
PHYSICAL REVIEW A 88, 052113 (2013)

Quantum state reconstruction of spectral field modes: Homodyne and resonator detection schemes
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We revisit the problem of quantum state reconstruction of light beams from the photocurrent quantum noise.
As is well known, but often overlooked, two longitudinal field modes contribute to each spectral component of the
photocurrent (sideband modes). We show that spectral homodyne detection is intrinsically incapable of providing
all the information needed for the full reconstruction of the two-mode spectral quantum state. Such a limitation
is overcome by the technique of resonator detection. A detailed theoretical description and comparison of both
methods is presented, as well as an experiment to measure the six-mode quantum state of pump-signal-idler
beams of an optical parametric oscillator above the oscillation threshold.
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Quantum optics employing continuous variables of the
electromagnetic field is a mature and well-developed subject,
with applications ranging from high-resolution measurements
[1] to manipulation and storage of quantum information [2–4]
and quantum metrology [5]. Among its advantages are the
use of techniques adapted from the classical communications
community, which employ the spectral analysis of light [6].
Quantum features that play a role in these applications
include quadrature squeezing [7], quantum correlations [8],
and entanglement [9].

In order to harness the advantages offered by quantum
properties of light to improve high-resolution measurements
or quantum information protocols, it is often necessary to
obtain full knowledge of the system’s quantum-mechanical
state. Techniques for complete quantum state characterization
have been a part of the quantum optics toolbox for 20 yr
[10,11]. However, when combining these techniques with
the spectral analysis of measured signals [12], care must be
exercised: It has been known for a long time that two (sideband)
modes must be considered when measuring quantum noise
(and correlation) spectra of a single beam of light. In many
situations, an effective single-mode description can be applied,
but this is not always true.

In a previous paper [13], we showed experimentally that
indeed two different light states could lead to the same homo-
dyne detection signals, whereas they could be unambiguously
discriminated by resonator detection. In the present paper,
our purpose is to give a detailed and consistent description
of spectral reconstruction of quantum states of light. For the
sake of completeness, in part of the paper we review concepts
that are already known (although sometimes neglected). This
helps make clear the shortcomings of the most widely used
detection technique, (spectral) homodyne detection (HD),
as well as the demonstration that an alternative technique,
resonator detection (RD) [14,15], does not suffer from the
same limitations.

Information about the quantum state is retrieved from
photodetection, which yields a photocurrent continuously
varying in time. Interferometric techniques, usually involving a
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reference field (a local oscillator, LO), enable the acquisition of
phase-sensitive information, thus allowing the measurement of
field quadratures. In HD, a weak signal field is combined with a
strong LO (assumed to be well described by a coherent state) on
a beam splitter with balanced reflection and transmission. The
two outputs are detected and their photocurrents combined.
The temporal behavior of the photocurrent is determined by
the beating of the LO (carrier) mode with other modes slightly
detuned by positive and negative amounts. When directly
analyzing the photocurrent in the temporal domain, the effect
of these neighboring modes is integrated within a bandwidth
determined by the temporal resolution of the measurement.
This constitutes a single “temporal” mode and provides an
adequate description for measuring a beam of light [16]. On the
other hand, the spectral analysis aims at resolving individual
spectral modes, i.e., with a given frequency. This requires
beating the photocurrent with a radio-frequency (rf) reference
field. The beat-note signal at a given analysis frequency
comprises both sidebands symmetrically detuned with respect
to the LO frequency (upper and lower sidebands), without
distinguishing between them. Thus, the full determination of
the quantum state of a beam of light at a given frequency
requires characterizing each of the two modes, as well as the
correlations between them.

In many situations, a change of basis to symmetric (S)
and antisymmetric (A) combinations of the upper and lower
sidebands results in an effective single-mode description.
State reconstruction is, however, limited to situations in
which there is no coupling between the S and A modes.
An example is the measurement of single-beam squeezing
at a given frequency: It has been known for long and it
was experimentally demonstrated that squeezing of the S (or
A) mode corresponds to entanglement between the upper
and lower sidebands [17,18]. We show below that HD is
intrinsically “blind” to correlations between S and A modes
of a single beam. Physically, this is a result of the perfect
symmetry between upper and lower sidebands in the detection
process. In contrast, in RD the field modes interact with an
empty optical resonator prior to photodetection. The upper and
lower sidebands undergo different phase shifts and, especially,
different attenuations when reflected from the empty cavity
as a function of its detuning. This constitutes a previously
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unknown and unrecognized advantage of RD when compared
to HD. A complete measurement of all second-order moments
suffices to fully characterize a Gaussian quantum state. This is
possible with RD but unattainable with HD.

In this paper, after defining a notation for the covariance
matrix, treated as a complete representation of any Gaussian
state (Sec. I), we review the description of photocurrent as a
quantum measurement (Sec. II). We highlight the measure-
ment operators associated with HD and its limitations regard-
ing the reconstruction of quantum states (Sec. III). Resonator
detection is similarly examined afterwards (Sec. IV). The main
result here is the determination of which two-beam correlations
remain “hidden” to spectral HD and the demonstration of the
complete accessibility of the covariance matrix with RD.

The precise extent to which both techniques differ in a
realistic experimental situation is discussed in Sec. V. In most
experiments, the electronic LO phase is not actively locked to
the optical LO phase. We discuss the changes to measurement
operators and general limitations to the reconstruction of
quantum states when performing the spectral analysis of
the photocurrent without good phase reference, owing to
the optical phase diffusion. By extending the treatment to more
beams of light (Sec. VI), RD is shown to provide complete
state reconstruction of any multimode Gaussian state of
spectral modes. In Sec. VII, we make the connection between
the quantum formalism here utilized and the semiclassical
formalism commonly employed in the description of quantum
noise. Finally, we present experimental results employing RD
to show the existence of “hidden” correlations among the
three beams (pump, signal, and idler) produced by the optical
parametric oscillator (Sec. VIII). The six-mode covariance
matrix of the measured system is then presented. We offer
our concluding remarks in Sec. IX.

I. GAUSSIAN QUANTUM STATES AND
THE COVARIANCE MATRIX

The class of Gaussian quantum states is particularly
important to describe experiments in quantum optics in the
continuous variables (CVs) domain. Such states are character-
ized by the observation of Gaussian probability distributions
in measurements of quadrature operators (Gaussian Wigner
functions).

For one beam of light, a single longitudinal mode with
optical frequency ω is represented by the amplitude p̂ω and
phase q̂ω quadrature observables, satisfying commutation rela-
tions [p̂ω,q̂ω′ ] = 2iδ(ω − ω′). In terms of photon annihilation
âω and creation â†

ω operators, satisfying [âω,â
†
ω′ ] = δ(ω − ω′),

they relate as âω = (p̂ω + iq̂ω)/2.
Ordering the relevant quadrature operators in a column

vector �X = (p̂ω q̂ω p̂′
ω′ q̂ ′

ω′ · · ·)T , the symmetric covariance
matrix is defined as

V = 1
2 (〈 �X · �XT 〉 + 〈 �XT · �X〉), (1)

where the average is performed over the quantum state
describing the whole quantum field. Diagonal elements of
V represent variances of single-mode quadrature operators,
denoted as, e.g., �2p̂ω ≡ 〈p̂ωp̂ω〉. Off-diagonal elements are
correlations between different quadratures operators, such as
in, e.g., C(p̂ωp̂′

ω′) ≡ 〈p̂ωp̂′
ω′ 〉.

The covariance matrix completely accounts for the quantum
noise of the Gaussian state. For instance, a general two-mode
covariance matrix reads as

V =

⎛
⎜⎜⎜⎝

�2p̂ω C(p̂ωq̂ω) C(p̂ωp̂′
ω′) C(p̂ωq̂ ′

ω′ )

�2q̂ω C(p̂′
ω′ q̂ω) C(q̂ωq̂ ′

ω′ )

�2p̂′
ω′ C(p̂′

ω′ q̂
′
ω′)

�2q̂ ′
ω′

⎞
⎟⎟⎟⎠ , (2)

where repetitive entries have been omitted (since V = VT ). For
a general n-mode matrix, n(2n + 1) second-order moments
fully determine the Gaussian state.

