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Resonant scattering of a photon by an electron in the moderately-strong-pulsed laser field
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Resonant scattering of a photon by an electron in the presence of the moderately strong field of the
circularly polarized pulsed laser wave is studied theoretically. The approximation used when a laser pulse
duration is significantly greater than the characteristic oscillation time. The probability of such process for the
moderately strong field I ∼ 1017–1018 W cm−2 is calculated. It is demonstrated that the resonant probability can
be significantly greater than the probability of the Compton effect in the absence of the external field. The results
may be experimentally verified, for example, in the FAIR project.
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I. INTRODUCTION

High-power pulsed lasers whose field cannot be simulated
using a model of the plane monochromatic wave are used in
modern experiments on the verification of quantum electrody-
namics (QED) effects [1–6]. Thus, theoretical works widely
employ the model of the pulsed electromagnetic field that
represents the four-potential with an envelope function (see,
for example, works studying elementary quantum processes
in the presence of the pulsed field [7–27] and tunneling and
multiphoton ionization of atoms and ions in the presence of a
strong laser field [28–30]):

A (ϕ) = g (φ) A0 (ϕ) . (1)

Here A0 (ϕ) is the four-potential of a plane electromagnetic
wave; g (φ) is the envelope function of the potential that
satisfies the conditions g (0) = 1 and g → 0 at |φ| � 1 (|ϕ| �
ϕ0); ϕ0 = ωtimp, timp is the pulse duration in the laboratory
frame of reference; ϕ = (kr) = ωt − k · r is the wave phase
which is responsible for the fast oscillations; r = (t,r) is the
four-radius vector; and the variable φ = ϕ/ϕ0 determines a
slow change of the pulse shape.

The following condition is satisfied in the range of the
optical frequency and picosecond pulse durations: ϕ0 =
ωtimp � 1. Thus, the spectral density of the four-potential
represents a sharp peak with an amplitude in order with ϕ0

and a width in order with ϕ−1
0 . Therefore, it is expedient to

consider ω as the frequency of the quasimonochromatic field.
The relativistic system of units, where h̄ = c = 1 will be used
throughout this paper.

The intensity of the process is governed by the classical
relativistic-invariant parameter [31]

η = |e| a/m, (2)

where e and m are the electron charge and mass, a = F/ω,
and F and ω are the field strength at the center of a pulse
and the wave frequency in the laboratory coordinates. Note
that the parameter is introduced when the elementary quantum
processes in the presence of the electromagnetic wave field are
studied (see, for example, [1–3,7–54]).
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The resonant behavior of processes of the second order with
respect to the fine-structure constant is one of the fundamental
problems of QED in the presence of an external field. The
study of this problem was started in the mid-1960s (see,
for example, reviews [15,32,33], monographs [14,34–36], and
works [37–50]). Oleinik [37,39] first considered resonances in
the Compton effect in the field of a plane monochromatic wave
but this analysis had rather fragmentary form. In Refs. [44,45]
we considered the resonance of the direct and exchange
diagrams in the relativistic case for the field of the low-
intensity plane monochromatic electromagnetic wave, η2 � 1.
In Ref. [17] we considered the resonance of the direct diagram
in the relativistic case for the field of the low-intensity plane
pulsed electromagnetic wave:

η2 � ϕ−1
0 � 1. (3)

In this work, we study the scattering of a photon by an
electron in the presence of the moderately-strong-pulsed laser
field when the following condition is satisfied:

ϕ−1
0 � η2 � 10/ϕ0, η2 � 1. (4)

The condition (4) corresponds to the field intensity I ∼ 1017–
1018 W cm−2 in the range of the optical frequency. In this
case the laser pulse duration is significantly greater than the
characteristic oscillation time.

II. RESONANT AMPLITUDE

Let us choose the four-potential of a pulsed plane wave (1)
propagating along the z axis in the form

A0 (ϕ) = a(ex cos ϕ + δey sin ϕ), (5)

where k = (ω,k) and ex,y = (0,ex,y) are the four-momentum
of the external-field photon and four-polarization vectors such
that k2 = 0, e2

x,y = −1, and (ex,yk) = 0; δ = ±1 corresponds
to the circularly polarized wave.

