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Diffraction in time for tunneling invisibility in quantum systems
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We show that tunneling invisibility in quantum systems holds also in the transient regime by demonstrating
that it is indistinguishable from the phenomenon of diffraction in time of a free evolving particle.
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I. INTRODUCTION

In a recent work [1], it is shown that in a time-independent
description, an appropriate choice of the potential parame-
ters in one-dimensional quantum systems may allow unity
transmission for tunneling at all incident energies except
for controllable, exceedingly small incident energies. See
related work, concerning non-Hermitian tight-binding lattices,
in Ref. [2]. The corresponding transmission amplitude and
phase are indistinguishable from that of a free particle for
energies along the tunneling region. The analysis holds for
coherent (elastic) processes, i.e., no inelastic or dissipative
processes, and is robust against a small variation of the
potential parameters and the mass of the incident particle.
We refer to this situation as tunneling invisibility.

The above situation may be contrasted with the so-called
transparent systems [3], which exhibit also unity transmission
at all energies, including the threshold energy, but that in
general suffer a shift in the value of the transmission phase.
A well-known example is the Pöschl-Teller potential [4].
Transparent potentials have escaped experimental verification,
to the best of our knowledge, and are mainly of interest in
mathematical-oriented studies. A possible reason is that trans-
parency in these potentials is tightly bound to the functional
dependence of the potential. One finds also in the literature a
class of systems which exhibit unity transmission through a
resonant tunneling process. This occurs at specific energies,
the so-called resonance energies, and is a process that involves
also a phase shift with respect to the free case. Resonant
tunneling systems have been studied both theoretically and
experimentally [5]. It is precisely the occurrence of a phase
shift that is the relevant feature that distinguishes resonant
tunneling from invisible systems.

It is worth mentioning that here invisibility refers to a
different process from studies that involve the design of a
cloak surrounding a system that then becomes invisible to
light within a range of frequencies [6,7]. These approaches are
based on ideas from transformation optics that refer only to a
time-independent description.

As shown in Ref. [1], resonant tunneling and tunneling
invisibility systems are closely related to each other. One
may go from one to the other by modifying appropriately
the potential parameters. This, of course, follows because the
behavior of the transmission amplitude with energy depends
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on the potential parameters. The characterization of invisible
systems given in Ref. [1] has been obtained by studying
analytically the transmission amplitude in terms of its complex
poles. Although this corresponds to monochromatic waves,
numerical calculations for tunneling of Gaussian wave packets
corroborated tunneling invisibility in these systems. However,
such time-dependent calculations were considered at very long
distances (compared with the length of the system) and times,
and hence leave unanswered the question of whether tunneling
invisibility remains away from these asymptotic conditions, as
in a nonstationary regime. This has motivated us to investigate
the transient regime in tunneling invisible systems.

It is known that quantum transients refer to the time
evolution of matter waves before they reach a stationary
or steady regime. They may occur as a result of a sudden
change in the initial conditions of a system described by
the time-dependent Schrödinger equation and are usually
amenable to exact analytical treatments. They were first
discussed by Moshinsky [8], who considered the transient
behavior that follows after the sudden opening of a quantum
shutter that initially keeps an incident beam of particles from
evolving freely through space. He determined that the transient
probability density had a close mathematical resemblance to
the intensity of light in the Fresnel diffraction by a sharp
edge and, for that reason, he named this transient phenomenon
diffraction in time. The essential feature of the diffraction-in-
time phenomenon consists of spatial and temporal oscillations
of Schrödinger matter waves released in one or several pulses
from a preparation region in which the wave was originally
confined [8,9]. The experimental verification of diffraction in
time has stimulated a great deal of work, both theoretical and
experimental, on this subject [10,11].

In this work, we address the issue of the transient behavior
of tunneling invisible systems in an analytical fashion. The
aim is to find out whether tunneling invisibility remains in
such a nonstationary regime. We find that this is the case by
showing that tunneling invisibility is indistinguishable from
the corresponding transient regime of a free evolving particle,
the so-called diffraction-in-time phenomenon.

II. TRANSIENT SOLUTION ALONG THE TRANSMITTED
REGION OF A POTENTIAL

The quantum shutter setup for tunneling through a potential
of finite range corresponds to a situation where, upon the
instantaneous release of the shutter, the initial state impinges
on the potential. The dynamics that follows involves reflected,
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tunneling, and transmitted transient solutions. Most early
works concentrated on analyzing the tunneling and transmitted
solutions [12–15], but recently, however, the reflected solution
has also been discussed, leading to a full description of
transients in one dimension [16]. All of these works exploit
the analytical properties of the outgoing Green’s function to
the problem which possesses an infinite number of complex
poles {κn} distributed in a well-known manner on the complex
k plane [17] and their corresponding residues {rn}. The above
works consider also a variety of initial states.

