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Maximal quantum randomness in Bell tests
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The nonlocal correlations exhibited when measuring entangled particles can be used to certify the presence
of genuine randomness in Bell experiments. While nonlocality is necessary for randomness certification, it is
unclear when and why nonlocality certifies maximal randomness. We provide a simple argument to certify the
presence of maximal local and global randomness based on symmetries of a Bell inequality and the existence
of a unique quantum probability distribution that maximally violates it. We prove the existence of N -party Bell
tests attaining maximal global randomness by identifying those combinations of two-outcome measurements by
each party providing N perfect random bits.
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I. INTRODUCTION

Quantum theory radically departs from classical theory
in many aspects. Quantum theory, for instance, predicts
correlations among distant noncommunicating observers that
cannot be reproduced classically. These correlations are
termed nonlocal and violate those conditions known as Bell
inequalities that, in contrast, are satisfied by classically
correlated systems [1]. Quantum theory also incorporates a
form of randomness in its framework that does not have a
classical counterpart. There is no true randomness in Newto-
nian physics, as the complete knowledge of initial conditions
along with interactions of a system allows one to predict its
future dynamics deterministically. As is well known, however,
predictions in quantum systems are necessarily probabilistic.
Since the violation of Bell inequalities implies that quantum
theory cannot be explained by local deterministic theories [2],
the probabilistic nature must arise from intrinsic randomness.
Hence, the violation of a Bell inequality certifies the existence
of genuine randomness (for recent developments, see [3] and
references therein).

Randomness constitutes a valuable information resource,
with applications ranging from cryptographic protocols and
gambling to numerical simulations of physical and biological
systems. Recently, tools to quantify the presence of ran-
domness in Bell tests have been presented in Ref. [4]. An
important advantage of this approach is that it is derived
in the device-independent scenario, where the system is
characterized from an input-output perspective without regard
for its internal working. Thus, although we now have tools to
link quantum randomness and nonlocality, we are still far from
understanding the exact relation between these two quantum
properties. For instance, there exist probability distributions
with maximal nonlocality but less than maximal randomness.
Even more counterintuitively, distributions with arbitrarily
small nonlocality can contain almost maximal randomness [5].
Along this direction, identifying those quantum setups, namely
Bell tests, which offer the highest possible randomness would
be a highly desirable result, both from a fundamental and

*Now at the Max-Planck-Institute for Biogeochemistry, Hans-
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practical point of view. This is the main goal of the present
paper.

It is worth illustrating our motivations with an ex-
ample. Consider the standard Clauser-Horne-Shimony-
Holt (CHSH) inequality [6], ICHSH = 〈A1B1〉 + 〈A1B2〉 +
〈A2B1〉 − 〈A2B2〉. At the point of maximal quantum violation,
any measurement output by any of the parties provides a
perfect random bit. That is, the corresponding probability
distribution contains locally the maximum possible of one
bit of randomness for every party and every measurement
setting. However, there are strictly less than two random
bits globally, as any pair of local measurements gives
correlated results. Now, consider the following modification
of the CHSH inequality, Iη = 〈A1B1〉 + 〈A1B2〉 + 〈A2B1〉 −
〈A2B2〉 + η〈A1〉. At the point of maximal quantum violation,
only the measurement A2 defines a perfect random bit [5].
Why this setting and not the others? Why all of them in the
case of CHSH? More in general, when can we expect maximal
local and global randomness in a Bell test?

Our main result consists of a simple argument that not
only provides an answer to the preceding questions but also
provides Bell tests certifying maximal global randomness in
a robust manner. In fact, our argument allows one to identify
measurements in a Bell test that provide maximally random
outputs. We can state our recipe for randomness certification
as a simple protocol. Given a Bell inequality, our argument
(i) assumes that the quantum distribution attaining its maximal
violation is unique and (ii) exploits the symmetries of the
inequality by making transformations that leave the Bell
inequality unchanged while permuting the outcomes of the
measurements of interest. Uniqueness finally allows one to
conclude that the permuted outcomes must be random. As
seen, our argument crucially relies on the assumption that the
quantum distribution attaining the maximal violation of the
given Bell inequality is unique. We come back to this point
later, but we just mention here that geometric arguments based
on our understanding of the set of quantum correlations support
the validity of this assumption in general.

