPR nature of the correlations is evident, since

Xout
m = −P out

c , P out
m = −Xout

c (4)

so that a measurement of the quadrature Xout
c (or P out

c ) of the
pulse will immediately give the prediction for the quadrature
−P out

m (or −Xout
m ) of the oscillator.

The HWAH model is very idealized, and further work is
needed to test the validity of the approximations for the pulse
and to model the significant decoherence expected for an
oscillator interacting with its environment. The model does
however capture the main physical effects that generate an
EPR correlation and gives a treatment of the thermal noise of
the initial state of the oscillator. It can be therefore be used
to give a first-order understanding of the asymmetrical effects
of thermal noise on the EPR correlation and of the level of
thermal cooling that may be necessary, in order to observe an
EPR paradox.

III. DETECTING THE ENTANGLEMENT

Often, entanglement is measured as a reduction in two vari-
ances, {�(Xout

m + P out
c )}2 and {�(P out

m + Xout
c )}2, that involve

symmetric weightings of oscillator and field quadratures [39].
The symmetric criterion of Duan, Giedke, Cirac, and Zoller
(DGCZ) [39] detects entanglement when{

�
(
Xout

m + P out
c

)}2 + {
�

(
P out

m + Xout
c

)}2
< 4, (5)

where we denote the variance using the notation {�x}2 ≡
〈x2〉 − 〈x〉2. This criterion, however, is far from being an
optimal signature for entanglement, owing to intrinsic asym-
metries.

Here, we examine a less restrictive condition. Entanglement
between the oscillator and pulse is proved if one can show
[46,47]

�g,ent =
{
�

(
Xout

m + gxP
out
c

)}2{
�

(
P out

m + gpXout
c

)}2

[|gxgp| + 1]2
< 1,

(6)

where gx and gp are arbitrary real numbers. The variances in
the numerator are directly measurable by the scheme depicted
in Fig. 1, where the gx and gp are classical gain factors. Here
�g,ent can be minimized to a value �ent by choosing the optimal
factor gx = gp = g

g = δ +
√

δ2 + 4e2r (e2r − 1)

2er
√

e2r − 1
, (7)

where δ = �2Xin
m−�2P in

c

�2Xin
m+�2P in

c
. We assume the initial state of the light

field to be the vacuum state and that of the mirror to be a
thermal state with mean excitation number n0. In this case,
δ = n0

n0+1 .
It is shown elsewhere [39,48] that the condition given

by Eq. (6) with optimal g is equivalent to the positive
partial transpose (PPT) condition developed by Simon [46]
for Gaussian states and is therefore necessary and sufficient
for Gaussian two-mode entanglement. The entanglement �ent

can be measured by the arrangement of Fig. 1.
We note that, unlike “steering,” entanglement is defined as

a property that the two systems share without specification
of direction—that is, if A is entangled with B, we know that
B is entangled with A. Consistent with this, we see that the
criterion (6) is symmetric with respect to interchange of m and
c, provided gx and gp are interchanged with their reciprocals.
Thus, entanglement can be detected using either criterion (6) or
the criterion obtained in interchanging m with c, provided the
choice of the gx’s and gp’s is kept fully flexible. The prediction
of the model (3) for the entanglement measured by �g,ent is
plotted in Fig. 2.

Now we come to the first important result of this paper.
Surprisingly, we see from the Fig. 2 that no thermal barrier
exists for the presence of entanglement. For any given thermal
occupation number n0, we can always show entanglement
for r > 0. In other words, once the system is entangled, no
amount of thermal noise can completely destroy it. A similar
type of robustness of entanglement has been predicted for the
steady-state optomechanical entanglement that is generated
using continuous wave light fields [12–15]. We note from
the figure that the detection of this thermally insensitive
entanglement is linked to values of the parameter gopt that
are very different to 1. As we see below, this result can be
understood in terms of the concept of quantum steering.

