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Time-domain resonances and the ultimate fate of a decaying quantum state
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We derive an analytical expression for the propagation of a quantum particle at asymptotic long distances and
times from the potential where the particle was initially confined. We obtain that the particle is described by
an evolving resonance in time domain that possesses a peaked shape characterized by the resonance parameters
of the dominant resonance coefficient of the decaying wave function. The above situation corresponds to an
unexplored postexponential regime that represents the ultimate fate of a decaying particle.
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I. INTRODUCTION

The subject of quantum decay is as old as quantum
mechanics. Around two years after Schrödinger published
his papers on wave mechanics, Gamow [1,2] considered
the problem of α decay in atomic nuclei and obtained an
analytical expression that describes the disintegration rate of α

particles with time, i.e., the exponential decay law. The above
paradigmatic case exemplifies a distinguished class of decay
problems that model the full Hamiltonian of the system. This
is usually the case when the decay originates from tunneling
through a classically forbidden region as in the decay of a
particle out of a potential having a barrier and refers to the type
of quantum decay problems that we shall consider here. The
above approach differs from approximate treatments where
the Hamiltonian is separated into a part with stationary states
and a part responsible for the decay, usually treated to some
order of perturbation, an approach initiated by Weisskopf and
Wigner [3,4], that has set another paradigm for treating decay
problems in which an initial discrete (bound) state is coupled
to a perturbing continuum of states to form a resonance that
thereafter decays exponentially.

Subsequent theoretical work pointed out the approximate
validity of the exponential decay law. Khalfin demonstrated
that if the energy spectra E of the system is bounded from
below, i.e., E ∈ (0,∞), the exponential decay law cannot hold
at long times [5]. At short times there is also a departure
from the exponential behavior that, however, has a dependence
on the initial state of the problem [6–8]. The experimental
verification of the above departures from the exponential
decay law remained elusive for decades but has been finally
corroborated by experiment [9,10]. In particular, the Zeno
effect [11], which is a relevant consequence of the short-time
deviation from the exponential decay law, has been also
experimentally verified [12,13]. The above results contradict
theoretical claims made in the last century that asserted that
the interaction with the environment would force the validity
of exponential decay at all times [14].
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The analytical expression for the exponential decay de-
rived by Gamow requires us to impose outgoing boundary
conditions to the solutions to the Schrödinger equation of
the problem. As a consequence the energy eigenvalues are
complex and the corresponding decaying wave functions grow
exponentially with distance [1,2,15]. This implies that the
so-called resonant states cannot be normalized in the usual
sense and also that the usual rules concerning orthogonality
and completeness do not apply. The above old developments,
however, have evolved over the years into a consistent
theoretical framework which is particularly useful for the
description of time-dependent problems [16,17]. It may be
proved that resonant states may be obtained also from the
residues at the complex poles of the outgoing Green’s function
to the problem which also provide the normalization rule for
these states. It is worth emphasizing that in this approach
one only needs to know the resonant states along the internal
region and at the boundary value of the interaction potential.
The time dependence of the decaying solution is given as
a pole expansion [16,17] in which each term is given by
the product of an expansion coefficient, a resonant state,
and a Moshinsky function [18]. Each expansion coefficient
represents the overlap between the initial state and the
corresponding resonant state. It might be of interest to point
out that the Moshinsky functions are characteristic of the
description of many transient phenomena [19].

In the present paper we analyze the time evolution of
the decaying wave function along the external region of an
interaction of finite range using the formalism of resonant
states. The exact analytical decaying solution is used to
demonstrate that at asymptotically long distances and times,
the wave function becomes an evolving structure that has
a peaked shape in time domain that depends only on the
resonance parameters of the largest coefficient in the resonance
expansion of the decaying wave function. This solution corre-
sponds to the ultimate fate of the transient decaying quantum
state. The above result is exemplified for the exact solvable
problem of the δ-shell potential, and is corroborated by solving
numerically the time-dependent Schrödinger equation around
the above structure.