II. PHOTODETECTION

Photodetectors generate a time-dependent photocurrent
I (t) that gives information about the intensity of the incident
light beam. In the CV regime, it is a continuous signal deprived
of quantum jumps associated with individual quanta of light.
In the case of unit quantum efficiency they measure directly
the quantum observable Î (t) given by [19]

Î (t) = Ê−(t)Ê+(t), (3)

where Ê±(t) are the positive and negative frequency parts
of the electric field operator, Ê(t) = Ê+(t) + Ê−(t), written
in the case of a narrowband light source, and within a
multiplicative factor, as

Ê+(t) =
∫

dω e−iωt âω, �E−(t) = [ �E+(�r)]†, (4)

where the integration limits enclose a frequency interval
compatible with the photodetector bandwidth around the
optical frequency ω0 of a bright auxiliary field, the LO.
Quantum noise results from the “amplification” of quantum
fluctuations originating from modes in the frequency vicinity
of the LO. The LO field must possess a well-defined phase
relation with respect to the quantum state |�〉 of remaining
modes and is hence effectively described as a coherent state
|αω0〉, where αω0 = |α| exp(iϕ) denotes its amplitude and
phase. This discussion is easily generalized to account for
quantum states represented by density operators.

With this general experimental arrangement, valid for
the two measurement techniques we analyze in this paper
(homodyne and RD schemes), the field quantum state just
prior to detection is |αω0〉|�〉. The quantum state average of
Eq. (3), together with Eq. (4), yields the photocurrent

I (t) ∝
∫

dω

∫
dω′ ei(ω−ω′)t 〈αω0 |〈�|â†

ω âω′ |αω0〉|�〉

≈ |α|2 + |α|〈�|[e−iϕ â(t) + eiϕâ†(t)]|�〉, (5)

where small contributions have been disregarded.
The state-dependent term represents quantum fluctuations

of the photocurrent. The operator inside brackets δÎ (t) =
e−iϕ â(t) + eiϕâ†(t) is the measurement operator, which in-
cludes new annihilation and creation operators defined as

â(t) =
∫ ′∞

0
dω e−i(ω−ω0)t âω, â†(t) = [â(t)]†, (6)

where the integral in ω must exclude mode ω0 (a fact denoted
by the prime).
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Finally, we note that the response time of a realistic
photodetector will necessarily impose the temporal integration
of Eq. (5), defining the spectral shape of measured mode
â(t) in Eq. (6) [20]. In temporal HD, that would define
a single-mode field operator (delocalized in frequency or,
equivalently, a propagating mode), to which the measurement
would correspond [16]. We focus, however, on the spectral
analysis of the photocurrent, which we describe next.

A. Photocurrent observable in the spectral domain

In this paper, we focus on techniques to extract information
about the quantum state of light in spectral modes. We perform
the spectral analysis of the photocurrent to obtain the noise
power at a single Fourier frequency �, usually in the MHz
range [12]. Low-frequency technical noise from multiple
sources can then be avoided in the quantum analysis.

The photocurrent fluctuation given by Eq. (5) can be
described in frequency domain by Fourier transform as

Î� =
∫

δÎ (t) ei�tdt, (7)

where the integration limits are determined by detection
bandwidth. It is easy to show that the spectral component
of the photocurrent is a complex quantity associated with the
non-Hermitian operator

Î� = e−iϕ âu + eiϕâ
†
	, (8)

where âu and â	 are the annihilation operators of the upper
and lower sideband modes at frequencies ω0 + � and ω0 − �,
respectively. Therefore, spectral analysis necessarily implies
a two-mode detection scheme. We note that Î

†
� = Î−�.

The operators Î� are written in terms of quantum-
mechanical observables Îcos and Îsin representing the photocur-
rent electronic quadratures as Î� = (Îcos + iÎsin)/

√
2, where

Îcos= cos ϕ
p̂u + p̂	√

2
+ sin ϕ

q̂u + q̂	√
2

, (9)

Îsin = cos ϕ
q̂u − q̂	√

2
− sin ϕ

p̂u − p̂	√
2

. (10)

These measurement operators are associated with field modes
that are symmetric and antisymmetric combinations of side-
band modes. A direct measurement of both photocurrent
Fourier quadrature components, if possible, would provide
direct information on the optical quadrature components of
these specific modes [21].

In the ideal case, each measurement of an electronic quadra-
ture component thus represents a single-mode measurement,
free of assumptions. We note that [Îcos ,Îsin ] = 0, as expected,
since they represent independent observables. A possible
technique to perform this measurement is shown in Fig. 1,
by mixing the photocurrent with two electronic references in
quadrature [22].

B. Photocurrent measurement: Spectral noise power,
stationarity, and the role of the phases

According to the Wiener-Kintchine theorem, for a station-
ary process, where the average of the two-time correlation
function 〈I (t)I (t ′)〉 depends only on the difference of times

FIG. 1. (Color online) Scheme to measure electronic quadrature
components of each photocurrent signal. The photocurrent is mixed
with two electronic references in quadrature.

τ = t ′ − t , the spectral power S(�) is related to the correlation
of signal Fourier components. In our case, relating the spectral
power to the photocurrent operators results in

S(�) = 〈Î�Î−�〉 and,
(11)

〈Î�Î�′ 〉 = 0, for �′ �= −�,

where 〈· · ·〉 represents a quantum average. In particular, for
a stationary process it imposes the condition 〈Î�Î�〉 = 0. In
what follows, when referring to a stationary quantum state
we mean a quantum state producing a photocurrent satisfying
Eq. (11).

The spectral noise power is proportional to the total energy
present in the photocurrent quantum fluctuations. It retrieves
a mixture of quadrature operator moments lacking phase
information [23,24]. When evaluated from the electronic
quadrature components, it reads

S(�) = 1
2

〈
Î 2

cos

〉 + 1
2

〈
Î 2

sin

〉
. (12)

Thus, the photocurrent noise power does not correspond to the
second-order moment of a bona fide mode operator in general
[23]. However, it can be interpreted as a pure quadrature
moment given certain assumptions about the quantum state, as
discussed in Sec. V.

On the other hand, in principle, we could gain more infor-
mation about the quantum state by checking the stationarity of
the photocurrent. In case it is stationary, it follows that

〈Î�Î�〉 = 0 ⇒
{

�2Îcos − �2Îsin = 0,

〈ÎcosÎsin〉 = 0.
(13)

Stationarity is equivalent to perfect symmetry between the
statistics of electronic quadrature components and lack of
correlation between them. We use this result many times
throughout the paper.

The scenario above considers only the general procedure
of using a bright LO to amplify the contribution of quantum
modes of interest in the photocurrent quantum fluctuations.
In order to achieve further insights, we must investigate the
precise technique used to measure the field. The discussion
presented here provides the fundamentals of the following
analysis. We demonstrate next the incompleteness of HD and
how it can be overcome with the use of optical cavities for RD.

III. SPECTRAL HOMODYNE DETECTION

Homodyne detection was the first technique to provide
direct access to quadrature field observables and still remains
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FIG. 2. (Color online) Schematic view of the balanced HD.
Prior to detection, LO field in state |αω0 〉 is added to the quantum
field modes of interest with a controlled phase ϕ, using a 50:50
beam splitter. Information about the quantum field is retrieved after
subtraction of the photocurrents.

the most widely used measurement technique in the CV
domain [25,26]. Balanced HD is the usual realization of HD
in the laboratory [27–29] (see Fig. 2). The field modes to
characterize are mixed on a 50:50 beam splitter with the LO.
Quantum measurement is obtained by the difference between
photocurrents recorded on a pair of photodiodes placed on the
two output ports of the beam splitter. This scheme has the
technical advantage of automatically canceling LO noise in
detection. Nonunity measurement efficiency can be taken into
account by considering an ideal detector with a beam splitter
in the path prior to detection [22,30].

In order to measure the quantum state of spectral field
modes (sideband modes), we perform the spectral analysis
of the photocurrent quantum fluctuations. In this case, the
technique is essentially described by the ideas presented in
last section, and the treatment leading to the measurement
operators of Eq. (10) can be directly applied. The spectral
operator of spectral HD is

ÎHD
� (ϕ) = e−iϕ âu + eiϕâ

†
l . (14)

Quantum state reconstruction follows from controlling the LO
phase ϕ to reveal different quadrature directions in the phase
space of field modes. The phase can be mastered and easily
varied at will [31].