This result contrasts with that obtained for entanglement
detected using the symmetric DGCZ condition (5) [39],
given by �g,ent < 1, where gx = gp = 1. We call this sort
of entanglement “symmetric entanglement.” In that case, a
thermal barrier does exist, and entanglement can be detected
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FIG. 2. (Color online) Entanglement �g,ent plotted vs the squeez-
ing parameter r for n0 = 0, 5, 10, 50, where n0 is initial occupation
number of the oscillator: Entanglement between the oscillator and
pulse is observed when �ent < 1. Strong entanglement occurs when
�ent → 0. The optimal g to minimize �g,ent is shown in the inset.
The results indicate presence of entanglement, even for large n0.

only when the squeezing parameter is sufficiently large [24],

r > ln
n0 + 2

2
√

n0 + 1

n0→∞∼ 1

2
ln n0. (8)

While this thermal barrier becomes relevant to detecting entan-
glement between two symmetric, thermally excited oscillators,
it does not place a limit on the detection of entanglement
between the oscillator and a pulse.

IV. DETECTING AN EPR PARADOX AND
QUANTUM STEERING

A. Quantum steering of the mechanical oscillator by the pulse

Now we examine how to detect an EPR paradox. An EPR
paradox is confirmed if [27]

Em|c = �infX
out
m �infP

out
m < 1, (9)

where �infX
out
m is the error in the prediction for the value of the

oscillator’s position, made by a measurement on the pulse. The
�infP

out
m is defined similarly. The realization of Em|c < 1 is

verification of a quantum steering of the mechanical system by
measurements made on the pulse [35,37]. For the subclass of
quantum systems given by Gaussian states and measurements,
as is the case here, this criterion becomes necessary and
sufficient to detect steering of the system m by the second
system [35]. Walborn et al. have derived a more sensitive
entropic criterion for “EPR steering” that is useful in other
cases [49].

A simple way to determine the conditional uncertainties for
Gaussian distributions is to use a linear estimate gxP

out
c , based

on the result P out
c for measurement at A [5,27]. We find

�infX
out
m = �

(
Xout

m − gxP
out
c

)
, (10)

where gx = 〈Xout
m ,P out

c 〉/{�P out
c }2 is optimal to minimize

{�infX
out
m }2. Here we use the notation 〈x,y〉 ≡ 〈xy〉 − 〈x〉〈y〉.

Similarly, the conditional variance {�infP
out
m }2 is evaluated by{

�infP
out
m

}2 = {
�

(
P out

m + gpXout
c

)}2
, (11)

FIG. 3. (Color online) EPR paradox and quantum steering be-
tween the oscillator and the pulse: An EPR paradox and quantum
steering of the oscillator by the pulse is detected when E = Em|c < 1.
[The black upper set of lines intercept with the line E = 1 at the value
for r given by repr of Eq. (14)]. An EPR paradox and the steering of
the pulse by the oscillator is detected when E = Ec|m < 1 (lower
set of lines, blue online). The lowest two superposed curves show
Em|c and Ec|m with n0 = 0 (dotted). The inset shows the optimal g to
minimizeEm|c.

where gp = 〈P out
m ,Xout

c 〉/{�Xout
c }2. We note that the values of

gx , gp that optimize for the EPR paradox are generally different
than those that optimize the entanglement given by Eq. (6).

We assume the light to be initially in a vacuum state and
the mechanical oscillator to be initially in a thermal state,
with mean occupation number n0. We can then calculate the
prediction of the model (3) for the EPR paradox. We find

�infX
out
m = �infP

out
m , (12)

where we take gx = gp = g and

g = 2er
√

e2r − 1(n0 + 1)

2e2r (n0 + 1) − (2n0 + 1)
. (13)

The EPR paradox parameter Em|c is given in Fig. 3 vs r ,
for various values of initial thermal occupation n0. The EPR
paradox is realized when Em|c < 1 and is predicted for values
of squeezing parameter given by

r > repr = 1

2
ln

2n0 + 1

n0 + 1
n0→∞∼ 1

2
ln 2. (14)

There is a temperature-dependent minimal squeezing param-
eter repr required to observe the paradox. We note, however,
that for large thermal excitation n0, the barrier becomes fixed,
at repr = 1

2 ln 2 as n0 → ∞.
This is the second noteworthy result. If the squeeze param-

eter r is large enough (that is, if there is enough entanglement
between the oscillator and the pulse), the quantum steering
of the oscillator by the pulse cannot be destroyed by further
increasing the thermal noise value n0. The quantum steering of
the oscillator by the pulse can be achieved when r > 1

2 ln 2. We
expect that this effect arises because the second EPR system,
the pulse, is not thermally excited. A different effect is expected
for the EPR paradox between two oscillators.