For concretization of the theoretical computing, we choose
the wave envelope function in the Gaussian form:

g (φ) = exp(−4φ2). (6)

The factor 4 in the exponent of formula (6) matches the pulse
duration timp, which corresponds to a decrease of the potential
amplitude in e times.
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FIG. 1. Feynman diagram for the Compton effect in the field of
the pulsed light wave for the direct and exchange parts.

The scattering amplitude of a photon with the four-
momentum ki = (ωi,ki) by an electron with the four-
momentum pi = (Ei,pi) in the external field (5) in the zero
approximation with respect to the parameter ϕ−1

0 is given by
the following expression (see Fig. 1):

Sf i = −ie2
∫

d4rd4r ′�̄pf
(r)γ μG(r,r ′)γ ν�pi

(r ′)

× [A∗
μ(kf r)Aν(kir

′) + A∗
ν(kf r ′)Aμ(kir)], (7)

where pf = (Ef ,pf ) and kf = (ωf ,kf ) are the four-momenta
of the final electron and photon, γ ν (ν = 0,1,2,3) are Dirac
matrices, Aμ(kir

′) = √
2π/ωi eμ exp[−i(kir

′)] is the wave
function of a photon, eμ is the four-polarization vector of
a photon, �pi

(r) is the wave function of an electron in the
rapidly oscillating field [55], and G(r,r ′) is Green’s function
of the electron in the field (5) [31].

The amplitude can be represented as the sum of partial
components:

Sf i =
∞∑

l,l′=−∞
S

(l,l′)
f i , (8)

where l, l′ are integers. Each partial process corresponds
to the process of interaction of the initial electron with
four-momentum pi with |l′| photons of the wave (l′ < 0
corresponds to the absorption from the wave, l′ > 0 corre-
sponds to the emission to the wave). An electron is transferred
to the intermediate state with the four-momentum ql′ with
absorption of the initial photon for the direct diagram or with
the four-momentum fl′ with emission of the final photon for
the exchange diagram. After interaction of the intermediate
electron with |l + l′| wave photons (l + l′ > 0 corresponds to
absorption from the wave, l + l′ < 0 corresponds to emission
to the wave) the electron undergoes a transition to the final state
with four-momentum pf after emission of the final photon for
the direct diagram or after absorbing of the initial photon for
the exchange diagram.

In the expansion of the amplitude in the small parameter η,
up to the terms ∼η2, the terms proportional to the zero power
of η determine the amplitude of the Compton effect in the
absence of the external field [56]. The terms proportional to the
first power of the parameter η, i.e., l′ = 0, l = 1, and l′ = 0,
l = −1, determine the corrections due to participation of a
single wave photon in the process, and the terms proportional
to the second power of the parameter η2 correspond to the
involvement of two photons: l′ = 0, l = ±2; l′ = 1, l = 0;
l′ = 1, l = 2; l′ = −1, l = 0; l′ = −1, l = −2; l′ = 2, l = 2;

l′ = −2, l = 2. Note that the expansion of the amplitude in the
parameter η was conducted in all terms except for the terms
containing the product ϕ0η

2, because they are not small in the
considered case (4).

It was shown that the character of partial processes that
corresponds to the various numbers of photons absorbed from
the wave or emitted to the wave in the pulsed laser field is
described by the parameter β [17,48–50]:

β = q2
l′ − m2

4(kql′ )
ϕ0, (9)

where ql′ is given by

ql′ = pi + ki − l′k. (10)

Processes corresponding to various numbers l, l′ were classi-
fied as follows:

(i) Resonant processes, if the virtual particle may fall within
the mass shell. The following condition is satisfied:

β (ql′ ) � 1. (11)

(ii) Nonresonant processes, for which we have

β (ql′ ) � 1. (12)

Previously it was shown that the resonant probability of
the Compton effect in the low-intensity light wave can be
several orders of magnitude greater than the corresponding
probability without the external field [17]. We can compare
the contribution of different partial processes for resonant and
nonresonant cases to the total probability using an order-of-
magnitude estimation:

W(l−l′,l′) ∼
{

Dϕ2
0η

2(|l−l′|+|l′|), β � 1;

Dϕ2
0η

2(|l−l′|+|l′|)β−2, β � 1;
(13)

where the function D is rather cumbersome and weakly
depends on the parameter η. Note that the resonances are also
possible in the next expansion terms. However, according to
Eq. (13), the probability of these processes has the additional
factor η2 � 1. Thus, the resonant probability will be much
less in the next order of the expansion.