The electronic quadrature components of the spectral
photocurrent represent each a pure single-mode measurement.
The quadrature operators can be associated with the symmetric
(S) and antisymmetric (A) combinations of sidebands as

Îcos(ϕ) = cos ϕ p̂s + sin ϕ q̂s ≡ X̂ϕ
s ,

(15)
Îsin(ϕ) = cos ϕ q̂a − sin ϕ p̂a ≡ X̂

ϕ+ π
2

a ,

where the quadrature observables,

p̂s(a) = p̂u ± p̂	√
2

and q̂s(a) = q̂u ± q̂	√
2

, (16)

represent the natural modes of the HD detection scheme, and
X̂

ϕ

s(a) are corresponding generalized quadrature observables
of these new modes. In the modal basis of upper and lower
sidebands, HD performs a Bell-type measurement.

Equation (15) also shows that, although spectral HD is,
in principle, able to provide two-mode operator moments, it
cannot achieve complete quantum state reconstruction. The

reason for that is the fact that modes S and A cannot be
probed independently, since their measurement orientations in
phase space are fixed with respect to one another by a single
parameter ϕ [13].

A. Spectral noise power and stationarity

As previously discussed, the spectral noise power consists,
in general, of a mixture of modal operator moments [23,24].
Using the measurement operators of Eq. (15) in Eq. (12), we
find

SHD(ϕ) = 1
2�2X̂ϕ

s + 1
2�2X̂

ϕ+ π
2

a . (17)

In a more general perspective, the noise power is a direct
experimental realization of the Duan et al. entanglement
criterion applied to sideband modes [32,33], pointing at the
well-known fact that spectral quantum noise squeezing (i.e.,
SHD < 1) witnesses two-mode sideband entanglement rather
than a single-mode squeezed state of the field [17,18,34].

Quantum noise corresponds to a pure quadrature moment
only for a particular set of quantum states for which �2X̂

ϕ
s =

�2X̂
ϕ+ π

2
a . Whether the quantum state satisfies this property

can, in principle, be independently verified by checking the
stationarity of photocurrent fluctuations in the experiment
[Eq. (13)]. In HD, this condition implies

〈ÎHD
� ÎHD

� 〉 = 0 ⇒
{

�2X̂
ϕ
s = �2X̂

ϕ+ π
2

a ,〈
X̂

ϕ
s X̂

ϕ+ π
2

a

〉 = 0.
(18)

We are then led to the result that in the special case of a
stationary quantum state [Eq. (13)], and only in this case, the
noise power indeed corresponds to the variance of a proper
field mode quadrature. In this case, it can be interpreted either
as a single-mode measurement of the symmetric (S) or the
antisymmetric (A) combination of sideband modes, since their
quantum states are essentially the same, differing only by a
local rotation, as seen below.

B. Covariance matrix for stationary quantum states

Observation of stationary photocurrent in spectral HD re-
veals certain aspects of the quantum state, imposing constraints
on the covariance matrix. To satisfy stationarity [Eq. (18)], the
covariance matrix written in theS/Amodal basis must assume
the highly symmetric form [23]

V(s/a) =

⎛
⎜⎜⎜⎝

α γ δ 0

γ β 0 δ

δ 0 β −γ

0 δ −γ α

⎞
⎟⎟⎟⎠

≡
(

Vs C(s/a)

(C(s/a))T Va

)
, (19)

where V(s/a) = 〈[ �Xs, �Xa] · [ �Xs, �Xa]T 〉, with quadrature oper-
ators arranged in a vector as �Xs(a) = (p̂s(a) q̂s(a))T . We have
defined the single-mode covariance matrices of S and A
modes as Vs(a) = 〈 �Xs(a) · �XT

s(a)〉. The matrix C(s/a) = 〈 �Xs ·
�XT

a 〉 contains two-mode correlations.
Stationarity hence implies that modesS andA present equal

quantum statistics (or, equivalently, possess the same local
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quantum state) apart from a local rotation of quadratures, i.e.,
�2p̂s = �2q̂a ≡ α, �2q̂s = �2p̂a ≡ β for the variances and
C(p̂s q̂s) = −C(p̂aq̂a) ≡ γ for the correlations. In other words,
Vs is equal to Va after a rotation of π/2 on the quadrature
phase space of one of the modes. Nevertheless, two-mode
correlations can still be present in stationary states, through
the correlation moment C(p̂s p̂a) = C(q̂s q̂a) ≡ δ.

Consequences of stationarity can also be analyzed in the
modal basis of lower and upper sidebands, in which case
the covariance matrix is obtained from Eq. (19) by a simple
rotation of quadratures [Eq. (16)]. It assumes the general
symmetric form

V(	/u) =

⎛
⎜⎜⎜⎝

α′ 0 γ ′ δ′

0 α′ δ′ −γ ′

γ ′ δ′ β ′ 0

δ′ −γ ′ 0 β ′

⎞
⎟⎟⎟⎠

≡
(

V	 C(	/u)

(C(	/u))T Vu

)
, (20)

where V	 and Vu are the covariance matrices of individual
sideband modes, defined as Vu = 〈 �Xu · �XT

u 〉, with �Xu =
(p̂u q̂u)T (analogously for mode 	), and C(	/u) = 〈 �X	 · �XT

u 〉
contains sideband correlations.

In the basis of sideband modes, quantum state sym-
metry manifests itself by the identities �2p̂	 = �2q̂	 =
α′, �2p̂u = �2q̂u = β ′, C(p̂	p̂u) = −C(q̂	q̂u) = γ ′, and
C(p̂	q̂u) = C(q̂	p̂u) = δ′.

Thus, stationarity implies that sideband modes are in ther-
mal states, but may show correlations, leading to entanglement
depending on the amount of shared information. In the specific
case of a two-mode pure state, sideband modes producing a
stationary photocurrent are either in the vacuum state or form
an entangled EPR-like state.

C. Incomplete quantum state reconstruction of stationary
quantum states

We show now that the two pieces of information ideally
available experimentally, namely the spectral noise power
and the stationarity of the photocurrent, are not sufficient to
determine the most general spectral two-mode quantum state
in HD.

Indeed, using Eq. (15), the spectral noise power of HD
[Eq. (17)] combines the moments of two modes as

SHD(ϕ) = cos2 ϕ
�2p̂s + �2q̂a

2
+ sin2 ϕ

�2p̂a + �2q̂s

2

+ sin 2ϕ
C(p̂s q̂s) − C(p̂aq̂a)

2
. (21)

Owing to stationarity [Eq. (18)], the noise power simplifies to
a single-mode expression. Written in terms of the elements of
the covariance matrix [Eq. (19)], it reads as

SHD(ϕ) = cos2ϕ α + sin2ϕ β + sin 2ϕ γ, (22)

whereby it becomes clear that the moment δ = C(p̂s p̂a) =
C(q̂s q̂a) of a general stationary quantum state is missing.
The physical significance of the missing moment is better
realized in the modal basis of sidebands, where 2δ = α′ −

β ′ = (�2p̂u + �2q̂u) − (�2p̂	 + �2q̂	): It yields the energy
imbalance between sideband modes [13].

The intrinsic insensitivity of HD to modal energy imbalance
should be expected from the symmetry with which it treats
sideband modes, making it impossible to detect sideband
asymmetry. Upper and lower sidebands are completely in-
distinguishable from one another in the spectral noise power
of HD, as seen in Eq. (15). The same equation on the S/A
modal basis shows that X̂

ϕ
a and X̂

ϕ′
s cannot be measured

independently of one another, since HD imposes ϕ′ = ϕ +
π/2. This fact hinders the complete reconstruction of S/A
two-mode correlation, represented by δ.

Since δ is inaccessible by HD, it must be implicitly assumed
as null in most quantum state reconstruction experiments (δ =
0 ⇒ α′ = β ′). This assumption of a priori knowledge about
the quantum state is in many cases reasonable, e.g., in squeezed
state generation by spontaneous parametric down-conversion
(SPDC) [7], due to the broadband nature of emission. Never-
theless, in more complex systems, this term could be important
to reveal entanglement among sidebands [13]. In particular,
resonant phenomena such as atomic emission should lead to
strong energy asymmetry among longitudinal modes.