To the best of our knowledge no previous work on decay
has addressed the investigation on the asymptotic behavior of
the decaying wave function mentioned above. Most treatments
on decay refer to the nondecay or survival probability, which
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yields the probability that at time t the decaying particle re-
mains in the initial state, as discussed in the 1978 review paper
by Fonda et al. [14]. Another related quantity that has been
considered in decay problems, is the nonescape probability,
which provides the probability that at time t the decaying parti-
cle remains within the interaction region. Since the initial state
is confined within the internal region of the potential, both the
survival and the nonescape probabilities involve, respectively,
integration along the internal region and hence are functions
that depend only on time. One should also mention the mono-
graph by Goldberger and Watson [20], that uses the resolvent
method to discuss the long-time nonexponential behavior of
the decay law of a sharp isolated resonance, and the large
body of studies concerned with the decay of quantum systems
involving different numbers of channels. These studies, which
are based on the statistical assumptions of random matrix
theory and are of relevance in studies of quantum chaotic
systems [21,22], lie beyond the scope of the present work.

Following the work by Garcı́a-Calderón on resonant states
and the decay process [23] and with Rubio on transient
phenomena in resonant tunneling [24], both involving linear
combinations of resonant states and Moshinsky functions,
there appeared in the literature an approach by van Dijk and
Nogami where the decaying wave function is also written
as a linear combination of Moshinsky functions but without
using resonant states [25,26]. The authors of Refs. [25,26]
argue that the exact decaying wave function always contains
incoming waves, a situation that is prevented when using out-
going boundary conditions, and affirm, consequently, that the
resonant-state approach is not exact. However, these authors
miss the point that using the outgoing boundary condition
with the poles that seat on the third quadrant of the k plane
yields in fact, by time reversal considerations, incoming wave
contributions, a fact that invalidates their argument. Further
analysis has demonstrated that the resonant-state formalism
provides an exact description of decay [27]. One should also
comment that the controversial issue regarding the long-time
behavior of the nonescape probability mentioned in Ref. [26]
has been settled down as discussed in Ref. [28] and will not be
repeated here. At long times the nonescape probability goes
as t−3 and not as t−1 as was claimed in Ref. [29].

Although the resonant-state approach is non-Hermitian, it
yields exactly the same results as a Hermitian description
based on the continuum wave functions to the problem [27,30].
The essential difference, and also the main advantage of the
resonant-state approach, is that the non-Hermitian formulation
provides explicit analytical expressions for both exponential
and nonexponential contributions to decay, whereas the Hermi-
tian description corresponds to a black-box type of calculation
that requires numerical integration over the momenta at every
instant of time and hence it is difficult to foresee its behavior
as a function of time. The notion of resonant state has been
particularly useful in understanding the physics of decay in
multibarrier quantum systems [31,32].

It is worth mentioning a recent work that explores the
exponential to postexponential transition of quantum decay at
long distances which is based on a source model [33]. This
model consists of a simple exponentially decaying source
(with complex frequency) that mimics the behavior of the
decay of a single resonance and allows to derive a time

scale that characterizes the transition from the exponential
to the postexponential regime. An interesting contribution of
that work is that the observability of the above transition
increases with the position where the detector is placed up
to a critical distance beyond which exponential decay is
no longer observed. We confirm the above results with our
multiresonance formalism. However, we have gone beyond, at
asymptotically long times and distances, to obtain the ultimate
fate of the decaying particle.

The paper is organized as follows: in Sec. II we recount the
main equations for the description of the decay of a quantum
state using the resonant-state formalism and we consider the
steepest descent method to derive an exact analytical formula
that provides the main contribution to the decaying state
at very long distances and times. In Sec. III we recall the
formulation of the description of a decaying particle using the
continuum wave functions. In Sec. IV we analyze the dynamics
of the decaying probability density along the external region
using the δ-shell potential. Finally, in Sec. V we present the
conclusions.

II. DYNAMICS OF THE DECAYING WAVE FUNCTION
USING RESONANT STATES

The theoretical treatments of quantum decay refer to the
time evolution, |ψt 〉 = exp(−iH t/h̄)|ψ0〉, of an initial state
|ψ0〉 in a system characterized by a Hamiltonian H . We shall
refer to a description of the decay process that involves real
potentials of arbitrary shape that vanish beyond a distance. This
is well justified since most effective potentials in physics are
of finite range, and refer to decaying states which initially are
confined within the interaction region. The above conditions
are commonly found in quantum systems designed artificially
[34,35]. A relevant feature of these systems is that at very low
temperatures the decay process is essentially coherent (elastic).
We assume that such is the case here. One may then exploit
the analytical properties of the outgoing Green’s function to
the problem on the whole complex k plane, where it possesses
an infinite number of poles. These poles are in general simple
and are distributed in a well-known fashion [36]. The above
considerations have led to a formulation of the time evolution
of decay in terms of a purely discrete expansion involving
the residues at the poles of the outgoing Green’s function to
the problem. These residues are proportional to the resonant
states of the system that satisfy the Schrödinger equation with
outgoing boundary conditions [16,17,29].