The resonant character of the process can be observed for
both direct and exchange amplitudes. The kinematic range
that corresponds to the resonance of the exchange diagram
is extremely narrow, and the contribution of this resonance
to the total probability can be neglected. In this case, the total
probability of the Compton effect in the field of the moderately-
strong-pulsed wave is determined by the resonance of the direct
amplitude only. Hence, the width related to the pulse character
of the field dominates and the radiative broadening can be
neglected.

The expression for the resonant amplitude of the direct
diagram is written as

S(d)
res = B

2(kq1)
δ(2)(pi,⊥ + ki,⊥ − pf,⊥ − kf,⊥)

× δ(pi,− + ki,− − pf,− − kf,−)I (β,a) e′∗νeμ

× ūpf
[M−1,ν(pf ,q1) (q̂1 + m) M1,μ(q1,pi)]upi

, (14)
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Mν
±1(pf ,q) = ±y0(pf ,q)

2
e∓ixγ ν + m

2(kq)
[ε̂(∓)kν − k̂ε(∓)ν]

+ m

4

[
1

(kpf )
− 1

(kq)

]
ε̂(∓)k̂γ ν, (15)

ε(±) = ex ± iδey,

y0(pf ,q) = mη

√
−g2(pf ,q), tan x = δ(gey)

(gex)
, (16)

g(pf ,q) = pf

(kpf )
− q

(kq)
. (17)

Here hats above the notation stand for scalar products (ε̂ =
ενγ

ν , k̂ = kνγ
ν) and the function Il′ (β,a) is given by

I (β,a) = 2(kql′ )

(
4

π2

) ∫ ∞

−∞
f2(a − ζl′)

× 1

q2
l′ − m2 + 2(kql′ )ζl′ + i0

f1(ζl′)dζl′ , (18)

f1(ζl′) =
∫ ∞

−∞
g (φ) exp

{
iϕ0

[
ζl′φ

−
√

2π

8
η2 u

ũ1
erf(2

√
2φ)

]}
dφ, (19)

f2(a − ζl′ ) =
∫ ∞

−∞
g (φ) exp

{
iϕ0

[
(a − ζl′)φ

+
√

2π

8
η2 u′

ũ1
erf(2

√
2φ)

]}
dφ, (20)

where

ζl′ = qz − ql′,z

ω
= −1 − l′∗, a = −l∗, (21)

u = (kki)

(kpi)
, u′ = (kkf )

(kpf )
, ũ1 = 2(kq)

m2
, (22)

0 � u � ũ1, 0 � u′ � ũ1. (23)

Here l′∗, l∗ are invariant parameters determined from the
equations

pi + ki = q + l′∗k, pi + ki + l∗k = pf + kf . (24)

Under such a condition as Eq. (3), in Ref. [17] the terms
proportional to η2 in formulas (19) and (20) were disregarded.
As a result, these formulas can be easily integrated:

f1(ζ1) = 1

2

√
π exp

(
−ϕ2

0ζ
2
1

16

)
, (25)

f2(a − ζ1) = 1

2

√
π exp

(
− ϕ2

0 (a − ζ1)2

16

)
. (26)

The aim of this work is to study the behavior of the resonant
profile in the moderately strong field (4). The lower end of
this range corresponds to the applicability of expressions (25)
and (26), and the upper corresponds to the applicability of the
stationary phase method when integrals are calculated. In the
range (4) the terms ∼η2ϕ0 cannot be neglected in the argument
of the exponential function in expressions (19) and (20).