052121-4



EINSTEIN-PODOLSKY-ROSEN PARADOX AND QUANTUM . . . PHYSICAL REVIEW A 88, 052121 (2013)

B. Quantum steering of the pulse by the oscillator

An EPR paradox can be shown the other way, by the
criterion

Ec|m = �infX
out
c �infP

out
c < 1. (15)

In this case, the optical pulse is “steered” by the measurements
made on the mechanical oscillator. Results for the prediction of
Ec|m based on the model (3) are shown in Fig. 3. Such an EPR
paradox is thermally insensitive, being possible for any value
of initial thermal noise n0 and for any squeezing parameter
r > 0. Since EPR steering requires entanglement [35], this
property underpins the thermal insensitivity noted above for
entanglement. However, because the thermally insensitive
steering is “one way” only, it does not correspond to an
entanglement that can be detected symmetrically with respect
to the oscillators—that is, with g = 1.

We note that there are two regimes for the observation of
quantum steering and the EPR paradox. For r � 1

2 ln 2, the
only EPR paradox possible is Ec|m < 1 (“one-way steering”
[30–32,50]). For r > 1

2 ln 2, “two-way steering” becomes
possible, and both paradoxes Em|c < 1 or Ec|m < 1 can be
confirmed.

Now we can understand the reason for the reduced
sensitivity of the entanglement to the thermal noise of the
oscillator. We have shown that a threshold squeezing parameter
r is necessary to enable a steering of the thermal oscillator by
the measurements made on the pulse, but there is no threshold
for the steering of the pulse by the measurements on the
oscillator. Entanglement is a defined as a shared quantity and
must exist between the two systems if either form of steering
is achieved [35]. Hence, entanglement is detected without the
threshold, because this is possible for the quantum steering
(Ec|m < 1) in one direction.

We argue, however, that the symmetric form of entangle-
ment has its own special significance. The DGCZ criterion (5)
is defined as that entanglement detected in a symmetric way,
with gx = gp = 1. This distinguishes it from the thermally
insensitive entanglement that is detected with gx , gp values
very different than 1 (Fig. 3). For symmetric systems, such as
two equivalently thermally excited oscillators, we conjecture
that the limitations for entanglement are determined by the
DGCZ criterion.

V. FUNDAMENTAL SIGNIFICANCE OF THE STEERING
OF THE OSCILLATOR

To understand the importance of the EPR paradox that
demonstrates quantum steering of the oscillator by the pulse,
we first review the meaning of an EPR paradox [1]. An EPR
paradox arises because the assumption of local realism (LR)
would imply a simultaneous, precise predetermination for
both of Xout

m and P out
m . No quantum state of the oscillator,

however, can be consistent with such a predetermination, for
both momentum and position. Thus, EPR argue “elements of
reality” exist that cannot be described by quantum mechanics,
and an inconsistency between LR and the completeness of
quantum mechanics is revealed.

We have found there is a thermal barrier for the EPR
paradox that corresponds to the “steering” of the oscillator

system. This will make this sort of paradox more difficult
to observe in practice. We note, however, that there is
a fundamental significance in observing this sort of EPR
paradox. On examining the EPR argument, we see that the EPR
paradox (in this case) is based on the premise that the action of
measuring the pulse cannot change the state of the oscillator.
Hence, “elements of reality” are deduced for the oscillator
system (not for the pulse system). These “elements of reality”
become inconsistent with quantum mechanics when Em|c =
�infXm�infPm < 1. Hence, if local realism LR is correct,
the oscillator cannot be described quantum mechanically.
Alternatively, with an assumption that quantum mechanics
is complete, it is the local reality of the oscillator that is
disproved. For the second type of paradox, it is the reality
of the optical state that is addressed. This is less useful for
direct insights about quantum effects with matter.