Let us consider the time evolution of decay of an initial wave
function �(r,0) confined initially, at t = 0, along the internal
region of a spherically symmetric potential of finite range,
i.e., V (r) = 0 for r > a, where, for the sake of simplicity,
we restrict the discussion to s waves. The units employed
here are h̄ = 2m = 1, with m being the mass of the decaying
particle. Hence the energy of the particle reads E = k2, with
k the corresponding wave number.

The time-dependent wave function �(r,t) may be written in
terms of the retarded Green’s function of the problem g(r,r ′; t)
and the initial state �(r,0) as

�(r,t) =
∫ a

0
g(r,r ′; t)�(r ′,0) dr ′, t > 0. (1)

052114-2



TIME-DOMAIN RESONANCES AND THE ULTIMATE FATE . . . PHYSICAL REVIEW A 88, 052114 (2013)

The retarded Green’s function g(r,r ′; t) may be expressed,
using Laplace transform techniques, in terms of the outgoing
Green’s function G+(r,r ′; k) of the problem, namely,

g(r,r ′; t) = i

2π

∫ ∞

−∞
G+(r,r ′; k)e−ik2t 2k dk. (2)

Using the analytical properties of G+(r,r ′; k) one may then
calculate the retarded Green’s function g(r,r ′; t) either as
an expansion in terms of resonant states or in terms of the
continuum wave functions to the problem.

For propagation along the external region of the potential it
is convenient to write the outgoing Green’s function as [16,17]

G+(r,r ′; k) = G+(a,r ′; k)eik(r−a), r ′ < a, r � a. (3)

Substitution of (3) into (34), and the resulting expression into
(1), allows us then to express the time-dependent solution as

�(r,t) = i

2π

∫ ∞

−∞
�(k)eik(r−a) e−ik2t dk, (4)

where we have defined

�(k) = 2k

∫ a

0
�(r ′,0)G+(a,r ′; k) dr ′. (5)

The above expression is very convenient because then we may
expand G+(a,r ′; k) in terms of the resonant states {un(r)}
and the corresponding complex poles {κn = αn − iβn} of the
problem. The expansion reads [17]

G+(a,r ′; k) = 1

2k

∞∑
n=−∞

un(r ′)un(a)

k − κn

, r ′ < a. (6)

It must be recalled that Eq. (6) holds provided the resonant
states are normalized according to the condition [17,37]∫ a

0
u2

n(r)dr + i
u2

n(a)

2κn

= 1. (7)

These states fulfill the closure relationship [16,17]

1

2

∞∑
n=−∞

un(r)un(r ′) = δ(r − r ′), (8)

and the sum rules
∞∑

n=−∞
un(r)un(r ′)κn = 0;

∞∑
n=−∞

un(r)un(r ′)
κn

= 0. (9)

Equations (8) and (9) hold provided (r,r ′)† � a, a notation that
implies that the expansions do not hold for r = r ′ = a.

Substitution of (6) into (5) and the resulting expression into
(4) allows us to express the time-dependent decaying solution
as the resonant expansion [16,17]

�(r,t) =
∞∑

n=−∞
Cn un(a) M(yn), r � a, (10)

where the Moshinsky functions M(yn) are defined as

M(yn) = i

2π

∫ ∞

−∞

eik(r−a)e−ik2t

k − κn

dk

= 1

2
ei(r−a)2/4t w(iyn), (11)

and the functions w(iyn) = exp(y2
n)erfc(yn) stand for the

complex error function [38], the argument yn is given by

yn = (4it)−1/2 [(r − a) − 2κnt], (12)

and the coefficients Cn by the expressions

Cn =
∫ a

0
�(r ′,0) un(r ′) dr ′. (13)

It is of interest to see, in view of (8), that the coefficients Cn

fulfill the relation [17]

Re

{ ∞∑
n=1

CnC̄n

}
= 1, (14)

where C̄n follows by replacing in Eq. (13) �(r ′,0) by its
conjugate.