We use the expansion of the exponent in the Fourier series
in the interval −� � φ � �, where � = √

ln (ϕ0) /4 (the
contribution of values |φ| � � ∼ ϕ−1

0 may be neglected), that
is,

exp

(
iϕ0

√
2π

8
η2 u

ũ1
erf(2

√
2φ)

)
=

∞∑
n1=−∞

an1 exp

(
in1φ

π

�

)
,

(27)

where expansion coefficients in the Fourier series are real:

an1 = 1

�

∫ �

0
cos

[
ϕ0

(
n1λφ −

√
2π

8
η2 u

ũ1
erf(2

√
2φ)

)]
dφ,

(28)

λ = π

�ϕ0
. (29)

The range of permissible values n1 is

0 � n1 � η2 u

λũ1
. (30)

Similarly,

bn2 = 1

�

∫ �

0
cos

[
ϕ0

(
n2λφ +

√
2π

8
η2 u′

ũ1
erf(2

√
2φ)

)]
dφ,

(31)

−η2 u′

λũ1
� n2 � 0. (32)

The summands in the expansion of the amplitude for which

a2
n1

� ϕ−1
0 , b2

n2
� ϕ−1

0 (33)

should be left only with an accuracy of the precision of
calculations. Then functions f1, f2 take the form

f1(ζ1) =
√

π

2

n1 max∑
n1=n1 min

an1 exp

(
−ϕ2

0(ζ1 + n1λ)2

16

)
, (34)

f1(a − ζ1) =
√

π

2

n2 max∑
n2=n2 min

bn2 exp

(
−ϕ2

0(a − ζ1 + n2λ)2

16

)
.

(35)

Substitute the expressions for f1, f2 into (18) to get

I (β,a) =
n2 max∑

n2=n2 min

n1 max∑
n1=n1 min

bn2an1I
(n2,n1)(βn1 ,a

′), (36)

where

I (n1,n2)(βn1 ,a
′) = π

4(kql′ )
exp

(
−ϕ2

0a
2 + 8

(
βn1 − ϕ0a

′/4
)2

16

)

×
[

erfi

(√
2

(
βn1 − a′ϕ0/4

)
2

)
+ i

]
, (37)

a′ = a + (n1 + n2) λ, βn1 = β − ϕ0

2
n1λ. (38)

The characteristic ranges of variation of parameters a and β

are

0 � β � ϕ0η
2 u

ũ1
, 2η2 u′

ũ1
� a � 2η2 u

ũ1
. (39)
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The relationship between the resonant parameter β [17] and
the frequency of the initial photon ωi is

β

ϕ0
= 1

2

1 − ũ

[1 + ũ(ωi/ωi,res − 1)]

(
ωi

ωi,res
− 1

)
, (40)

ωi = ωi,res

(
1 + β

2ϕ0

1

[1 − (1 + 2β/ϕ0) ũ]

)
. (41)

Here the invariant parameter ũ and frequency ωi,res that
corresponds to condition β = 0 are given by

ũ = (kki)

(piki)
, 0 � ũ � u1, u1 = 2(kpi)

m2
, (42)

ωi,res = mu1

2

Ei

m
+

√(
Ei

m

)2 + u1 − 1 cos θ̃�

1 − u1 + [ (
Ei

m

)2 + u1 − 1
]

sin2 θ̃�

, (43)

θ̃� = ∠(�,ni), � = pi − k, (44)

where ni is the unit vector along the propagation direction of
the incident photon. Note that the resonance of the amplitude
that corresponds to the direct diagram is possible only under
the condition ũ < 1. Thus, angles θ̃� are bounded at the values
u1 > 1:

α0 < θ̃� < π, α0 = arccos
Ei − ω

|�| . (45)

The dispersion of resonant frequency in accordance with
estimation (39) is

�ωi ≈ ωi,resη
2 u

2ũ1(1 − ũ)
∼ ωi,resη

2 � ωi,res, (46)

where we disregard the scenarios that are close to the condition
ũ = 1 (θ̃� = α0), since the corresponding frequency of the
resonant photon must be infinitely large, which is practically
impossible.

Therefore the area of the resonant frequency increases
with the intensity of the pulsed wave, in contrast to the case
considered in Ref. [17], where �ωi ∼ ϕ−1

0 ωi,res. Hence, the
condition for the observation of the resonance of the direct
diagram is written as(

ωi

ωi,res
− 1

)
∼ η2 � 1. (47)

Figure 2 shows the resonant range of the initial photon
frequency ωi in the units of the initial electron energy as a
function of the parameter α = (Ei/m)θ̃� for the parameters
of the E-144 experiment at Stanford Linear Accelerator Center
(SLAC) [1]. The chosen geometry of the process is that the
momenta of the initial photon and electron and the wave
propagation direction belong to the same plane.