Hence, spectral HD applied to a single beam is an
intrinsically single-mode measurement technique, limited to
the reconstruction of an effective single mode for stationary
quantum states. This mode can be either regarded as the
symmetric or antisymmetric combination of sideband modes,
since they bear the same quantum state in the case of stationary
photocurrent signals. For this measurement to be complete, in
addition to the stationarity condition, one has to assume the
S/A modes to be uncorrelated or, equivalently, that sideband
modes carry the same mean energy. We now see that a complete
measurement, free from such a limiting assumption, is possible
with the RD technique.

IV. RESONATOR DETECTION

We now examine the measurement operator associated with
RD [14,35–38]. The technique is based on the dispersive
property of an optical resonator close to resonance, bringing
an intrinsic asymmetry in the way sideband modes are
manipulated before photodetection. It has been employed to
measure quantum noise squeezing in the pioneering work by
Shelby et al. [15].

Resonator detection is realized by measuring the intensity
fluctuation of a field after its reflection off an optical resonator,
as schematized in Fig. 3. Field modes in a narrow band
close to resonance with the optical cavity are phase shifted
and attenuated just prior to detection. Similarly to HD, RD
needs an intense LO field to amplify sideband mode quantum
fluctuations in detection. A convenient displacement operator
can be applied prior to the cavity operation if the state to be
measured is “dim.”

An optical resonator with high finesse transforms the field
annihilation operators according to [35,38]

âω −→ r(�ω) âω + t(�ω) b̂ω, (23)

where r(�ω) and t(�ω) =
√

1 − r2(�ω) are, respectively,
resonator reflection and transmission frequency responses. A
vacuum mode in transmission, described by the annihilation
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FIG. 3. (Color online) Schematic view of RD. The state of
interest and the carrier mode are reflected off an optical resonator
prior to photodetection. Frequency-dependent losses and phase
shifts, controlled by resonator detuning �, allow quantum state
reconstruction.

operator b̂ω, substitutes the missing fraction of reflected
modes, a feature which proves essential to the power of the
technique regarding quantum state reconstruction.

Reflection induces frequency-dependent phase shift and
loss, as functions of the detuning �ω = (ω − ωc)/γ between
longitudinal mode frequency ω and resonator frequency ωc (γ
is the resonator bandwidth). Close to one given resonance, its
explicit form is

r(�ω) = −
√

d + 2i�ω

1 − 2i�ω

, (24)

where d, the impedance matching parameter, is the fraction of
reflected light at exact resonance (d = |r(0)|2). It depends on
the ratio between input mirror coupling and resonator losses. In
the extreme cases, an ideal lossless resonator has d = 1 (input
beam is totally reflected), while d = 0 indicates a so-called
“impedance matched resonator” (the spectral mode reflected
at exact resonance is completely substituted by a transmitted
mode in vacuum state). The LO mode, in particular, undergoes
the transformation

α −→ r(�) α, (25)

where � = (ω0 − ωc)/γ is the detuning between carrier and
resonator frequency. We consider the initial carrier phase to be
zero; i.e., α = α∗ without loss of generality. The detuning �

is the experimentally controllable parameter of RD.
In RD, the general photocurrent operator [Eq. (8)] is

modified to include not only a dephasing of LO mode
[Eq. (25)], as in HD, but also a unitary transformation acting
on the annihilation and creation operators of quantum modes
nearly resonant with the optical cavity [Eq. (23)]. Substituting
the operators and carrier amplitude of Eqs. (23) and (25) in
Eq. (8), the spectral operator of RD reads as

Ĵ�(�) = R∗
�(�) âu + R−�(�) â

†
	

+ T ∗
�(�) b̂u + T−�(�) b̂

†
	, (26)

where the �-dependent coefficients are

R�(�) = 1√
2

r(�)

|r(�)| r∗(� + �/γ ),

(27)

T�(�) = 1√
2

r(�)

|r(�)| t∗(� + �/γ ).

The operator of Eq. (26) represents in a concise notation
the two Hermitian measurement operators for the electronic

quadrature components of the photocurrent Ĵcos and Ĵsin,
together with vacuum terms due to depletion the sidebands
undergo when resonant (Ĵvac), by the expression Ĵ� = (Ĵcos +
iĴsin)/

√
2 + Ĵvac. Disregarding vacuum terms for the moment,

the Hermitian measurement operators are

Ĵcos(�) = x+p̂u + y+q̂u + x−p̂	 − y−q̂	,
(28)

Ĵsin(�) = y−p̂u + x−q̂u − y+p̂	 + x+q̂	,

where x± and y± are real functions of � defined as

x+ + iy+ = (R� + R∗
−�)/2 ≡ g+,

(29)
x− + iy− = i(R� − R∗

−�)/2 ≡ g−.

We note that [Ĵcos,Ĵsin] = 0, since they represent independent
quantum observables.

Contrarily to the case of HD, the electronic quadrature
measurement operators Ĵcos and Ĵsin of RD undergo changes of
modal basis depending on �, revealing the inherent two-mode
character of the technique.

A. Spectral noise power and complete state reconstruction
of stationary quantum states

The photocurrent spectral noise power of RD is obtained
from Eqs. (12) and (28), yielding

SRD = 〈Ĵ�Ĵ−�〉 = 1
2�2Ĵcos + 1

2�2Ĵsin + �2Ĵvac, (30)

where �2Ĵvac is the vacuum noise contribution.
Stationarity of electronic quadrature components in RD

results in the same considerations of Sec. III A and hence
imposes for the covariance matrix the forms of Eqs. (19)
and (20). Explicitly writing Eq. (30) in terms of moments
of quadrature observables with the aid of Eq. (28), we find
the spectral quantum noise of RD in terms of elements of the
covariance matrix [Eq. (19)] as

SRD(�) = cα α + cβ β + cγ γ + cδδ + cv, (31)

where cα = |g+|2, cβ = |g−|2, cγ + icδ = 2g∗
+g−, and cv =

1 − cα − cβ are functions of �. This expression shows that
the spectral noise power of RD reveals all four second-order
moments in the covariance matrix described in Eq. (19) needed
to determine any stationary two-mode Gaussian quantum
state. Figure 4 confirms that each term of Eq. (31) has a
distinct dependence on resonator detuning �, allowing one
to distinguish the contribution of each individual quadrature
moment in the spectral quantum noise [13].

The sensitivity of SRD to each operator moment depends on
two experimental parameters: First, the analysis frequency �,
which must be larger than

√
2γ to allow better access to phase

quadrature moments [38]; second, the impedance matching
parameter d [Eq. (24)].

In particular, the sensitivity to the “hidden moment” δ,
as determined by the coefficient cδ , is maximum for d =
0. At exact resonance with one sideband, the impedance
matched resonator maximizes the response asymmetry to its
longitudinal counterpart. By substituting one sideband by a
field mode in vacuum state, the resonator separates sidebands
spatially [18].

On the other extreme, an ideal lossless resonator (d = 1)
acts as a simple phase shifter, simply dephasing LO with
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FIG. 4. (Color online) Coefficients of Eq. (31) as functions of �.
Resonator parameters are d = 0.9 and �/γ = 5.

respect to sidebands as in HD. In this limit, RD provides a
HD-like measurement and hence becomes insensitive to the
hidden moment δ. It is then possible to write cα ≡ cos2 ϕ,
cβ ≡ sin2 ϕ, cδ = 0, and cγ = 2 sin ϕ, where the phase shift
ϕ is a function of detuning � [38]. In other words, Eq. (31)
reduces exactly to Eq. (22), showing that the essential feature
that distinguishes HD and RD is the way sideband modes
contribute to quantum noise. In RD, resonator detuning varies
not only the phase of spectral modes with respect to LO, but
also the relative amount of modal contribution to quantum
noise. Hence, the absolute values of coefficients in Eq. (31)
play a crucial role in achieving complete state reconstruction.

V. PHASE-MIXING REGIME

Until this point, we have treated the electronic photocurrent
sine and cosine components as the measurement operators
associated with HD and RD detection schemes. We have
established the distinction between these techniques regarding
their capacity to reconstruct stationary Gaussian quantum
states, in particular, pointing to the limitations of HD to
determine some classes of two-mode quantum states.