Equation (10) tell us that the evolving decaying wave
function carries out information on the resonant structure of
the system. Notice that each resonant level of the system
contributes with a weight or strength Cn and, in view of (14),
that implies that some resonant terms might be more relevant
than others for the behavior of the time evolving solution.

A. Behavior of the decaying state at a fixed distance
and long times

It might be of interest to recall the expression for the wave
function at a fixed value of the distance r = r0 and very long
times. This follows by considering the analytical properties of
the complex error function and yields the expression [17],

�(r0,t) =
∞∑

n=1

Cnun(a)eiκn(r0−a)e−iEnt e−
nt/2

− i

2(πi)1/2
Im

{ ∞∑
n=1

Cnun(a)

κ3
n

}
1

t 3/2
, r � a,

(15)

where we have used that the complex energy κ2
n = En − i
n/2.

Notice that since κn = αn − iβn, one may write the resonance
energy En and the decay width 
n, respectively, as

En = α2
n − β2

n, 
n = 4αnβn. (16)

B. Behavior of the decaying state at very long
distances and times

One may ask what happens to the wave function as both
the distance r and the time t increase to very large values.
In such a case it is convenient to make use of the phase
stationary phase method [39]. This involves applying the
condition on the argument of the exponential in Eq. (4),
d[k(r − a) − k2t]/dk = 0, which determines the value,

ks ≡ r − a

2t
. (17)

Then, performing a first-order Taylor expansion around k = ks

on the function �(k) and integrating the resulting expression
allows us to write Eq. (4) as

�(r,t) ≈
√

i

4πt
eik2

s t �(ks). (18)
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Notice that substitution of Eq. (6) into Eq. (5) allows to write,
in view of (13), a resonant expansion for �(ks), that is

�(ks) =
∞∑

n=−∞

Cnun(a)

ks − κn

. (19)

We make the common assumption that the initial state �(r,0)
overlaps strongly with a resonant state u�(r) of the system, so
that, in view of Eq. (14), Re{C2

� } ≈ 1. This allows us to write
(19) as

�(ks) ≈ C� u�(a)

ks − κ�

. (20)

Hence, we may write Eq. (18) as

�(r,t) ≈
√

i

4πt
eik2

s t
C� u�(a)

ks − κ�

. (21)

The above requires us to choose adequately, in view of (17), the
values of r and t . The probability density |�(x,t)|2 calculated
from Eq. (21) yields the expression

|�(r,t)|2 ≈ 1

2πt
|C�|2I�

β�

(ks − α�)2 + β2
�

, (22)

where we have used that κ� = α� − iβ�, and the expressions
[17]

β� = |u�(a)|2
2I�

, I� =
∫ a

0
|u�(r)|2 dr. (23)

Notice, recalling Eq. (17), that for a fixed time t = t0, the
above expression exhibits a Lorentzian shape as a function of
κs . On the other hand, for a fixed distance r = r0, a simple
manipulation allows us to write Eq. (22) as a function of time t

that consists of a Lorentzian formula multiplied by t , namely,

|�(r0,t)|2 ≈ |C�|2 I�

(r0 − a)

1

π

[
(γ�/2)

(t − t�)2 + (γ�/2)2

]
t, (24)

where γ� = β�(r0 − a)/(α2
� + β2

� ), and t� = α�γ�/(2β�).
One sees therefore that the resonant pole corresponding to

the largest expansion coefficient in Eq. (10) is responsible for
the peaked behavior exhibited by Eq. (24) at very long times
and distances from the decaying system.

III. DECAYING WAVE FUNCTION USING THE STATES
OF THE CONTINUUM

We find it of interest to confront the above findings with
the expression for the time evolution of the decaying wave
function using the continuum wave solutions ψ+(k,r) to the
problem, which reads [17]

�(r,t) =
∫ ∞

0
C(k)ψ+(k,r)e−ik2t dk, (25)

where the coefficient C(k) is given by

C(k) =
∫ a

0
ψ+∗(k,r ′)�(r ′,0) dr ′. (26)

Outside the range of the potential the continuum wave
solutions may be written as

ψ+(k,r) =
√

2

π

i

2
[e−ikr − S(k)eikr ], r > a, (27)

where S(k) stands for the S matrix to the problem.

IV. EXAMPLES

Here we consider as an example of the dynamics of the
decaying wave function [Eq. (10)] along the external region,
the s-wave δ-shell potential,

V (r) = λδ(r − a), (28)

with λ the intensity of the potential, and the initially confined
state at t = 0,

�(r,0) =
√

2

a
sin

(
q π

a

)
r, (29)

where q = 1,2,3, . . .. We choose the parameters λ = 100 and
a = 1. The above model is known to many authors as the
Winter model [40].