Thus, the resonance of the direct diagram is always
accompanied by the resonance of the exchange diagram via an
electron intermediate state and via a positron state in the range

u1 > 1, 1/u1 < ũ < 1 (48)

(see Fig. 2). Note that the resonance of the exchange diagram
occurs if the final photon is emitted in the strictly determined
narrow range of directions (see [17]), and the resonance of the
direct diagram occurs for all of the emission angles of the final
photon. Thus, the resonance of the only direct diagram can be
observed in the experiment if the angles that correspond to the

FIG. 2. The resonant frequency range of the initial photon in the
units of the initial electron energy.

resonance of the exchange diagram are forbidden. Moreover,
if the condition for the resonance of the direct diagram is
satisfied, the contribution of the exchange diagram to the total
probability is proportional to ∼ϕ−1

0 � 1 and, hence, can be
neglected.

III. RESONANT PROBABILITY FOR THE
DIRECT DIAGRAM

In the resonant approximation, q2 = m2 is put everywhere
except the function I (β,a′), where q is the four-momentum of
the intermediate electron: q ≡ q1 [Eq. (10)]. After averaging
over initial and summation over final polarizations of particles,
the differential probability is represented as

dW res
f i = e4m4η4

π3ωiEiV (kq)2

ϕ4
0

ω4
H |I1(β,l∗)|2

× δ(2)(pf,⊥ − [pi,⊥ + ki,⊥ − ki,⊥])

× δ(pf,− − [pi,− + ki,− − kf,−])
d3kf d2pf,⊥dpf,−

ωf pf,−
.

(49)

Here, we used the notation

H = f (u′,ũ1)f (u,ũ1) − g(u′,ũ1)g(u,ũ1) − u′ũ′

(1 + ũ′)

+
(

u + u′

ũ1
− 2

uu′

ũ2
1

)
uu′

(1 + u) (1 + u′)
, (50)

f (u,ũ1) = 2 + u2

1 + u
− 4

u

ũ1

(
1 − u

ũ1

)
, (51)

g(u,u1) = (2 + u)(u1 − 2u)u

2u1(1 + u)
. (52)

Under resonant conditions, invariant parameters u, u′
[Eq. (22)] and the parameter ũ1 are given by

u = (kki)

(qki)
= ũ

1 − ũ
, u′ = (kkf )

(qkf )
, ũ1 = u1

1 − ũ
. (53)

Note that 0 � u � ũ1 and 0 � u′ � ũ1, and the parameter ũ1

takes on the resonant value.
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The integration in expression (49) to dp′⊥dp′
− is relatively

simple owing to the presence of three δ functions:

d3kf d2pf,⊥dpf,−
pf,−ωf

δ(2)(pf,⊥ − [pi,⊥ki,⊥ − kf,⊥])

× δ(pf,− − [pi,−ki,− − kf,−]) → ωf

pf,−
dωf d�′, (54)

Here, d�′ = sin θ ′dθ ′dψ ′ is the element of solid angle in
which the final photon is emitted and θ ′ = ∠(k,kf ) and ψ ′ =
∠(ex,kf,⊥) are the azimuthal and polar angles of the scattered
photon. Note also that the last two terms in expression (50) are
eliminated after the integration of expression (49) with respect
to angle ψ ′:∫ 2π

0
Hdψ ′ = 2π [f (u′,ũ1)f (u,ũ1) − g(u′,ũ1)g(u,ũ1)]. (55)

We change the integration with respect to the frequency of the
resulting photon ωf by the integration with respect to variable
l∗:

ωf − ω
(0)
f = l∗

(kpi) + (kki) − (
kk

(0)
f

)
([pi + ki]nf ) − l∗(knf )

≈ l∗
(kpf )

(pki)
ω

(0)
f ⇒ dωf ≈ ω

(0)
f

(kpf )

(pki)
dl∗. (56)

Thus, the differential probability of the process is represented
as

W res
f i ≈ 2e4η4m2

πωiEiV ũ1
ϕ2

0 timp

×
(∫ ũ1

0
Pres

f (u′,ũ1)f (u,ũ1) − g(u′,ũ1)g(u,ũ1)

(1 + u′)2
du′

)
.

(57)

Analytic integration in Eq. (57) is not feasible because the
function Pres (β) depends on the parameter u′ in contrast to the
region (3).