Although these photocurrent components are, in principle,
retrievable by measurement, they require a common phase
reference between the optical LO and the electronic local
oscillator (eLO) used to extract the desired photocurrent
Fourier component [30,39]. However, in a typical experimental
situation, the optical LO shows relatively fast phase diffusion
[40]. If the laser linewidth is not narrow enough to allow a
complete characterization of the state before phase diffusion
becomes important, or if it is not phase locked to the electronic
oscillator, the measurement operator will vary between indi-
vidual quantum measurements, introducing mixedness in the
photocurrent moments.

We can analyze this case with a simple model. If we
consider a linear combination of cosine and sine electronic
quadrature components, in the form

Îθ = cos θ Îcos + sin θ Îsin, (32)

we may conceive that the relative phase θ between LO and
eLO remains constant during a single quantum measurement
but varies during the collection of quantum statistics.

In this case, moments of photocurrent fluctuations are
obtained by θ averages of moments of Îθ . Regarding second-
order moments, the variance of any measured photocurrent
component becomes a mixture of variances of cosine and sine
components, since

�2Îθ = 1

2π

∫
dθ ′ 〈Îθ+θ ′ Îθ+θ ′ 〉

= 1

2
�2Îcos + 1

2
�2Îsin, ∀ θ. (33)

Furthermore, correlation between in quadrature photocurrent
components of a single beam is always zero, since

CÎθ Îθ+π/2
= 1

2π

∫
dθ ′〈Îθ+θ ′ Îθ+ π

2 +θ ′ 〉

= 〈ÎcosÎsin − ÎsinÎcos〉 = 0,∀ θ, (34)

where we have used [Îcos ,Îsin] = 0, independently of the
quantum state.

The conditions above, implied by phase mixing and valid
for both HD and RD (substituting Îθ ↔ Ĵθ ), are summarized
as

�2Îθ = �2Îθ+ π
2
, CÎθ Îθ+ π

2
= 0. (35)

Hence, in the context of phase mixing, any measured θ

photocurrent component should present the same statistics and
be uncorrelated; i.e., all information available must lie in any
single and arbitrary photocurrent component.

As a matter of fact, the properties imposed by Eq. (35) on
the measured photocurrent coincide with the conditions for
stationarity, according to Eq. (13). Thus, in the phase-mixing
scenario, the photocurrent is always stationary regardless of
the quantum state of light. In this scenario, the conditions of
Eq. (13) cannot be applied to infer elements of the covariance
matrix and bring it to the form of Eq. (19), since stationarity
could be just a consequence of phase mixing, and not a property
of the quantum state. The spectral noise power then stands as
the only experimentally meaningful signal available.

In order to obtain more information about the field modes,
one needs to recover properties of the quantum state subjacent
to phase mixing. For instance, by determining whether the sine
and cosine electronic quadrature components are stationary
themselves. It turns out that higher order moments of the
measured photocurrent yield the desired information in the
case of Gaussian states [41]. In our measurements, we are thus
able to establish stationarity of any Gaussian quantum state
by indirect means despite phase mixing. In the following, we
treat only stationary quantum states.

VI. GENERALIZATION TO MORE BEAMS

We now consider the problem of determining the Gaussian
quantum state of any number of beams. Joint measurements
are necessary to reconstruct the collective multimode quantum
state in this case. For Gaussian states, second-order moments
suffice to describe the global system, so that only pairwise cor-
relations determine the multimode state. Hence, the collective
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quantum state of any number of beams is determined by
reconstructing the state of every possible pair independently.

We treat here the fundamental building block of multimode
measurement by explicitly providing the generalization of pre-
vious sections to two beams, i.e., four optical modes distributed
as two longitudinal sideband modes per beam. For the sake of
concreteness, and to facilitate the comparison with measured
quantities in Sec. VIII, we consider in this section the pho-
tocurrent moments as measured for stationary quantum states.

Given the primacy of symmetric (S) and antisymmetric (A)
modes in the measurement of quantum noise of a single beam
[Eq. (17)], we write here the four-mode covariance matrix
for two beams in this modal basis as V(12)

(s/a) = 〈( �X(12)
s , �X(12)

a ) ·
( �X(12)

s , �X(12)
a )T 〉, where the vector �X(12)

s = (p̂(1)
s q̂(1)

s p̂(2)
s q̂(2)

s )
involves the symmetric combination of sideband modes
respective to modes of beams (1) and (2). Vectors for the
antisymmetric modes are defined analogously, as �X(12)

a =
(p̂(1)

a q̂(1)
a p̂(2)

a q̂(2)
a ). With this arrangement, the covariance

matrix assumes the form

V(12)
(s/a) =

(
V(12)

s C(12)
(s/a)(

C(12)
(s/a)

)T
V(12)

a

)
, (36)

where V(12)
s (V(12)

a ) collects only symmetric (antisymmetric)
moments of beams (1) and (2), and C(12)

(s/a) refers to correlations
among S modes on one beam and A modes on the other.

For stationary quantum states, as shown in Sec. III B, the
two-beam covariance matrix V(12)

s of symmetric modes is
equal to its antisymmetric counterpart V(12)

a up to a local basis
rotation, and it assumes the explicit form

V(12)
s =

⎛
⎜⎜⎜⎝

α(1) γ (1) μ ξ

γ (1) β(1) ζ ν

μ ζ α(2) γ (2)

ξ ν γ (2) β(2)

⎞
⎟⎟⎟⎠

=
(

V(1)
s C(12)

s

C(21)
s V(2)

s

)
. (37)

The covariance matrix V(12)
s is composed of three distinct

2 × 2 blocks. The diagonal blocks are covariance matrices
of individual modes S (j ), identified in Eq. (19), and the off-
diagonal block stands for the cross correlations between the
symmetric modes of the beams. The two-mode covariance
matrix V(12)

a of antisymmetric modes has a similar structure,
up to a local phase rotation.

In order to determine the complete four-mode quantum
state, we are left to consider the correlation matrix C(12)

(s/a) [off-
diagonal matrix of Eq. (36)], which assumes for stationary
quantum states the explicit form

C(12)
(s/a) =

⎛
⎜⎜⎜⎝

δ(1) 0 κ −η

0 δ(1) τ −λ

−λ η δ(2) 0

−τ κ 0 δ(2)

⎞
⎟⎟⎟⎠ . (38)

Two 2 × 2 blocks in the diagonal consist of single-beam
operator moments that are hidden to HD, as seen previ-
ously, consisting of same beam S (j )/A(j ) correlation. The
off-diagonal matrix refers to correlations between S (j )/A(j ′)

modes (j �= j ′). Conversion to the sideband modal basis is
straightforward, obtained in the same manner as changing
modal basis between Eqs. (19) and (20), by employing the
modal basis transformation of Eq. (16).

Finally, we point out that to extend quantum state recon-
struction to all longitudinal modes, one would have to scan
LO frequency to cover a bandwidth of interest and record
the quantum noise over a wide range of analysis frequencies.
The resulting data would give complete information about
the longitudinal multimode quantum state of a single beam,
enabling the reconstruction of the two-time correlation matrix
V (τ ) via Fourier transform.

A. Two-beam photocurrent correlations in the
phase-mixing regime

To reconstruct the complete four-mode stationary quantum
state of two beams one needs to determine, in addition to the
two-mode longitudinal covariance matrix of individual beams,
the eight two-beam correlation moments of Eqs. (37) and (38).

To achieve that, four experimental signals are available in
the measurement of two beams, consisting of two photocurrent
components for each beam (Fig. 5).