II. DEFINITIONS

We start by explaining our notation and stating the basic
definitions we use in the text.
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A. Bell tests

We denote by (N,M,d) a standard Bell experiment consist-
ing of N separated and noncommunicating parties, where each
of them can perform M local measurements of d outcomes. By

repeating the experiment, it is possible to assign a probability
distribution P (a1, . . . ,aN |x1, . . . ,xN ), where ai is the outcome
of a measurement xi by party 1 � i � N . We often consider
cases with dichotomic measurements, i.e., d = 2. In this case,
we can use the following useful parametrization,

P (a|x) = 1

2N

⎛
⎝1 +

N∑
i=1

ai〈Ai〉 +
∑
i<j

aiaj 〈AiAj 〉 +
∑

i<j<k

aiajak〈AiAjAk〉 + · · · + a1a2 . . . aN 〈A1A2 . . . AN 〉
⎞
⎠ . (1)

Here, measurement outputs are labeled by ±1 and 〈Ai . . . Aj 〉
are the standard correlators 〈Ai . . . Aj 〉 = Pr(Ai . . . Aj =
+1) − Pr(Ai . . . Aj = −1).

B. Randomness

We follow [4,5] and adopt an operational approach where
randomness is related to the probability of correctly guessing
the outcome of some joint measurement, x = (x1,x2, . . . ,xN ).
We use the guessing probability, PG(P ; x) = maxa P (a|x),
where a = (a1,a2, . . . ,aN ). The proper measure of intrinsic
randomness requires optimizing over all realizations of the
observed correlations G(P ; x) = max

∑
i λiPG(Pi ; x), where

the maximization is over all convex decompositions P (a|x) =∑
i λiPi(a|x). It is convenient to express the randomness in

bits with the min-entropy, H∞(P ; x) = − log2 G(P ; x). Note
that in a general (N,M,d) scenario there can be at most
log2 d bits of local and N log2 d bits of global randomness
at any given round of the experiment. For a given x = x0,
maximal randomness is obtained from a uniform distribution
P (a|x0) = 1/dN,∀ a. When d = 2, this occurs if, and only if,
all the correlators appearing in Eq. (1) are zero.

III. RANDOMNESS FROM BELL TESTS

While not detailed here, we implicitly work in the frame-
work of randomness expansion introduced in Refs. [4,7],
where randomness is certified from Bell violations. The
measurements of the Bell test are chosen using an initial seed
of random bits. These initial random bits are assumed to be
uncorrelated to the particles measured in the Bell test (for
a discussion on how the relaxation of this assumption may
affect the randomness certified by the Bell violation, see [8]
and references therein). However, as explained in [4], the bits
used to choose the measurements can be highly biased so that
(i) most of the time only a given combination of measure-
ments is performed, yet (ii) the remaining measurements are
performed a sufficient number of times to reliably estimate
the Bell violation (we refer interested readers to [4] for
details). This is why we say here that a Bell test generates
maximal randomness whenever there exists a combination
of measurements whose outputs are maximally random. As
mentioned, the choice of measurements in the Bell test can
be arbitrarily biased to these specific measurements without
affecting their randomness.

Maximal randomness certification. We assume in what
follows that the quantum distribution attaining the maximal

quantum violation of the Bell inequality is unique (discussed
later). Under this assumption, we show how symmetries in
the Bell inequality under permutation of measurement results,
possibly together with permutations of measurement settings,
lead to maximal randomness. Our method, then, can be
summarized as follows: uniqueness plus symmetries implies
maximal randomness.

IV. METHODS AND RESULTS

In this section, we provide several examples of Bell
inequalities and the corresponding certified randomness that
demonstrate the applicability of our simple criterion.