Resonant states obey the Schrödinger equation of the prob-
lem with the complex energy eigenvalues κ2

n = En − i
n/2,
namely

d2

dr2
un(r) + [

κ2
n − V (r)

]
un(r) = 0. (30)

The solutions to Eq. (30) with the potential given by (28) read

un(r) =
{

An sin(κnr), r � a,

Bn eiκnr , r � a.
(31)

From the continuity of the above solutions and the disconti-
nuity of its derivatives with respect to r (due to the δ-function
interaction) at the boundary value r = a, it follows that the
κn’s satisfy the equation

2iκn + λ(e2iκna − 1) = 0. (32)

For λ > 1 one may write the approximate analytical solutions
to Eq. (32) as [16,17]

κn ≈ nπ

a

(
1 − 1

λa

)
− i

1

a

(
nπ

λa

)2

. (33)

Using the above expression as an initial value in the expression
of the Newton-Rapshon method,

κr+1
n = κr

n − F
(
κr

n

)/
Ḟ

(
κr

n

)
, (34)

where Ḟ = [dF/dk]k=κn
, one may obtain κn with the desired

degree of approximation by iteration.
The normalization coefficient for resonant states may be

evaluated by substitution of Eq. (31), for r � a, into Eq. (7),
to obtain the analytical expression

An =
[

2λ

λa + e−2iκna

]1/2

. (35)

Similarly, using Eqs. (29), (31), and (35) into Eq. (13) allows
us to write the expansion coefficient Cn as

Cn =
[

λa

λa + e−2iκna

]1/2[2qπ sin(κna) (−1)q

κ2
na2 − q2π2

]
. (36)

Using Eqs. (31) and (35) it is straightforward to obtain an
analytical expression for the integral In appearing in Eq. (23)
for n = �.

It is worth noticing that as the intensity of the potential λ →
∞, the complex poles κn = αn − iβn tend to the real infinite
box eigenvalues, and similarly, the resonant eigenfunctions
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FIG. 1. (Color online) Transition from the exponential to the
nonexponential regime shown in a plot of ln[|�(r,t)|2] obtained
from Eq. (10) as a function of time (in lifetime units), for the δ

potential with parameters λ = 100, q = 1, a = 1, at the position
r = 500a. The inverse power-law long-time asymptotic behavior
(dashed line) calculated using the second term of Eq. (15) is included
for comparison. The inset shows the formation of a main wave front
in the probability density. Other important system parameters are the
lifetime τ1 = 84.0585, and the pole corresponding to the first state,
k1 = 3.110 52 − i 9.5614 × 10−4.

un(r) tend to the infinite box model eigenfunctions. This means
that for a finite value of the intensity λ, an initial infinite
box state �(r,0) with q = m, has a larger overlap with the
resonant state um(r) than with any other resonant state. One
sees, therefore, that for a given finite value of the intensity λ and
a radius a of the δ potential one may evaluate the corresponding
set of complex poles {κn} and expansion coefficients {Cn} of
the problem.

Figure 1 exhibits a plot of ln[|�(r,t)|2], given by (10), as a
function of time in lifetime units, given by τ = 
−1

1 , calculated
at the distance r = 500a. Here we choose q = 1, and hence
the real part of the overlap of the initial state with the resonant
state with n = 1 is the order of unity, i.e., Re C2

1 ≈ 1. A well-
known consequence of this is that the exponential and long-
time nonexponential behavior can be described accurately with
just the complex pole n = 1 [27]. However, the description
of the buildup of the probability density occurring at short
times requires a few tens of poles. We may observe a regime
where the decay is purely exponential, followed by a transient
where the transition from exponential to nonexponential decay
occurs, that is characterized by dense oscillations. From then
on, the decay follows an inverse power-law behavior as t−3,
which dominates the process as dictated by Eq. (10) (dashed
line). For completeness, we have included in the inset of Fig. 1
the formation of the main wave front in the probability density
calculated with Eq. (10).