We denote electronic quadrature photocurrent components
of each beam by the measurement operators Î

(j )
cos and Î

(j )
sin in

HD and Ĵ
(j )
cos and Ĵ

(j )
sin in RD. Variances of these operators

result in individual noise spectra for both beams, denoted as
S

(j )
HD [Eq. (22)] and S

(j )
RD [Eq. (31)]. They provide information

about the covariance matrices of V(j )
s and Va

(j ) in each
technique. Sideband energy imbalance δ(j ) of each beam
can be measured only with RD. The remaining moments,
involving cross correlations of electronic quadratures issued
from photocurrents generated by different beams, are now
examined. Stationarity, in this case, assures that〈

Î (1)
cosÎ

(2)
cos

〉 = 〈
Î (1)

sin Î (2)
sin

〉
, (39)〈

Î (1)
sin Î (2)

cos

〉 = −〈
Î (1)

cosÎ
(2)
sin

〉
. (40)

These terms are related to the cross correlation of spectral
photocurrent components by

Re
{〈

Î
(1)
� Î

(2)
−�

〉} = 1
2

〈
Î (1)

cosÎ
(2)
cos

〉 + 1
2

〈
Î (1)

sin Î (2)
sin

〉
, (41)

Im
{〈

Î
(1)
� Î

(2)
−�

〉} = 1
2

〈
Î (1)

sin Î (2)
cos

〉 − 1
2

〈
Î (1)

cosÎ
(2)
sin

〉
. (42)

FIG. 5. (Color online) Scheme to measure electronic quadrature
components of two photocurrent signals produced by a pair of light
beams. Photocurrents are mixed with two electronic references in
quadrature.
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Two-beam photocurrent correlation is usually obtained
by considering electronic photocurrent components in phase
with one another, as given by Eq. (41). Direct substitution
of the photocurrent operators of HD [Eq. (15)] in Eq. (41)
shows that the real part of spectral photocurrent correlations,
Re{〈Î (1)

� Î
(2)
−�〉}, retrieves the two-beam correlation block C(12)

s

[Eq. (37)]. Explicitly, one has

Re
{〈

Î
(1)
� Î

(2)
−�

〉} = cos ϕ1 cos ϕ2 μ + sin ϕ1 sin ϕ2 ν

+ cos ϕ1 sin ϕ2 ξ + sin ϕ1 cos ϕ2 ζ, (43)

where ϕj are independently controllable phases of LOs. Thus,
in the usual experimental procedure, HD allows the complete
determination either of the symmetric or the antisymmetric
covariance matrix of two beams [Eq. (37)]. However, to access
complete four-mode information, one needs to determine in
addition the correlations between A and S modes of the two
beams [Eq. (38)]. For the case of a single beam, that is the point
where HD fails. As we now show, the same limitation does not
affect the quantum noise of two beams if a slight improvement
is applied to the usual experimental setup of spectral HD.

The correlations of two-beam S/A modal subspaces
appear in the photocurrent signal by correlating electronic
components in quadrature, i.e., as in Eq. (42). HD retrieves
for this experimental signal the expression

Im
{〈

Î
(1)
� Î

(2)
−�

〉} = cos ϕ1 sin ϕ2 κ + sin ϕ1 cos ϕ2 λ

+ sin ϕ1 sin ϕ2 τ + cos ϕ1 cos ϕ2 η, (44)

recovering all moments appearing in Eq. (38), except for the
single-beam hidden moment δ(j ).

The technique of HD is indeed sensitive to a broader set
of two-beam correlations if the real and imaginary parts of
〈Î (1)

� Î
(2)
−�〉 are measured together. That could be realized by

improving the usual experimental apparatus of spectral HD
with the addition of an eLO in quadrature with the usual
one (Fig. 1). Differently from the single-beam case, since
there are two independent optical LOs, it is possible to vary
independently the measured quadratures of S and A modes of
different beams.

In RD, using the photocurrent operators of Eq. (28), it
is straightforward to establish that the real and imaginary
parts of 〈Ĵ (1)

� Ĵ
(2)
−�〉 are individually sensitive to the totality

of two-beam correlation moments, although with differing
coefficients. Explicitly,

Re
{〈

Ĵ
(1)
� Ĵ

(2)
−�

〉} = cμ μ + cν ν + cκ κ + cλ λ

+ cξ ξ + cζ ζ + cη η + cτ τ, (45)

Im
{〈

Ĵ
(1)
� Ĵ

(2)
−�

〉} = cη μ + cτ ν + cξ κ + cζ λ

+ cκ ξ + cλ ζ + cμ η + cν τ, (46)

where cμ,cη,cν,cτ ,cξ ,cκ ,cζ ,cλ are real functions of detunings
�(j ) defined, with the help of Eq. (29), by 2g

∗(1)
+ g

(2)
+ =

cμ − icη, 2g
∗(1)
− g

(2)
− = cν − icτ , 2g

∗(1)
+ g

(2)
− = cξ − icκ , and

2g
∗(1)
− g

(2)
+ = cζ − icλ. We note that since cross correlations

involve two beams, no vacuum noise contributes to correlation
signals.

Another interesting point comes from the fact that
Re{〈Ĵ (1)

� Ĵ
(2)
−�〉} and Im{〈Ĵ (1)

� Ĵ
(2)
−�〉} are somewhat redundant,

since they depend on the same unknown moments. In reality,

apart from the fact that redundancy improves experimental
precision, these signals present varying sensitivity to different
moments. Hence, each signal is better suited to provide
information about a given set of moments.

VII. SEMICLASSICAL NOISE PICTURE AND THE
SPECTRAL MATRIX

The description presented in this section is centered on
the photocurrent and its understanding as a semiclassical
quantity. It directly connects the complex Fourier photocurrent
components with proper quadratures of field modes. When
treating the evolution equations of physical systems such
as the optical parametric oscillator, such description allows
the addition of vacuum fluctuations originated from the
field quantization to the linearized equations of nonlinear
intracavity processes in a semiclassical approach [42,43].

A single beam can be described in most experiments by
a relatively narrow bandwidth source around a central fre-
quency ω0, as stated in Eq. (4). Stationary physical processes
creating the beams will produce fields for which the two-time
correlation covariance matrix V (t,t + τ ) = 〈 �X(t) �X(t + τ )T 〉
is independent of time t . In this case, a spectral matrix S(�)
can be readily defined from the Fourier transform of V (τ ).

Borrowing methods from the semiclassical analysis of
quantum noise, and motivated by the fact that A and S
modes possess the same quantum statistics for stationary
quantum states (apart from a local rotation of phase space), we
employ a single-mode interpretation of photocurrent quantum
fluctuations by imposing on Eq. (8) the form

Î�(ϕ) = cos ϕ P̂� + sin ϕ Q̂�, (47)

where P̂� and Q̂� are respectively defined as the amplitude and
phase semiclassical “quadrature” operators. Using Eq. (8), it is
simple to recognize the relation between these new quadrature
operators and proper modal quadrature operators as

P̂� = 1√
2

(p̂s + iq̂a), Q̂� = 1√
2

(q̂s − ip̂a). (48)

These quadratures are “semiclassical” in the sense that their
counterparts, in terms of complex numbers, are an efficient
way to describe the generation, evolution, and detection of
Gaussian states of light producing stationary photocurrent.

Although non-Hermitian, those quadratures behave as
effective single-mode quadrature operators when it comes to
describe the spectral noise power and second-order moments
in general [37,44–46]. One just has to follow a semiclassical
prescription to correctly calculate quadrature noise power,
given by Eq. (11). The amplitude and quadrature noise spectra
then read as

SP (�) ≡ 〈P̂�P̂−�〉 = 1
2�2p̂s + 1

2�2q̂a, (49)

SQ(�) ≡ 〈Q̂�Q̂−�〉 = 1
2�2p̂a + 1

2�2q̂s , (50)

where their correspondences in terms of proper field mode
operators are also included.

In this case, it can be noted that SP (�) and SQ(�) respect
an effective uncertainty relation in the form SP (�)SQ(�) �
1, even though [P̂�,Q̂�] = 0. Thus, as far as second-order
moments are concerned, they behave as effective quadrature
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operators and can be effectively treated as such. Physically,
they are connected to a mixture of S/A modal quadratures
moments.

We define their correlation using the same prescription of
Eqs. (49) and (50), to obtain

CPQ(�) ≡ 1
2 〈P̂�Q̂−� + Q̂−�P̂�〉

= 1
2 {C(p̂s q̂s) − C(p̂aq̂a) + i[C(p̂s p̂a) + C(q̂s q̂a)]}.

(51)

The correlation is a complex number satisfying CPQ(�) =
C∗
PQ(−�). Its real part is connected with single-mode corre-

lations (i.e., the moments seen by HD), while its imaginary
part contains exclusive S/A correlations (moments hidden to
HD).

