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Wigner phase-space distribution as a wave function
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We demonstrate that the Wigner function of a pure quantum state is a wave function in a specially tuned Dirac
bra-ket formalism and argue that the Wigner function is in fact a probability amplitude for the quantum particle
to be at a certain point of the classical phase space. Additionally, we establish that in the classical limit, the
Wigner function transforms into a classical Koopman—von Neumann wave function rather than into a classical
probability distribution. Since probability amplitude need not be positive, our findings provide an alternative

outlook on the Wigner function’s negativity.
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I. INTRODUCTION

In his seminal work [1], Wigner defined the combined
distribution of the quantum particle’s coordinate and momen-
tum in terms of the wave function. Since then, the Wigner
function has played a paramount role in the phase space
formulation of quantum mechanics [2—4], is a standard tool
for establishing the quantum-to-classical interface [2,5-7],
and has a broad range of applications in optics and signal
processing [8,9] as well as quantum computing [10-16].
Techniques for the experimental measurement of the Wigner
function are also developed [7,17—-19]. Despite its ubiquity, the
Wigner function is haunted by the obscure feature of possibly
being negative. Wigner [20] demonstrated that his function is
the only one satisfying a reasonable set of axioms for a joint
probability distribution. This feature of the Wigner function
has been a subject of numerous interpretations [13,21-23],
including the development of a mathematical framework for
handling negative probabilities [24,25]. The Wigner function’s
negativity was also associated with the exponential speedup in
quantum computation [14,16].

In this paper we provide insight into the negativity by
advocating the following interpretation: The Wigner func-
tion is a probability amplitude for a quantum particle to
be at a certain point of the classical phase space, i.e.,
the Wigner function is a wave function analogous to the
Koopman—von Neumann (KvN) wave function of a classical
particle.

The remainder of the paper is organized as follows: The
necessary background on the KvN classical mechanics and
operational dynamical modeling [26] is reviewed in Sec. I
The basic equations, on which our interpretation rests, are
derived in Secs. Il to V. A connection between these equations
and quantum mechanics in phase space is established in
Sec. VI. Conclusions are drawn in Sec. VIL.
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II. BACKGROUND

Around the time the Wigner distribution was conceived,
Koopman and von Neumann [27-30] (for modern develop-
ments and applications, see Refs. [30-44]) recast classical
mechanics in a form similar to quantum mechanics by
introducing classical complex valued wave functions and
representing associated physical observables by means of com-
muting self-adjoint operators. In particular, it was postulated
that the wave function |W(z)) of a classical particle obeys the
following equation of motion:
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Without loss of generality one-dimensional systems are con-
sidered throughout. Since the self-adjoint operators represent-
ing the classical observables of coordinate X and momentum p
commute, they share a common set of orthogonal eigenvectors
|p x) such that 1 = fdpdx |px){px|. In the KvN classical
mechanics, all observables are functions of £ and p. The
expectation value of an observable F = F(%, p) at time ¢ is
(U()|F|W(1)). The probability amplitude (p x|\W(¢)) for a
classical particle to be at point x with momentum p at time ¢
is found to satisfy
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This is the evolution equation for the classical wave function in
the xp representation, where £ = x,ix = —id/dx,p = p,and
A p = —10/dp in order to satisfy the commutation relations (2).
Utilizing the chain rule and Eq. (3), we obtain the well known
classical Liouville equation for the phase space probability
distribution p(x, p; 1) = |(p x| ¥ ()%,
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Newtonian trajectories emerge as characteristics of either
Eq. (3) or (4). Hence, the essential difference between KvN and
Liouville mechanics lies in weighting individual trajectories
(see Fig. 1): Arbitrary complex weights underlying the classi-
cal wave function |W) can be utilized in KvN mechanics (3),
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(a) Liouvillian mechanics vs (b) KvN mechanics

FIG. 1. (Color online) The conceptual difference between (a) Li-
ouville and (b) KvN classical mechanics. In the Liouville mechanics
[Eq. (4)], classical particles, moving along Newtonian trajectories, are
tagged by positive weights according to the probability distribution
p. In the KvN mechanics [Eq. (3)], classical particles, following the
same trajectories, are tagged by arbitrary real (or complex) weights
representing the KvN classical wave function |W).

whereas only positive weights having probabilistic meaning
are permitted in Liouville mechanics (4).

Note that the classical wave function and the classical
probability distribution satisfy the same dynamical equation,
which reflects the physical irrelevance of the phase of a
classical wave function.