The transient solution to the time-dependent Schrödinger
equation for a finite range potential of arbitrary shape V (x),
extending from x = 0 to x = L with the same initial condition
at t = 0 as considered by Moshinsky [8],

�(x,0) =
{

eik0x, x < 0

0, x > 0,
(1)

reads along the transmitted region of the potential x > L as
[12]

�T (x,t) = t(k0)M
(
yk0

) −
∞∑

n=−∞
tn(k0)M

(
yκn

)
, (2)

where t(k0) corresponds to the transmission amplitude, tn(k0)
is given by

tn(k0) = rn

k0 − κn

, (3)

and the M functions refer to the Moshinsky function,

M(yq) ≡ i

2π

∫ ∞

−∞

eikx−ih̄k2t/2m

k − q
dk

= 1

2
e(imx2/2h̄t)ey2

q erfc(yq), (4)

with argument yq given by

yq = e−iπ/4

(
m

2h̄t

)1/2[
x − h̄q

m
t

]
, (5)

where q stands for k0 or κn.
It is convenient to mention that the transmission amplitude

may be expanded in several forms in terms of its poles [18].
In particular, it may be expanded as

t(k0) = k0

∞∑
n=−∞

rn

κn(k0 − κn)
. (6)

The absence of a potential implies that there are no poles
and that the transmission amplitude t(k0) = 1. Hence, the
solution given by Eq. (2) reduces to the free case discussed
by Moshinsky [8], namely,

�F (x,t) = M
(
yk0

)
. (7)

Substitution of (7) into (2) shows that the transmitted solution
is proportional to the free solution minus a term that depends
on the resonance poles of the system,

�T (x,t) = t(k0)�F (x,t) −
∞∑

n=−∞
tn(k0)M

(
yκn

)
. (8)

It is interesting to see that both resonant tunneling and
tunneling invisibility are dominated by a single pole in Eq. (8).

For the case of a sharp isolated tunneling resonance of
the system, we denote the corresponding complex pole by
κr = αr − iβr . At resonance, k0 = αr and hence |t(αr )| = 1;
then one may write t(αr ) = exp[iθ (αr )]. As a consequence,
Eq. (8) may be written as

�T (x,t) = eiθ(αr )�F (x,t) − tr (αr )M
(
yκr

)
−

∞∑
n�=r

tn(αr )M
(
yκn

)
, (9)

where θ (αr ) represents the phase shift of the transmission
amplitude. It is well known that at fixed distance x = x0

and long times, the Moshinsky functions corresponding to
complex poles seated on the fourth quadrant of the k plane
decay exponentially with time except at very short and
extremely long times compared with the lifetime of the
system [10,12]. We recall that the decay widths are defined
as �n = (h̄2/2m)4αnβn and the corresponding lifetimes by
τn = h̄/�n. The lifetime τ of the system is that referring to the
smallest width. Since the decay widths increase with n away
from the resonance at n = r , one sees that the contribution
of the sum on the right-hand side of Eq. (9) becomes much
smaller than the resonant contribution at n = r , and hence one
may write Eq. (9) as

�T (x,t) ≈ eiθ(αr )�F (x,t) − tr (αr )M
(
yκr

)
, (10)

which implies that the transmitted time-dependent solution
becomes proportional to the free solution. It turns out, however,
that |�T (x0,t)|2 is delayed with respect to the free evolving
solution |�F (x0,t)|2 [12]. As mentioned before, this arises
from interference between the two terms in Eq. (10) [19,20].
It is important to stress that the overall phase of �T (x,t)
in Eq. (9) differs from that of �F (x,t), and hence an
interference experiment could distinguish between the free
and transmitted solutions in spite of the fact that both exhibit
unity transmission.