VI. ENTANGLEMENT AND EPR PARADOX BETWEEN
TWO MECHANICAL OSCILLATORS

A further challenge is to understand the thermal limits for
obtaining an EPR paradox between two thermally excited
mechanical oscillators. Bipartite entanglement between two
mechanical oscillators can be achieved, in principle, by
“swapping” the entanglement between the oscillator m1 and
the output pulse, to an entanglement between the oscillator
m1 at A and a second mechanical oscillator m2 at location B.
Other methods are possible, the simplest being to couple two
cavities to two incoming entangled light fields [16–22]. Most
previous calculations have been limited to the generation of
entanglement in steady-state regimes.

In this paper, we focus for simplicity on the results
of calculations based on the first method (Fig. 4). After

FIG. 4. (Color online) Entangling two oscillators: (a) Generation
of the entanglement takes place when the output of the first cavity is
injected into the second cavity, as red-detuned. The final states of the
two oscillators at A and B will be entangled. (b) The entanglement
can be verified, at a later stage, using two red-detuned pulses and
the homodyne scheme set-up as depicted, to measure the conditional
inference variances {�infXmj }2 and {�infPmj }2.
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interaction with the first cavity, the entangling pulse “carries”
the information about the quadratures of the first oscillator.
As r → ∞, we see from Eq. (3) that Xout

m1 = −P out
c and

P out
m1 = −Xout

c . Suppose then that after the coupling to the first
cavity and oscillator m1, the output entangling pulse is then
red-detuned relative to a second mechanical oscillator (m2)
and cavity system. After an interaction with this pulse, the
final amplitudes of the second oscillator are [24]

Xout
m2 = e−r ′

Xin
m2 +

√
1 − e−2r ′

P out
c ,

(16)
P out

m2 = e−r ′
P in

m2 −
√

1 − e−2r ′
Xout

c ,

where r ′ is the squeezing parameter of the second cavity and
P out

c , Xout
c are given by (3). As r ′ → ∞, the relations between

the quadratures of the second mechanical oscillator and the
pulse are Xout

m2 = P out
c and P out

m2 = −Xout
c , which will “swap”

the EPR correlation �(P out
c + gXout

m1), �(Xout
m1 − gP out

c ) into an
EPR correlation �(Xout

m2 + gXout
m1), �(Xout

m1 − gXout
m2) between

the mechanical oscillators. Thus, an EPR paradox between the
pulse and the first mechanical oscillator is directly transformed
into an EPR paradox between two mechanical oscillators in
the limit of r ′ � r and r ′ → ∞.

For practical reasons, since the thermal noise on the second
oscillator can be significant, it is also informative to consider
definite predictions for r = r ′.The final entanglement and EPR
paradox variances are readily calculated. We find

{
�infX

out
m2

}2 = {
�

(
Xout

m2 + gXout
m1

)}2

= e−2r
{
�Xin

m2

}2 + (g − 1)2(e2r − 1)
{
�P in

c

}2

+ [(g − 1)er + e−r ]2{�Xin
m1

}2

= e−2r (2nm2 + 1) + (g − 1)2(e2r − 1)

+ [(g − 1)er + e−r ]2(2nm1 + 1), (17)

and �infP
out
m2 = �(P out

m2 − gP out
m1 ) = �infX

out
m2. Here, nm1, nm2

are the thermal occupation numbers for the two oscillators.

A. Entanglement

Importantly, we note that a thermal barrier exists for the
entanglement between two oscillators with equal thermal
noise nm1 = nm2 = n0. We examine the predictions for the
entanglement criterion (6) but as applied to the two oscillators
m1 and m2. In this case, the optimal g for the detection of
entanglement (given by ∂�g,ent

∂g
= 0) is

g =
√

1 + (2n0 + 1)2/4e4r (n0 + 1)2

− (2n0 + 1)/2e2r (n0 + 1), (18)

which becomes g → 1 in the limit of large n0 and r . The
threshold squeezing parameter for entanglement becomes
rent = 1

2 ln 2n0 in this limit, which has the same large n0 depen-
dence as for the symmetric entanglement that is detected by the
DGCZ entanglement criterion. The similarity is expected for
two equivalent oscillators, since any entanglement that can be
created between the two oscillators must be symmetric, i.e.,
unchanged on interchange of A ←→ B, which will require
gopt = gx = gp = 1.