The behavior of the probability in the resonant area
(resonant profile) is determined by the function Pres (β) (see
Fig. 3):

Pres (β) = 1

2π

∫ ∞

−∞
|I (β,a)|2 da. (58)

Substituting expression (37) into this expression we obtain

Pres (β) =
n1max∑

n1=n1min

n2max∑
n2=n2min

a2
n1

b2
n2

1

2π

∫ ∞

−∞
|I (n1,n2)|2da

+ 2
n1max∑

n1=n1min

n2max∑
n2=n2min

∑
n′

1>n1,n
′
2>n2

an1an′
1
bn2bn′

2

×
[

1

2π

∫ ∞

−∞
Re(I (n1,n2))Re(I (n′

1,n
′
2))da

+ 1

2π

∫ ∞

−∞
Im(I (n1,n2))Im(I (n′

1,n
′
2)da)

]
. (59)
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FIG. 3. The dependence of the resonant profile Pres on the
resonant parameter β for u/ũ1 = 1/3 and u′/ũ1 = 2/3 in the intense
pulsed light field (ω = 2.35 eV, timp/T = √

2/2). Field intensity
in the pulse peak is I = 7 × 1016 (I), I = 1.6 × 1017 (II), I =
2 × 1017 (III), I = 2.8 × 1017 (IV), I = 4.4 × 1017 (V), and I =
6.3 × 1017(VI) W cm−2.

Figure 3 shows that increasing the field intensity involves
the appearance of new peaks. This is the result of the
interference of the contributions of the front and poste-
rior segments of the pulse. Also the resonant frequency
range of the initial photon increases with the intensity
increasing.

The ratio of the total resonant probability of the scattering
of a photon by an electron via the direct diagram (12) to the
total probability of the Compton effect in the absence of the
external field [56] is

Wres
f i

wCompt
≈ timp

T
R (u,ũ1,β) , (60)

R(ũ,u1,β) = 2η4ϕ2
0

π2

1

ũ1F (ũ1)

∫ ũ1

0
Pres(β)

× f (u′,ũ1)f (u,ũ1) − g(u′,ũ1)g(u,ũ1)

(1 + u′)2
du′,

(61)

where T is the observation time (T � timp), which is deter-
mined by the experimental conditions, and the function F (ũ1)
is given by

F (ũ1) =
(

1 − 4

ũ1
− 8

ũ2
1

)
ln(1 + ũ1)

+ 1

2
+ 8

ũ1
− 1

2 (1 + ũ1)2 . (62)

Figure 4 demonstrates the ratio of the resonant probability
of the scattering of a photon by an electron in the presence
of the moderately-strong-pulsed wave field to the probability
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FIG. 4. Ratio R [Eq. (61)] of the resonant probability of scattering
of a photon by an electron in the presence of the pulsed light field to
the probability of the Compton effect in the absence of the external
field vs parameters ũ and β at u1 = ũ for the field intensity at the
peak I = 4.4 × 1017 W cm−2.

of the Compton effect as a function of parameters ũ, β at
timp/T = 1 and I = 4.4 × 1017 W cm−2. One can see that

the resonant probability can be significantly greater than
the probability of the Compton effect in the absence of the
external field. For example, the probability ratio is R ∼ 104

under the conditions η = 0.25 and ũ � 1 in the range of the
optical frequency Ei/m � m/ω ∼ 105. This effect may be
experimentally verified in the framework of the international
project at the GSI Facility for Antiproton and Ion Research
(FAIR) [57].

IV. CONCLUSIONS

We draw the following conclusions based on the study
of scattering of a photon by an electron in the field of a
moderately-strong-pulsed optical wave under the conditions
in Eq. (4).

(i) The spread of the initial photon frequency for which
there is a resonance of the direct diagram in the moderately
strong field is wider than in the area given in Eq. (3) and studied
in Ref. [17] and increases with the pulsed wave intensity [see
Eq. (46)].

(ii) The resonant probability of the Compton effect in the
moderately strong field can be greater than the probability in
the absence of the external field by several orders of magnitude.
For example, the probability ratio is R ∼ 104 for the field
intensity at the peak of the pulse I = 4.4 × 1017 W cm−2 to the
case if the photon enters the narrow cone with the direction of
propagation of the wave in the range of the optical frequency
Ei/m � m/ω ∼ 105.
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