For the case of tunneling invisibility, it has been shown
recently [1] that this phenomenon arises provided all the
complex poles are seated far away from the real k axis except an
antibound or a bound pole seated very close to the threshold
energy. In fact, any of these poles is responsible for unity
transmission of tunneling at all energies except those very
close to the threshold energy, and, also, for the vanishing of
the corresponding transmitted phase. Denoting these poles by

κq = iγq, (11)

where q = a and q = b stand, respectively, for antibound
(γa < 0) and bound (γb > 0) poles, it turns out that for
tunneling invisibility, the transmission amplitude may be
written as [1]

t(k0) ≈ 1

(1 − κq/k0)
≈ 1, (12)

with k0 � |κq | which implies that the phase θ is

θ (κq) ≈ γq

k
≈ 0. (13)
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The behavior of t(k0) given by Eq. (12) follows, in view of
(6), because rq ≈ κq . Surprisingly, this implies, however, that
tq(k0), defined by (3), behaves as

tq(k0) ≈ κq

(k0 − κq)
≈ 0, (14)

since |κq | � 1 is a negligible quantity. Hence, using Eqs. (13)
and (14), one may write Eq. (8) as

�T (x,t) ≈ �F (x,t) −
∞∑

n�=q

tn(k0)M
(
yκn

)
. (15)

Now, from the properties of the Moshinsky functions [10,12]
for complex poles, n �= q, for fixed x = x0 and long times, i.e.,
t � τ , as discussed previously for resonant tunneling, one sees
that the last term in (15) is also negligible. The difference here
with the resonant tunneling case is that there are no poles close
to the real k axis, since all the decay widths are very large [1].
It follows then that Eq. (15) becomes

�T (x,t) ≈ �F (x,t), (16)

which, for a given x = x0, holds provided the time t is larger
than the lifetime of the system.

In summary, the above discussion for resonant tunneling
and tunneling invisibility systems indicates that for unity
transmission in the transient regime, resonant tunneling sys-
tems exhibit a phase dependence with time that allows one
to distinguish them, whereas tunneling invisibility systems
remain undetected except at energies very close to the
threshold and very short times.

For the sake of completeness of the discussion, we discuss
briefly here the limit as the time t goes to infinity for the free
and transmitted solutions. The free transient solution given by
(7) tends to the stationary solution [8],

�F (x,t) → eik0xe−iE0t/h̄. (17)

As discussed above, the resonance terms of the transmitted
solution tend to a vanishing value at long times and therefore
the transmitted solution (8) behaves as [12]

�T (x,t) → t(k0)eik0xe−iE0t/h̄

= |t(k0)|eiθ(k0)eik0xe−iE0t/h̄, (18)

where E0 = (h̄2/2m)k2
0. Recalling that κq = iγq , we define

Eq = (h̄2/2m)γ 2
q , and hence using (12), one may write the

transmission coefficient for tunneling invisible systems as

T (E0) = |t(E0)|2 ≈ 1

1 + Eq/E0
. (19)

III. ANALYSIS OF THE INTERFERENCE OF THE FREE
AND TRANSMITTED SOLUTIONS

As discussed by Moshinsky [8,10], a typical plot of the
behavior of the density profile |�F (x0,t)|2 for the free case
at a fixed distance x = x0 from the shutter as a function of
time is shown in Fig. 1. From the point of view of classical
mechanics, one detects the particle until the time of flight
t0 = x0/v0, where v0 = h̄k0/m is the velocity of the particle.
The diffraction in time pattern, however, grows from the start
in a monotonic way up to a time slightly larger than the time of
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FIG. 1. (Color online) Unnormalized probability density as a
function of time at a given distance x = x0, showing a typical
diffraction in time pattern (solid line) and its corresponding classical
analog (dotted line). See text.

flight t0. As time increases further, the density profile exhibits
a damped oscillation around unity and tends to this value as
t → ∞.

In general, in the presence of a potential, a diffraction pat-
tern similar to that shown in Fig. 1 forms at long distances and
times. This occurs due to the vanishing of the resonance pole
contribution. However, it may be shown that the interference
between the freelike term and the resonance pole contribution
in (8) yields a wave front that exhibits a delay or a time advance
with respect to the free evolving case [12,19,20]. In the case
of systems that exhibit unity transmission, i.e., |t(k0)|2 = 1,
the above occurs at a resonance energy of the system, as in
double-barrier resonant tunneling systems [12,21], but also it
may occur due to strong interference between two resonance
levels, as in triple-barrier resonant tunneling systems, that
results in a plateau of energies that yield unity transmission
[22]. As pointed out before, in the case of an invisible system,
one expects, in addition to unity transmission at all tunneling
energies except those very close to the threshold energy, a zero
phase shift as time evolves.

For systems that show unity transmission, i.e., |t(k0)|2 = 1,
an interference experiment could distinguish if there is a phase
shift due to the presence of the potential. From a theoretical
point of view, we find it convenient to consider the quantity

ρT F (x,t) = 1
4 |�T (x,t) + �F (x,t)|2, (20)

where F and T stand, respectively, for the free and transmitted
time-dependent solutions given, respectively, by Eqs. (7)
and (8).