These second-order moments can be gathered in the
complex spectral matrix, a noise representation akin to the
covariance matrix, but defined in terms of photocurrent noise
as a classical quantity instead of quantum moments of field
observables. The spectral matrix is defined as S = 〈 �Z� · �ZT

−�〉,
where �Z = (P̂� Q̂�)T . Explicitly, it reads as the following
2 × 2 Hermitian matrix:

S =
(

SP (�) CPQ(�)

C∗
PQ(�) SQ(�)

)
. (52)

Using the expressions for semiclassical quadrature noise
powers in terms of proper field mode operators [Eqs. (49)
and (51)], it is straightforward to show that the real part of
the spectral matrix can be written in terms of the covariance
matrices for the symmetric and antisymmetric combinations
of sidebands presented in Eq. (19), as

Re{S} = 1
2 Vs + 1

2 V′
a, (53)

where V′
a is the covariance matrix of mode A including

a local rotation of quadratures by π/2 (p̂′
a = q̂a and q̂ ′

a =
−p̂a). Hence, the real part of the spectral matrix does not
correspond in general to a covariance matrix, but rather to the
mixture of individual covariance matrices of symmetric and
antisymmetric modes [23]. Nevertheless, it can be understood
as a proper single-mode covariance matrix in case Vs = V′

a

[24]. As shown in Ref. [41], such condition is fulfilled if the
measured photocurrent is Gaussian and the quantum state is
assumed to be Gaussian.

The imaginary part of the spectral matrix has a simple inter-
pretation, representing exclusive two-mode S/A correlations.
It appears in the antidiagonal of S and is given by the imaginary
part of CPQ(�). For stationary states written in terms of entries
of Eq. (19), S assumes the general form [23]

S =
(

α γ + iδ

γ − iδ β

)
. (54)

This matrix cannot be reconciled with the single-mode
approximation in the most general case (i.e., quantum states
possessing spectral energy imbalance δ �= 0). This brings
strong limitations to the interpretation of S as a covariance
matrix. Only in the case where the generated state is such that
the imaginary part is zero can quantum noise then be formally
interpreted as a single-mode effect, and the spectral matrix
satisfies all the properties of a covariance matrix. It can then be
used to formally investigate the quantum state, e.g., in testing

for entanglement in an effective single-mode approximation
[32,33]. When this condition is not satisfied [13], the complex
spectral matrix cannot be fully reconstructed with HD and one
must resort to RD to go beyond the single-mode approximation
and necessarily refer to two-modes to describe quantum noise.

A. Extension to multiple beams

The analysis of two-beam photocurrent correlations in the
stationary regime are also simplified by the semiclassical
quadratures. We define the two-beam spectral matrix as S(12) =
〈 �Z(12)

� · ( �Z(12)
−� )T 〉, where �Z(12) = (P̂ (1)

� Q̂(1)
� P̂ (2)

� Q̂(2)
� )T . The

explicit form

S(12) =
(

S(1) CS
(12)

CS
(21) S(2)

)
(55)

makes it direct to relate the spectral matrix with the covariance
matrix of Eq. (36).

Once more, the real part of the two-beam spectral matrix
contains all information usually obtained with HD. It cor-
responds to the covariance matrix of modes S (j ), which for
stationary states fulfill V(12)

s = V′
a

(12) = Re{S(12)} and C(12)
s =

Re{CS
(12)}.

Furthermore, correlations between modes S (j ) on one side
and A(j ′) on the other appear in the imaginary part of CS

(12).
Analogously to the case of a single beam, these moments are
connected on the level of the four-mode covariance matrix
with C(12)

(s/a′) [Eq. (38)]. The relation between these matrices is

V(s/a′) =
(

Re{S(12)} −Im{S(12)}
Im{S(12)} Re{S(12)}

)
. (56)

If certain constraints on the quantum state of optical
sidebands are assumed or established (namely, stationarity
and lack of longitudinal two-mode correlations), the spectral
matrix contains the same information as the covariance matrix
of modes S or A. In this case, we may either use the explicit
four-mode covariance matrix V(s/a′) of two beams or adopt the
simplified two-mode form S as the effective description of the
quantum state, halving the system dimension. For such states,
the spectral matrix corresponds to a partial trace of either mode
S or mode A in favor of the other.

VIII. EXPERIMENTAL RESULTS

The measurement techniques described in the preceding
sections can be applied to the reconstruction of the covariance
matrix of many optical systems. We concentrate here on the
case of modes S or A of pump, signal, and idler beams
interacting in an above-threshold optical parametric oscillator
(OPO).

When pumped above the oscillation threshold, the OPO
produces three entangled beams of light [47,48] by means
of stimulated parametric down-conversion (PDC). Detection
of quantum noise with photocurrent demodulation with an
eLO implies exploring an effective six-mode quantum state.
Hidden correlations stem from asymmetries among sidebands
of different beams, as shown in previous sections, and
could appear due to the richer above-threshold dynamics of
energy exchange among six sideband modes. While below the
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FIG. 6. (Color online) Setup for the reconstruction of the OPO
beams’ covariance matrix. PBS, polarizing beam splitter; BS, 50:50
beam splitter; HS, harmonic separator; IC, input coupler; OC, output
coupler (OPO cavity); FR, Faraday rotator.

threshold only sideband modes of twins (signal and idler) are
expected to be populated by photon pairs, above the threshold
pump beam sidebands are populated by up-conversion, and
thereby influence twin beam sidebands [49].

Our light source was described in previous publications
[48,50], generating three beams at the pump (532 nm) and
nondegenerate signal and idler modes (around 1064 nm) (see
Fig. 6). The OPO consists of a type II phase-matched KTP
(potassium titanyl phosphate, KTiOPO4) crystal in a linear
resonator, with free spectral range of about 5 GHz and cavity
finesses of 16, 135, and 115 for pump, signal, and idler modes,
respectively. It is pumped by a doubled Nd:YAG laser and has
a threshold power of 67 mW. In the present measurements,
the pump power was fixed at 110 mW. We measure the output
quantum states of pump, signal, and idler beams using RD
with three dedicated resonators. They have nearly the same
resonance bandwidth of 12(1) MHz and similar values of the
impedance matching parameter d ≈ 0.85. This configuration
enables the detection of single-beam hidden moments although
it is not optimized.

After reflection by its respective resonator, each beam is
measured with a pair of amplified photodetectors (30-MHz
response bandwidth) to allow shot noise calibration by subtrac-
tion of their photocurrent signals. Quantum properties of each
beam are measured by summing each pair of photocurrents.
We utilize the improved technique of Fig. 1 to correlate
photocurrent electronic quadratures. Photocurrent signals are
independently mixed with two electronic references (eLO) at
21 MHz dephased by π/2, corresponding to measurement
operators Î

(j )
θ and Î

(j )
θ+ π

2
(where j = 0,1,2, respectively, de-

notes pump, signal, and idler beams) of Eq. (32). The result
is filtered with 600-kHz low-pass bandwidth with the aid of
a computer A/D converter card, representing a single quan-
tum measurement (corresponding to a measurement time of
1.67 μs). During state reconstruction, resonators are scanned
nearly synchronously across resonance with their respective
beams, and data points are registered for 450 different values of
detuning. Each quantum measurement is repeated 1000 times,

over which state averages are calculated and operator moments
determined. Given the laser bandwidth of 1 kHz, the time
required for the acquisition of quantum statistics is larger than
the typical time scale of phase diffusion. Our measurements
are thus in the phase-mixing regime. The entire procedure
yields 450 000 quantum measurements in 750 ms per beam,
i.e., 450 operator moments per scan as functions of detuning.

A. Single-beam hidden correlations

We start our experimental analysis by considering the
quantum states of individual beams. We verify that measured
photocurrents obey the conditions of Eq. (35), consistent
with the phase-mixing regime, as expected. Gaussianity of
the photocurrent fluctuations indicate the stationarity of the
quantum state within experimental precision [41].

Single-beam quadrature operator moments are measured
from the spectral noise power S

(j )
HD of individual photocurrents

as each optical resonator is scanned across resonance. Data are
presented in Fig. 7. Three data sets refer to pump, signal, and
idler photocurrent spectral noise powers. We use RD to inves-
tigate the hidden moment δ(j ) representing energy imbalance
between sidebands of a single beam. Solid lines represent fits
of Eq. (31) to the quantum noise of each beam, while dashed
lines provide fits of the same equation imposing δ(j ) = 0.