Now let us now analyze the behavior of the transition from
the exponential to nonexponential decay as a function of the
distance r from the decaying source. This is illustrated in
Fig. 2, where we plot ln[|�(r,t)|2] using Eq. (10) as a function
of time calculated at different values of the position: r = 100a,
r = 500a, and r = 3000a. One sees that as r increases, there
is a buildup regime where the probability density exhibits a

0.0 10.0 20.0 30.0 40.0
-35.0

-30.0

-25.0

-20.0

-15.0

-10.0

-5.0

0.0

ln
[|

Ψ
(r

,t)
|2

]

t / τ
1
 

FIG. 2. (Color online) For the system depicted in Fig. 1 we
illustrate the r dependence of the exponential to nonexponential
transition by plotting ln[|�(r,t)|2] obtained from Eq. (10) as a
function of time, at the fixed positions r = 100a (dotted line),
r = 500a (dashed line), and r = 3000a (solid line). Notice that the
probabilities associated to the transitions increase as the distance r

from the interaction region becomes larger.

succession of peaks that correspond to the high resonance
levels of the system. At longer times the probability density
exhibits an exponentially decaying regime that is followed by
a transition to a nonexponential behavior. In order to describe
accurately such behaviors more poles are required. Here and in
the rest of our calculations we consider 1000 poles. As may be
seen, as the value of the position r increases, the transition to
the long-time nonexponential behavior corresponds to larger
values of the probability density (increased observability).
This behavior is consistent with the results obtained in
Ref. [33], where the transition from the exponential to the
postexponential regime is explored by using the simple model
of an exponential decaying source with a single resonance.

If we increase further the distance r at which the probability
density is measured, we enter a regime where exponential
decay is no longer present, and where the decay process
is dominated by an inverse power-law behavior of t−3. We
illustrate this in Fig. 3, where we plot the ln[|�(r,t)|2] using
Eq. (10) (solid line) as a function of time at a fixed position
r = 1 × 108a using the same system parameters as given
previously. Figure 3 exhibits a peculiar peaked structure that
appears prior to the situation where the quantum state has
reached the inverse power-law behavior of t−3 [second term
of Eq. (15)] (dashed line). We have found that this structure of
the decaying wave function, Eq. (10), corresponds to a regime
where both the distance r and the time t attain very large values.
In the inset to Fig. 3 we appreciate that this peaked structure
(solid line) may be accurately described by Eq. (24) (solid
line) for the state � = 1. Furthermore, it is worth mentioning
that the above calculations are indistinguishable from the
numerical integration using continuum wave solutions as given
by Eq. (25) (dotted line).

In Fig. 4 we can appreciate that if the point of detection of
the probability density is further increased (larger r), the peak
value of the time domain resonance (solid line) decreases as we
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FIG. 3. (Color online) Plot of ln[|�(r,t)|2] obtained from Eq. (10)
(solid line), as a function of time, at a fixed position r = 1 × 108a,
for the system depicted in Fig. 1. We can appreciate the formation
of a sharp-peaked structure that we named time domain resonance.
Also shown is the inverse power-law long-time asymptotic behavior
(dashed line) calculated with the second term of Eq. (15). In the inset
we compare the results for ln[|�(r,t)|2] using Eq. (10) with one pole
(solid line), the expression given by Eq. (24) using the state with
� = 1 (dashed line), and a numerical calculation using the continuum
states as given by Eq. (25) (dotted line). As can be appreciated all
these plots are indistinguishable.

move away from the source. Notice also that the corresponding
width increases over several lifetimes. In Fig. 4 we have
included plots of the peaked expression given by Eq. (24)
(dotted line) and an excellent agreement is obtained. Moreover,
from Eq. (24), we can see that the amplitude of the time domain
resonance decreases inversely with time, i.e., |�(r,t)|2 ∼ t−1,
which is consistent with the behavior observed in Fig. 4.
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FIG. 4. (Color online) Dynamical behavior of the time domain
resonance [Eq. (10)] (solid line), for the system depicted in Fig. 1, for
different values of the position (indicated on the graphs) along the de-
caying region. The panels illustrate that the amplitude (observability)
of this transient structure diminishes as the parameter r is increased.
We have also included the time domain resonance computed with
Eq. (24) (dotted line) and an excellent agreement is obtained.
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FIG. 5. (Color online) Plot of ln[|�(r,t)|2] obtained from Eq. (10)
(solid line), as a function of time, at a fixed position r = 1 × 108a for
the initial state given by Eq. (29) with q = 2. In the inset we show
the time domain resonance calculated using Eq. (10) with one pole
(solid line), and the steepest descent approximation given by Eq. (24)
(dotted line) using � = 2. A very good agreement is obtained. We
also included in the main graph, the inverse power-law t−3 long-time
asymptotic behavior (dashed line) calculated with the second term of
Eq. (15).