A. Certifying maximal local randomness

First of all, it is worth re-examining the examples mentioned
in the introduction. Consider again the CHSH inequality and
denote by P∗ the distribution attaining its maximal quantum
violation, namely ICHSH(P∗) = 2

√
2. Note that in this case,

this distribution is known to be unique [9]. The symmetry
transformation Ts : a1,2 �→ −a1,2 and b1,2 �→ −b1,2 flips the
signs of all the one-body correlators, 〈Ai〉 and 〈Bj 〉, while
keeps unchanged all two-body correlators, 〈AiBj 〉. Applying
Ts to P ∗ we obtain the distribution Ts(P∗) = P∗∗ with

〈Ai〉∗∗ = −〈Ai〉∗, 〈Bj 〉∗∗ = −〈Bj 〉∗, (2)

and that also maximally violates CHSH. Because of the
uniqueness of the distribution, P∗ = P∗∗ and all one-body
correlators (2) must be zero, which certifies one bit of local
randomness (for both parties). Moving to Iη, the transfor-
mation a2 �→ −a2, B1 ↔ B2 flips the value of 〈A2〉 without
changing the value of Iη. Under the assumption of uniqueness,
this proves that the setting A2 is fully random. A little thought
shows that it is impossible to construct similar transformations
for the other local measurements. Our argument, then, easily
reproduces the known results for these two inequalities.

As mentioned, our method applies to any Bell inequality
with symmetries. The previous argument for the CHSH in-
equality can be easily generalized to all the chained inequalities
of Refs. [10] and [11]. Under the assumption of uniqueness,
these inequalities always certify one dit of local randomness.
The chained Bell inequalities can be compactly represented
as [11]:

CM
d =

M∑
i=1

〈[Ai − Bi]d〉 + 〈[Bi − Ai+1]d〉 � d − 1, (3)
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where Ai , Bj ∈ {0, . . . ,d − 1} are measurement choices for
Alice and Bob and AM+1 = A1 + 1. The square brackets
denote sum modulo d.

Let P attain the quantum maximum of CM
d . The transfor-

mation T : ai �→ ai + 1 and bi �→ bi + 1 for every i changes
the value of the marginal distributions of Alice and Bob but
leaves the terms in CM

d unchanged. Applying T to P and
assuming it to be unique, it follows that all local distributions
of Alice and Bob must be uniform. In other words, the chained
inequality certifies log2 d bits of local randomness for every
measurement by each party.

B. Certifying maximal global randomness

A natural open question is whether there exist Bell tests
in the (N,M,d) scenario that allow certifying the maximal
possible randomness, namely N log2 d bits. Some progress
on this question was obtained in Ref. [5], where it was
shown how to get arbitrarily close to two random bits in the
(2,2,2) scenario. However the corresponding correlations are
nonresistant to noise. Here, we show how our method can
be easily applied to design Bell tests allowing exact maximal
randomness certification in a robust manner.

We start with the bipartite case. Maximal global ran-
domness is impossible in the CHSH case, as at the point
of maximal violation all settings are correlated. Maximal
global randomness, however, can be certified as soon as more
measurements are included. For instance, consider adding a
third measurement on Bob’s side and the expression [12]

ICHSH + 〈A1B3〉. (4)

Clearly, the maximal quantum violation is 2
√

2 + 1 as the two
terms above can be maximized independently (the classical
value is 3). At the point of maximal violation, the two settings
on Alice’s side should maximize the CHSH violation and, thus,
be orthogonal and act on a maximally entangled state. The third
setting on Bob’s should be parallel to A1 and thus 〈A2B3〉
is equal to zero. This can alternatively be understood using
our argument, as the transformation T : a2 �→ −a2, B1 ↔ B2

leaves the inequality unchanged while flipping the sign of
〈A2B3〉. In this case, uniqueness is known to hold too and,
therefore, 〈A2B3〉 = 0. A similar argument holds for the term
〈A1B3〉 when the setting correlated with B3 in inequality (4)
is A2 instead of A1.