B. EPR paradox and steering

We now consider the EPR paradox and quantum steering,
in particular how the oscillator m1 “steers” the oscillator m2.
The optimal g for the detection of the EPR paradox Em2|m1 is

given by ∂�infX
out
m2

∂g
= 0. Solving gives

g = (e2r − 1)(nm1 + 1)

e2r (nm1 + 1) − 1/2
. (19)

The threshold squeezing parameter for the EPR paradox
Em2|m1 is then

repr = 1

2
ln

(
nm2 + 1 +

√
(nm2 + 1)2 − nm1 + nm2 + 1

nm1 + 1

)
.

(20)

The threshold repr is plotted in Fig. 5(a).
We find that the “steering” of oscillator m2 by measure-

ments on oscillator m1 is sensitive to the noise nm2 on m2 and
depends logarithmically on nm2 in the limit nm2 → ∞, but
is insensitive to the noise nm1 on m1. For nm2 = 0, repr = 0
and no thermal barrier exists, which gives a behavior similar
to that of the hybrid paradox Ec|m1.We note, however, that
for nm1 = 0, a thermal barrier does exist and the threshold is
given by repr → 1

2 ln 2nm2 as nm2 → ∞. This gives a different
sort of behavior than that of the hybrid paradox Em1|c. In
that case, the threshold for the steering of the oscillator (by
a noiseless pulse) was fixed at repr = 1

2 ln 2 as the thermal
noise of the oscillator increased. In this way, we learn that
whether a thermally insensitive threshold exists for the steering
of a mechanical oscillator will depend on the nature of
entanglement preparation.

We can also consider the steering of the oscillator m1 by
m2, which is the EPR paradox obtained when Em1|m2 < 1. We
find{

�
(
Xout

m1 + gXout
m2

)}2 = [er − g(er − e−r )]2{�Xin
m1

}2

+ (1 − g)2(e2r − 1)
{
�P in

c

}2

+ g2e−2r
{
�Xin

m2

}2
, (21)

and �infP
out
m1 = �(P out

m1 − gP out
m2 ) = �(Xout

m1 + gXout
m2) =

�infX
out
m1. The optimal g for the detection of Em1|m2 < 1 is

given by ∂�infX
out
m1

∂g
= 0. Solving gives

g = (e2r − 1)
({

�Xin
m1

}2 + {
�P in

c

}2)/{
(e2r + e−2r − 2)

× {
�Xin

m1

}2 + (e2r − 1)
{
�P in

c

}2 + e−2r
{
�Xin

m2

}2}
.

(22)

In this case, a thermally insensitive barrier to steering does
exist; i.e., the threshold for the steering of oscillator m1
becomes insensitive to nm1, as nm1 → ∞. In fact, as nm1→∞,

repr = 1

2
ln(nm2 + 2 − 1

2(1 + nm1)

+
√[

nm2 + 2 − 1

2(1 + nm1)

]2

− 2nm2

1 + nm1
− 2)

→ 1

2
ln2nm2 (23)
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FIG. 5. (Color online) Detecting an EPR paradox between two
mechanical oscillators prepared using the scheme of Eqs. (16) with
r = r ′: (a) The threshold squeeze parameter repr for observation of
the EPR paradox Em2|m1 < 1, vs the thermal occupation number
of the oscillator m2. The curves are for nm1 = 0 (solid), nm1 =
1 (dashed), nm1 = 1.5 × 106 (dotted). (b) The threshold squeeze
parameter repr for observation of the EPR paradox Em1|m2 < 1, vs the
thermal occupation number of the oscillator m2. The curves are for
nm1 = 0 (solid), nm1 = 1 (dashed), nm1 = 1.5 × 106 (dotted). (c) The
threshold squeeze parameter repr for observation of the EPR paradox
Em1|m2 < 1, vs the thermal occupation number of the oscillator m1.
The curves are for nm2 = 0 (solid), nm2 = 10 (dashed), nm2 = 100
(dotted).

as evident in the plots of Figs. 5(b) and 5(c). For
nm2 = 0,

repr = 1

2
ln[2 − 1

2(1 + nm1)
+

√[
2 − 1

2(1 + nm1)

]2

− 2],

which approaches a fixed value as nm1 → ∞, consistent with
the result for the threshold repr for the steering of the oscillator
m1 by the pulse. However, we note now (different than the
result for Em2|m1) that there is a sensitivity to the noise nm2 of
the “steering” system. The limiting value of repr increases with

nm2. For nm1 = 0, the optimal g given by Eq. (22) corresponds
to a threshold squeezing parameter of repr = 1

2 ln 2nm2 in the
limit of large nm2.