Comparison of solid and dashed lines shows that δ(j )

does not influence data fits within experimental precision
and is hence compatible with zero for all individual beams.
According to the theoretical model describing the OPO,
energy imbalance between sidebands of a single beam is not
expected, since the bandwidth of the PDC process is many
orders of magnitude larger than their frequency difference,
and the OPO is operated on triple resonance. Measurements
hence agree with theoretical expectations. In this case, RD
provides experimental support to the effective single-mode

FIG. 7. (Color online) Pump (green squares), signal (red open
circles), and idler (blue solid circles) photocurrent noise power S

(j )
HD

as functions of respective resonator detuning �j . Lines represent
theoretical fits of Eq. (31) either considering (solid) or disregarding
(dashed) the respective hidden moment δ(j ).
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FIG. 8. (Color online) Quantum correlations between photocur-
rent components of different beams as functions of resonator
detuning. Correlations in phase C(12)

p (red open circles) and in
quadrature C(12)

q (blue solid circles) are depicted. Theoretical fits of
Eqs. (45) and (46) to the data either consider (solid lines) or disregard
(dashed lines) hidden four-mode correlations.

approximation in the treatment of individual quantum states
of pump, signal, and idler beams.

B. Two-beam hidden correlations

We now investigate all possible two-beam correlations that
would be missed by the usual HD. Data of pump-signal
correlations in phase C

(01)
p,RD ≡ Re{〈Î (0)

� Î
(1)
−�〉} and in quadrature

C
(01)
q,RD ≡ Im{〈Î (0)

� Î
(1)
−�〉} are presented in Fig. 8 with resonators

scanned in near synchrony. Theoretical fits of Eqs. (45) and
(46) determine the best correlation matrix of Eq. (38) to
fully account for all data sets together, i.e., C

(01)
p,RD, C

(01)
q,RD

and individual power spectra S
(0)
RD and S

(1)
RD. Coefficients

cμ,cη,cν,cτ ,cξ ,cκ ,cζ ,cλ are determined independently as func-
tions of �0 and �1 by monitoring LO power reflected across
resonances.

Two types of data fit are calculated to help isolate the
influence of hidden moments. Solid lines result from fits of the
most general stationary quantum state of Eq. (38). Dashed lines
impose hidden moments as null, i.e., κ = τ = η = λ = 0.

As seen in Fig. 8, the photocurrent correlation in phase
C

(01)
p,RD is not very sensitive to hidden quadrature operator

moments, since its features are well accounted for by both
solid and dashed-line curves: Hidden moments do not need
to be invoked to explain C

(01)
p,RD. The contribution of these

hidden moments to Eq. (45) is thus small in comparison to
the contributions of other moments for our particular quantum
state, given the nearly synchronous scanning of analysis
cavities. The scenario is inverted in the data for correlations
in quadrature C

(01)
q,RD. Now large deviations can be observed by

comparing the two types of theoretical fits, rendering hidden
moments essential to explain the measurements.

Similar results are shown in Fig. 9 concerning pump-idler
beams. In this case, the photocurrent correlation in phase
C

(02)
p,RD presents better sensitivity to the presence of hidden

FIG. 9. (Color online) Same as Fig. 8, for pump and idler modes.

moments, although not sufficient to produce quantitative
results. Their existence is once more better established by
the correlations in quadrature C

(02)
q,RD, for which stronger

deviations between theoretical fits of solid and dashed lines
can be seen. Owing to experimental asymmetries between
twin-beam beams, such as imbalanced signal-idler losses
inside the OPO resonator, pump-idler beams show stronger
hidden correlations than pump-signal beams.

Concluding the complete characterization of the OPO, we
proceed with the analysis of signal and idler correlations
in the same way in Fig. 10, where the same conclusions
apply. Given the Gaussianity tests we have applied to the
OPO [41], we are left with the single assumption of sta-
tionarity of the process to claim that we have performed a
complete measurement of the six-mode covariance matrix
of the OPO, at the analysis frequency of 21 MHz. A
complete description of the hexapartite mode produced in this
system, including all the terms that are unreachable by the
usual homodyning detection is thus possible. The measured
spectral matrix, with entries normalized to the standard
quantum level (SQL), has the following real and imaginary

FIG. 10. (Color online) Same as Fig. 8, for pump and idler modes.
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parts:

Re{S(012)} = V(012)
s

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.30 −0.07 −0.47 0.00 −0.48 −0.03

1.07 0.12 0.16 0.14 0.08

1.52 −0.02 1.00 0.05

2.87 0.05 −0.91

1.52 −0.05

3.64

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (57)

Im{S(012)} = C(012)
(s/a′)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −0.04 0.10 0.04 0.07 0.14

0 −0.03 −0.03 −0.02 0.38

0 0.34 0.05 −0.08

0 0.04 0.54

0 0.17

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (58)

In most cases the δ term (bold in the matrix) is small
compared to the other terms of the matrix. It is compatible
with zero for signal and idler modes given the uncertainty of
0.2 SQL for these terms (this is a relatively large value for the
uncertainty, which can be improved by optimizing the analysis
cavities for the detection of the δ term). Considering the narrow
bandwidth of the OPO cavity, a nonzero value can originate
from small deviations from the exact resonance condition
during the OPO operation. Such terms are inaccessible with the
HD technique, but can be observed with RD. Although their
effect is nearly negligible in our data (as observed in Fig. 7), it
is important to experimentally determine them as such, in order
to achieve complete reconstruction of an unknown quantum
state [13].

Cross correlations between symmetric and antisymmetric
modes of different fields are clearly present beyond the overall
uncertainty, which is below 0.05 SQL for these terms. We
observe larger values for the λ correlations between the
phase quadratures. This is not surprising, given other sources
of phase noise such as phonons [50]. Nonzero values are
also observed for κ and η, with τ compatible with zero
[see Eq. (38)]. The measurement of these parameters could
also be obtained from HD, although only by employing
the improved quadrature demodulation scheme of Fig. 1, as
in our current setup. The nonzero values demonstrate that
information about the quantum state exists in all six modes
and that by reducing the system dimension to an effective
three-mode description quantum state information is lost,
inducing an artificial loss of purity and possibly of quantum
properties such as entanglement.

IX. CONCLUDING REMARKS

The quantum noise of light beams is an inherent multimode
effect, even for a single beam. Each spectral component of the
measured quantum noise has information on the collective
quantum state of two optical field modes.

Spectral noise power as measured with HD provides
insufficient information to reconstruct the two-mode Gaussian
quantum state of a single beam without prior knowledge. We
have shown, on the other hand, that the alternative technique

of RD allows the contributions of individual sideband modes
to be identified in the spectrum of quantum noise by providing
modal dependent loss and phase shifts by means of manip-
ulation of an optical resonance. By retrieving quantum state
information beyond the single-mode approximation of HD, the
technique allows the single-mode approximation to be verified
or discarded in the experiment. The technique enables the full
reconstruction of unknown collective quantum states of the
field in the ideal case of phase locked detection, also in the
case of multiple beams of light.

In most experiments, phase diffusion between the optical
and eLOs leads to an inherent mixture of measurement
operators. In this case, even additional experimental evidence,
such as stationarity of the photocurrent electronic quadrature
components, does not provide the amount of information
needed to characterize the complete state, imposing an
effective single-mode approximation to the description of
quantum noise. Although such an approximation may be valid
in most experiments, it remains a tacit assumption and must be
recognized as such. Even in this situation, we have shown that
RD is able to recover more information on the quantum state
than HD, namely the energy asymmetry between sidebands
[13].

Both techniques are very similar regarding measurement
efficiency. Apart from photodetector efficiency, which is a
common limitation for both techniques, HD efficiency is
mainly limited by the spatial overlap between LO mode and
the dim quantum modes of interest. In a similar manner, RD
finds its limitation in efficiency mainly caused by imperfect
mode coupling with the resonator. In both cases, very
high efficiencies (>99%) are routinely attained in experi-
ments and do not represent a distinguishing factor between
techniques.

We successfully applied RD to the complete reconstruction
of the quantum state, assumed to be Gaussian, of sideband
modes produced by an OPO operating above the threshold.
We are now beginning to explore higher orders of multipartite
entanglement [49], with implications for quantum information
protocols using the CVs of spectral modes.

Pure quadrature operator measurements are nevertheless
attainable if optical and electronic references are phase locked
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to each other. The mixedness of operators used in present
experiments implementing quantum information protocols in
CVs with spectral modes, such as quantum teleportation
and entanglement swapping [2,51,52], implies the need for
assumptions regarding the quantum states. Pure operator
measurements, together with the RD technique analyzed here,
pave the way for the implementation of unconditional quan-
tum information protocols on completely unknown quantum
states.
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