More in general, consider the chained inequalities for an
odd number of two-outcome measurements. We move to the
notation ai,bj = ±1 and reexpress (3) as follows:

CM
2 =

∣∣∣∣∣
M∑
i=1

〈AiBi〉 +
M−1∑
i=1

〈Ai+1Bi〉 − 〈A1BM〉
∣∣∣∣∣ , (5)

where Ai , Bj = ±1. Let M = 2k + 1. As above, we con-
sider a transformation leaving CM

2 unchanged but under
which 〈A1Bk+1〉 �→ −〈A1Bk+1〉. Such a transformation is: T :
a1 �→ −a1, B1+i ↔ BM−i , A2+i ↔ AM−i∀i 0 � i � k − 1.
Assuming that the distribution maximally violating (5) is
unique leads to 〈A1Bk+1〉 = 0. The previous results show that
〈A1〉 = 0 = 〈Bk+1〉. These together certify two bits of global
randomness for (A1,Bk+1). Similar arguments certify maximal
randomness in all inputs of the form (Al,Bk+l) ∀ 1 � l � M .

Analogous to the case for CHSH, maximal randomness cannot
be certified for those measurement combinations appearing in
the chained inequality, as they display nonzero correlations.
The previous results rely on the assumption of uniqueness,
which is unknown for the case of the chained inequality
with M > 2. We then follow [4] and apply the techniques in
Ref. [13] to get an upper bound on the randomness of (A1,B2)
for the chained inequality with three measurement settings.
The obtained results corroborate the presence of maximal
global randomness, up to numerical accuracy.

The results for the chained inequality illustrate the power
of our method. It is intuitive that for a measurement to be
fully random, its correlator should not appear in the inequality,
as at the point of maximal violation the correlators in the
inequality are expected to have a nonzero value. For the
chained inequality, M2 − 2M of all possible correlators do
not appear in the inequality. Yet, the known realization of
the maximal quantum violation, consisting of measurements
equally distributed on an equator and acting on a two-qubit
maximally entangled state, implies that only M of these
M2 − 2M correlators can be zero, precisely those detected
by our symmetry argument.

We now move to the multipartite case. More precisely, we
consider the Mermin inequalities [14] and prove that they allow
certifying up to N bits of global randomness for arbitrary odd
N . Mermin inequalities of N parties are defined recursively as

MN = 1
2MN−1(AN + A′

N ) + 1
2M ′

N−1(AN − A′
N ), (6)

where M2 is the CHSH inequality and M ′
N−1 is obtained from

MN−1 by exchanging all Aj and A′
j .

Let MN denote a Mermin inequality of N = 2J + 1
sites. Party i, with i = 1, . . . ,N has a choice between two
dichotomic measurements, Ai and A′

i . It is easily checked that
for odd N , MN contains only full correlators with an odd
number of primes. We show, using symmetry arguments, that
at the point of maximal quantum violation every correlator
〈Ai . . . Aj 〉 (involving an arbitrary number of measurements)
that does not appear in MN is identically zero. This automati-
cally implies that any combination of N settings not appearing
in the inequality define N random bits.

To see this, first take a specific N -body correlator not
appearing in MN , 〈X1X2 . . . XN 〉, where Xi = Ai or A′

i but
such that the total number of primed A is an even number.
Denote the outcome of Xi by xi . Choose any of the parties,
say the first one, and denote by Corr(X1) the set of all
correlators of arbitrary size containing X1 plus possibly
other settings Xi with i > 1. We would like to show that
every element belonging to Corr(X1) is equal to zero for
the unique distribution maximally violating the inequality.
Let us consider the transformation S1 : {x1 �→ −x1, and xj

untouched ∀j > 1}. This maps Corr(X1) �→ −Corr(X1). The
terms in MN remains unchanged if we complement S1

with S ′
1 : {x ′

j �→ −x ′
j∀j > 1}, where we use (A′

i)
′ = Ai . In

fact, note that for the original even primed term we started
with, S ′

1 ◦ S1〈X1X2 . . . XN 〉 = −〈X1X2 . . . XN 〉. The Mermin
inequality consists only of odd-parity full correlators. Any
such term can be obtained from 〈X1X2 . . . XN 〉 by swapping
inputs at an odd number of places. However, the transformation
S ′

1 ◦ S1 is such that at every site, either the outcome of Ai

or A′
i flips sign but not both. Hence, S ′

1 ◦ S1 applied on
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any correlator obtained by an odd number of local swaps
on 〈X1X2 . . . XN 〉 gains an additional factor of −1 for each
swapped site relative to S ′

1 ◦ S1〈X1X2 . . . XN 〉. Thus, MN

remains unchanged. It remains to study the effect of S ′
1

on Corr(X1). Since X′
j /∈ Corr(X1), this set is unmodified

under S ′
1, so S ′

1 ◦ S1 maps Corr(X1) �→ −Corr(X1). We then
conclude from uniqueness that all the correlators in Corr(X1)
must be zero. The same argument can be run for any party, and
then for any full correlator with an even number of primes,
proving the result.