In short, the steering between the two oscillators will
become limited by the thermal noise on them. With a certain
method of entanglement preparation, the steering threshold
depends logarithmically on the thermal noise of the system
being steered. In this case, there is very little dependence on
the thermal noise of the steering system. If the entanglement
is prepared another way, an oscillator can be steered (in the
large thermal limit) independently of its own thermal noise, but
then the steering threshold becomes sensitive logarithmically
to large levels of thermal noise on the steering system.
If we consider equal thermal noise levels n0 for the two
oscillators, the thermal barrier for the quantum steering (of
either oscillator) remains sensitive to the thermal noise n0 in
the limit of large r: The threshold becomes r > 1

2 ln 4n0. This
tells us that enough thermal noise will destroy the possibility
of an EPR paradox, for any given squeeze parameter r that
creates the entanglement.

The interesting feature noticed for this method of entan-
glement generation is that both the steering of oscillator m2
by m1 and the steering of m1 by m2 show an insensitivity
to the thermal excitation level n1 of oscillator m1. Thus, the
“steering” of an oscillator M by another oscillator system S

can be largely insensitive to the thermal excitation of M , or
largely insensitive to the excitation of S, depending on the
method of entanglement.

VII. CONCLUSION

In summary, we have examined the effect of an initial ther-
mal excitation of an oscillator on observing an EPR paradox
between a mesoscopic mechanical oscillator and a pulse. A
thermal barrier exists for an EPR paradox that demonstrates
a quantum “steering” of the mechanical oscillator. This is
the most interesting paradox, since it tests local reality for
a massive, mesoscopic system.

No equivalent thermal barrier exists for the EPR paradox
that demonstrates a “steering” of the optical pulse. Similarly,
as must be the case given that all types of steering require
entanglement, no barrier exists for the entanglement between
the oscillator and the pulse. This robust pulse-oscillator entan-
glement is only detectable using fully sensitive entanglement
criteria, such as obtained by the positive partial transpose PPT
method.

Importantly, the thermal barrier to the steering of the oscil-
lator by the pulse is not insurmountable: It can be overcome for
a large enough squeezing parameter. For temperatures above
100 mK, the condition is r > 0.4. This is much more favorable
than the conditions r > 2.4 at T ∼ 100 mK, and r > 7 at
T = 293 K, required for observation of the symmetrically
measured entanglement (where g = 1) [24].

Our results reveal the basic principle that the thermal noise
of a mechanical oscillator tends to destroy the manifestation
of the EPR paradox for that oscillator. If we consider the
paradox between two symmetric oscillators, the thermal
barrier increases with the thermal excitation number n0 of
the oscillators. This gives an explanation of the difficulty of
observing mesoscopic EPR paradox effects between massive
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oscillators at room temperature. We show that a very big
advantage is to be gained if we consider the EPR paradox of an
oscillator with an optical field, which is not thermally excited,
since then (for this simple model) the threshold interaction
to demonstrate quantum steering of the oscillator becomes
fixed for n0 � 1. By analyzing an entanglement swapping
scenario that leads to an entanglement of two thermally excited
oscillators, we show that this advantage is lost for the EPR
paradox between two symmetric oscillators.

We conclude by commenting that a practical prediction
for the EPR paradox must fully incorporate the main sources
of decoherence. The practical limitation is that larger pulse-
cavity interaction times lead to increased mechanical deco-
herence, due to the coupling to the environmental heat bath
at temperature Tbath. The results presented here are based
on an idealized model which ignores the coupling to the
heat bath of the environment. More complete models have
been given in Ref. [24]. However, those authors did not

analyze the effects of an environmental heat bath on the EPR
paradox but restricted their study to the symmetric DGCZ
entanglement. Nonetheless, they estimated that the symmetric
entanglement is feasible, provided Qf � kBTbath/h, where
Tbath is the temperature of the environment, f is the frequency
of mechanical vibration, and Q is the cavity quality. Based
on the results of this paper, more optimistic predictions would
be expected, both for entanglement as detected by the PPT
condition and also for an EPR paradox.
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