In order to explore the effect of the initial state on
ln[|�(r,t)|2], in Fig. 5 we plot Eq. (10) (solid line) as a
function of time for the initial state given by Eq. (29) with
q = 2. This choice favors a maximal overlap between the
initial state and the corresponding resonant state u2(r), i.e.,
Re{C2

2} ≈ 1. Notice that as a consequence, a time domain
resonance with n = 2 clearly emerges from the background
of the other overlapping neighboring resonances. In the inset,
we zoom out the time domain resonance, and compare the
results for ln[|�(r,t)|2] using Eq. (10) with the single pole
approximation n = 1 (solid line), with the steepest descent
approximation given by Eq. (24) (dotted line) for the second
state (� = 2), and again, a very good agreement is obtained.

It might be of interest to study under what conditions it
is possible to increase the observability of the time domain
resonance. We can infer from Eq. (24) that both the intensity
and position of this transient structure strongly depends on the
value of α� and β�. A useful parameter to characterize this
situation is the dimensionless ratio R, defined as R ≡ E�/
�

[41,42], which by using (16) may be written as

R = 1

4

[
α�

β�

− β�

α�

]
. (37)

For the decaying system discussed in Fig. 1, α1 = 3.110 52
and β1 = 9.5614 × 10−4. It follows then, using Eq. (37), that
R = 813.29. Clearly, since R � 1, this situation corresponds
to the case of a very narrow resonance, as may be easily seen
by inspection of Eq. (22). This suggests to analyze a decaying
system with a smaller value of R, i.e., a system with a broader
resonance. In Fig. 6 we show the time domain resonance [using
Eq. (10) (solid line)] for a system with λ = 6 and a = 1, at r =
500a. In this case α1 = 2.75 and β1 = 0.404, which, using (37)
yields R = 4.92. We note that for this particular value of R, the
time domain resonance maximum occurs at ∼140 lifetimes,
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FIG. 6. (Color online) Plot of ln[|�(r,t)|2] obtained from Eq. (10)
(solid line) as a function of time, for the δ potential with parameters
λ = 6, and a = 1 at the position r = 500a. The inverse power-law
t−3 long-time asymptotic behavior (dotted line) calculated using the
second term of Eq. (15) is included for comparison. This decaying
system is characterized by a very broad resonance, which yields R =
4.92. Note that the time domain resonance can be approximated by
Eq. (22) (dashed line), and that its magnitude is significantly increased
in comparison with the one observed in Fig. 2. Other important system
parameters are the lifetime τ1 = 0.6455, and the pole corresponding
to the first state, k1 = 2.75 − i 0.1404.

and its intensity is larger (by ∼5 orders of magnitude) than the
one observed in the case of Fig. 2. We have included in Fig. 6 a
plot of the peaked-shape function given by Eq. (22). The above
implies that the observability of the time domain resonance
strongly depends on the value of the parameter R, and hence
one may expect larger values of probability associated to this
transient structure when R is smaller.

V. CONCLUSIONS

In this work we consider an exact analytical expression
for the decaying wave function along the external interaction
region, using a resonant-state formulation that takes into
account the full energy spectrum of the system. We discuss
a regime, occurring at very long distances and times, where
the probability density exhibits a time domain resonance. We
demonstrate that this dynamical feature may be described
by a time-dependent function possessing a peaked shape
that depends on the resonance parameters corresponding to
the largest expansion coefficient of the decaying state, i.e.,
Eq. (24). From a physical point of view, that coefficient
measures the overlap strength between the initial decaying
wave function and the corresponding resonance state of the
system. We also demonstrate that the observability of the
time domain resonance can be enhanced by choosing quantum
systems with small values of the quantity R, defined by (37),
which refers to systems with broad resonances. Our findings
indicate that the resonance parameters α� and β� of the time
domain resonance allow us to infer, provided that R > 1
(for R < 1, the system never decays exponentially [42]),
that in the remote past the corresponding system decayed
exponentially with a decay rate given by 
� = 4α�β�. It would
be of interest to explore the consequences of the results
obtained here with the decay of identical particles [43,44]
to find out how entanglement may affect the corresponding
dynamics.
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