It is worth mentioning that similar arguments when applied
to the Mermin inequality for even N allow certifying (N − 1)
bits of randomness.

C. The uniqueness assumption

Our method requires a unique quantum distribution attain-
ing the maximal violation of a given Bell inequality. For
some cases, such as Mermin (N,2,2), uniqueness has been
proven [15,16] analytically. For the chained inequality, we
have numerical evidence using the techniques from [13] that
the distribution saturating it is unique in the (2,3,2) and (2,4,2)
cases. Beyond these specific cases, a proof of uniqueness
valid for any Bell inequality is impossible, as it is known
that uniqueness does not hold for all Bell inequalities. Lifted
Bell inequalities [17] or Bell inequalities with no quantum
violation [18] are examples of inequalities that have more than
one quantum realization of the maximal violation.

Despite uniqueness not holding for all Bell inequalities,
from a geometric point of view, it is natural to expect
that the maximal violation of a generic Bell inequality is
attained by a unique point. The set of quantum correlations
defines a convex set in the space of probability distributions
P (a1, . . . ,aN |x1, . . . ,xN ). A Bell inequality is a hyperplane
in this space. The maximal quantum violation corresponds to
the point in which the hyperplane, i.e., the Bell inequality,
becomes tangent to the set of quantum correlations. Since the
set is convex, this point is expected to be unique, in general.

The previous considerations, however, do not apply to our
case, as our argument holds for inequalities that are not generic,
but symmetric under permutation of some of the measurement
results, possibly assisted by permutations of measurements. At
this point, it is worth noting that in all the previous discussion
we did not make use of any quantum property. In fact, the
set of classical correlations is also convex and, thus, a generic
hyperplane is expected to become tangent at a unique extremal
point, see Fig. 1(a). However, randomness cannot be certified
by classical correlations. The reason is that in the classical case,
any symmetry under permutations of the results, necessary in
our argument, can be immediately used to construct another
extremal and deterministic point saturating the inequality as

(a) (b)  

FIG. 1. (Color online) (a) A generic hyperplane generally does
not have symmetries and has a unique maximum in both the sets of
local and quantum correlations. (b) A hyperplane with symmetries
(such as the one corresponding to the CHSH inequality) precludes
uniqueness in the local set but still allows for a unique maximum in
the quantum set. The reason is that the set of quantum correlations,
contrary to its classical counterpart, has an infinite number of extreme
points.

in Fig. 1(b). Therefore, in the classical case, uniqueness and
the required symmetries are never satisfied simultaneously.
In the quantum case, it is not expected that symmetries break
the uniqueness of the maximal violation. The reason is that
the set of quantum correlations is convex, but, contrary to the
classical case, not a polytope; that is, it has an infinite number
of extreme points, see Fig. 1(b).

V. CONCLUSIONS

We have presented a very simple argument explaining
why and when measurement outcomes in a Bell test are
expected to provide maximally random bits. Our method
does not constitute a formal proof of randomness as it
requires an assumption of the uniqueness of the maximal
quantum violation of a Bell inequality. We however provided
a geometrical intuition of why this assumption may hold in
most cases. We believe this intuition explains why our method
works so well, as we are not aware of any Bell test leading to
maximal randomness, local or global, that cannot be explained
using our method. Our method is also useful to design good
Bell tests for randomness generation, as the insight provided
by it can later be confirmed in a rigorous way using the
techniques from [4,13]. In fact, using our method, we easily
demonstrated the existence of Bell tests allowing maximal
global randomness certification.
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