On the other hand, for a free evolving system, �T (x,t) =
�F (x,t) and hence Eq. (20) clearly becomes

ρFF (x,t) = |�F (x,t)|2. (21)

In the case of a nonzero phase shift, as in resonant tunneling
systems, one expects that at a given distance x = x0, at
resonance energy as a function of time,

ρT F (x0,t) �= ρFF (x0,t), (22)

whereas for invisible systems, where the phase shift essentially
vanishes at all energies except too close to threshold, one
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should obtain

ρT F (x0,t) = ρFF (x0,t). (23)

It is worth noticing, using Eqs. (17) and (18), that at
asymptotically long times, which correspond to the stationary
regime,

ρT F (x,t) → cos2

[
θ (k0)

2

]
, (24)

which is an expression that due to the interference contribution,
exhibits explicitly the dependence on the phase shift θ (k0).
On the other hand, in the same limit, it follows immediately
from Eq. (17) that ρFF (x,t) → 1. It follows therefore that at
asymptotically long times, a calculation of Eqs. (20) and (21)
allows one to distinguish, for systems with unity transmission,
whether or not they are invisible.

IV. EXAMPLES

In order to illustrate the distinction between resonant
tunneling and invisible systems discussed in the previous
section, we discuss here, without loss of generality, two
examples: a double-barrier (DB) resonant tunneling system
and a barrier-well-barrier (BWB) invisible system. In order
to keep ourselves on physical grounds, we refer to systems
characterized by typical parameters of semiconductor het-
erostructures [5]. In both cases, we consider an effective
electronic mass m = 0.067 me, with me the electron mass.
The parameters of the DB resonant tunneling system are
barrier heights V0 = 0.23 eV, barrier widths b = 50.0 Å,
and well width w = 50.0 Å. These parameters correspond
to the system used in Ref. [12] to discuss transient effects in
resonant tunneling. There, one learns that at asymptotically
long distances and times, the transient transmitted probability
density, at resonance energy, suffers a delay time with respect
to the free evolving case. The parameters of the BWB
invisible system are barrier heights V0 = 0.12 eV, barrier
widths b = 4.0 Å, well depth U0 = −0.12 eV, and well width
w = 8.0 Å.

Figure 2(a) shows the transmission coefficients, calculated
using the transfer matrix method, for the DB resonant tunneling
(full line) and BWB invisible (dotted line) systems as a
function of energy in units of the corresponding barrier heights
V0. In both systems, the energy threshold is at E = 0. Notice
that the DB system possesses a sharp isolated resonance below
the barrier heights and some resonant structures above the
barrier heights. On the other hand, as discussed in detail in
Ref. [1], the BWB system exhibits almost unity transmission
at all energies except very close to energy threshold, where the
coefficient rises sharply to reach a value very close to unity.

Figure 2(b) displays the distribution of the complex poles
κn for the DB resonant tunneling system (dots) and the BWB
invisible system (stars) on the β = kL plane. Here k stands
for the wave number and L is the length of the corresponding
system. Notice that in the former case, L = 150 Å, and for
the latter one, L = 16 Å. Using the pole expansion given by
Eq. (6), one may evaluate the transmission coefficient [18]
which provides a relationship between the complex pole
distributions and the resonance spectra of the systems. In
particular, for the DB resonant tunneling system, the first
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FIG. 2. (Color online) (a) The transmission coefficient as a
function of the energy in units of the corresponding potential height
V0 for the resonant tunneling system (full line) and the invisible
system (dashed line). (b) The distribution of the complex poles for the
previous systems: resonant tunneling system (dots) and the invisible
system (stars). The star seated very close to the threshold stands for
a bound pole. See text.

two poles are close to the real β axis and one sees that they
correspond to the two resonance lines displayed in Fig. 2(a),
whereas at higher energies, the poles seat away from the real
β axis and hence the corresponding transmission coefficient
exhibits an overlapping resonance structure that oscillates
close to unity. On the other hand, for the BWB invisible
system, all of the poles, except a bound pole seated very
close to the energy threshold at βb ≡ γbL = i 0.00314, are
located very far away from the real β axis. In this case,
the transmission coefficient is governed by the bound pole,
whereas the contribution of the distant complex poles is
negligible. In fact, using the corresponding value of Eb =
(h̄2/2m)γ 2

b = 2.19 × 10−6 eV in Eq. (19) shows that indeed
the rising of the transmission coefficient from a vanishing
value up to unity occurs within a very short energy interval, as
illustrated in Fig. 2(a). For example, using the value of Eb given
above into (19), writing there Eb/E0 = (Eb/V0)/(E0/V0),
one sees that Eb/V0 = 1.82 × 10−5 and hence already a
small value of E0/V0 as E0/V0 = 0.01 yields a value of
T (E0) = 0.998 very close to unity.

Let us now consider the comparison of the transient
expressions given by Eqs. (20) and (21) for both the DB
resonant tunneling system and the BWB invisible system with
the initial state given by Eq. (1).
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FIG. 3. (Color online) Comparison of ρFF (x,t) (full line) and
ρT F (x,t) (dotted line) for the resonant tunneling system that shows
a nonzero phase shift at all times, which shows that ρFF (x0,t) �=
ρT F (x0,t). See text.

Figure 3 exhibits a comparison of ρFF (x0,t) (full line)
and ρT F (x0,t) (dotted line) as a function of time in units
of the lifetime τ of the DB resonant tunneling system at
the fixed distance x0/L = 2 × 105 for an incident energy
E0/V0 = 0.35 that corresponds to the first resonance of the DB
system, which yields unity transmission as shown by Fig. 2(a).
Notice that the calculation is made at long distances and
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FIG. 4. (Color online) Comparison of ρFF (x,t) (full line) and
ρT F (x,t) (dotted line) for a barrier-well-barrier invisible system ex-
hibiting a zero phase shift at all times (a) at x0/L = 1.875 × 106 and
(b) x0/L = 1, which shows in both cases that ρFF (x0,t) = ρT F (x0,t).
The insets to both figures exhibit, respectively, the corresponding
behaviors for short times. See text.

times, so that both the free evolving and DB density profiles
exhibit a well-defined transient pattern. Clearly, ρFF (x0,t) �=
ρT F (x0,t), which shows that there is a nonzero phase shift
between the free and transmitted solutions.

Figure 4(a) exhibits a similar comparison as in the previous
case of ρFF (x0,t) (full line) and ρT F (x0,t) (dotted line) for the
BWB invisible system. The calculation is made at the same po-
sition as in the previous case, so that x0/L = 1.875 × 106 for
an incident energy E0/V0 = 0.5. One sees that both quantities
are indistinguishable, namely, ρFF (x0,t) = ρT F (x0,t). In fact,
an analogous situation occurs also at any distance x0/L � 1.
This is exemplified by Fig. 4(b) where x0/L = 1 for the same
incident energy as in the previous example. Again one sees
that ρFF (x0,t) = ρT F (x0,t). Notice that the width of the main
diffraction peak is of the order of millions of a lifetime in
Fig. 4(a) and thousands of a lifetime in Fig. 4(b). The insets to
both figures exhibit, respectively, a region where the transient
term on the right-hand side of (8) yields a contribution that
allows one to distinguish the free and transmitted solutions.
Notice, however, that the corresponding density profiles have
an extremely small value and that as time evolves become
completely indistinguishable from the free evolving cases.
Notice also that the above occurs very far away from the
corresponding density profile wave fronts.

The above two situations corroborate indeed that the
invisibility nature of the BWB system remains in the tran-
sient regime, and, hence, for invisible systems, one cannot
distinguish between the free and transmitted time-dependent
solutions via an interference experiment.

V. CONCLUSIONS

In this work, we have considered the quantum shutter setup
to show that the time evolving wave function for tunneling in-
visibility exhibits a diffraction-in-time phenomenon that is in-
distinguishable from that for the free evolving case [Eq. (16)].
We find of interest that the tunneling-invisibility phenomenon
remains in time domain. In order to emphasize the differ-
ences between tunneling invisibility (unity transmission and
vanishing transmission phase) and transparent systems (unity
transmission and nonvanishing transmission phase), we have
also analyzed the time-dependent solution for resonant tun-
neling systems at resonance energy [Eq. (10)]. The difference
between these systems is exhibited in a numerical example by
calculating Eqs. (20) and (21), as displayed in Figs. 3 and 4. It
is worth mentioning that the results of our analysis hold also for
distinct initial states. Tunneling invisibility refers to an almost
unexplored realm of quantum mechanics. The properties of
these systems, their possible construction by suitable engi-
neering in the growing field of artificial quantum structures, as
well as the analogies with optic systems of a negative-refractive
index that exhibit zero phase delay [23], in addition to its
possible applications, might deserve further study.
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