In recent work [26], we put forth operational dynamical
modeling as a systematic theoretical framework for deducing
equations of motion from the evolution of average values.
First, starting from the Ehrenfest theorems [45], we obtained
the Schrodinger equation if the momentum and coordinate
operators obeyed the canonical commutation relation, and the
KvN equation (1) if the momentum and coordinate operators
commuted. Then, applying the same technique to the Ehrenfest
theorems,

d . N
md—(‘l’x(t)lqu%(l)> = (Ve pg |V (1)),

t
d (5)
E(‘I’K(t)lﬁql%(t» = (WD) = U'(R)IWe (1)),
with a generalization [%,,p,] =ik (0 <k <1) and
demanding a smooth classical limit x — O, we established
the existence of the uniquely defined operator H,. such that

. d A
lhal%(l)) = HgclWi (1)),
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where X, and p, represent the quantum coordinate and
momentum, respectively, £, p, ix, and A p are the same
classical operators as in Eq. (2), and « denotes the degree of
quantumness or commutativity: k — 1 corresponds to quan-
tum mechanics whereas k — 0 recovers classical mechanics,
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FIG. 2. (Color online) Schematic flow showing the derivation of

quantum mechanics, classical mechanics, and quantum mechanical

phase space representation within the operational dynamical model-
ing proposed in [26].

and lim,_, ﬂqc =hLl. See Fig. 2 for a pictorial summary of
these derivations presented in [26].

A crucial point for our current analysis is that this unified
wave function |W,) (¢ is dropped henceforth) in the xp
representation is proportional to the Wigner function W (see
Ref. [26]),

(px|We) = V2mhe W(x, p),
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III. DERIVATION OF MAIN RESULTS

Since £ and A » are commuting self-adjoint operators, the
following resolution of the identity is valid in the Hilbert phase
space Hy,, (i.e., a vector space with the scalar product { | )
of functions of two variables):

ly,, = [dxdn, |xh,)(xh,l, |XA,) € Hyp, o)
R|Xh,p) = x|xA,),  Aplxh,) = Aplxd,):
likewise,
{1y, = [drdp |hip)(depl,  |Acp) € Hyp, 10

ixp‘xp) = )‘xl)‘xp>'

A consequence of the commutators [£,0:]=1 13,5» pl=1iis

PlAxp) = plA:p),

(Aplxi,) = P~ 2.
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Let H, denote the Hilbert space of single particle wave
functions (i.e., a vector space with the scalar product ({ || ))
of functions of one variable), which differs from the Hilbert
phase space H,, defined above. We denote by £, and p,
([£4,Pq] = ihk) two pairs of operators: one acting on H,, [as
defined in Eq. (6)], the other acting on H,,,

)eq||xq>> :xq||xq>)a ﬁq||pq>> :pq||pq>>7

A~

Iy, = fdqulxq>)<(xq|| =/dpq||pq))((pqll,

eixq pq/(l‘uc)

((xXqllpg)) = —==,

x,)) € H,,
Drhi g0} € My

llpg)) € Hy. (11)

The density matrix g, a self-adjoint operator acting in the
space H,, obeys the Liouville-von Neuman equation
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Comparing Eqs. (8) and (13), we conclude that

(XA |We) = Vi ((xg = ullpellx, =v)).  (14)

Utilizing Egs. (9), (11), and (14), we obtain
(Ve | Vi) = /dXd)»p (WielxAp) (x2p W)
= h/c/dxdkp Pr(u,v)pe(u,v)
= fdqux; AT AP
- /dx; WOl = Te(s2);  (15)

hence,

(W |W,) = 1 & p} = pr. (16)

Setting P = [|dic)) ((Dell: ((Dcllee)) = 1, where [|¢)) €

H, is a one-particle wave function, and denoting ¢, (u) =

((xg = ullde)), de(v) = ((xg = Vllde)), 1= p+hKre/2,
and & = p —hkA, /2, we derive
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Finally, we have demonstrated that all expectation values for
the state ||¢,)) coincide with those for |, ),

(Wl GEDF(Pg)IWie) = (Dl IGEDF (Pg)llie)),  (18)

where G(£,) and F(p,) are arbitrary functions of the quantum
position and momentum, respectively.

Furthermore, in the context of the Maslov noncommutative
calculus [46—48] based on the most general operator ordering,
identity (18) can be generalized to

(W |[F(xg, ) Wie) = (Dl F(Rg PN @), (19)

valid for an arbitrary function F of two variables.

Equations (16) and (18) reveal that the Wigner distribution
of a pure state behaves like a wave function. As shown in Fig. 2,
the Wigner function’s dynamical equation (6) transforms into

the evolution equation for a classical KvN wave function (1).
Hence, in the classical limit, the Wigner function maps a
quantum wave function into a corresponding KvN classical
wave function rather than a classical phase space distribution.
Since the vectors |p x) are identical in both KvN and Wigner
representations, W(x,p) is proportional to the probability
amplitude that a quantum particle is located at a point (x, p)
of the classical phase space. Note it is important to distinguish
the classical (%, p) and quantum (£,, p,) phase spaces because
the notion of a phase space point arises naturally only
in the commutative classical variables (%, ). One may take
this distinction further and interpret the Wigner function as the
KvN wave function of a classical counterpart of the analogous
quantum system. Like any wave function, the Wigner function
need not be positive.
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IV. A GENERALIZATION TO MIXED STATES

Equation (17) offers a method to extend the developed
formalism to an arbitrary state. In particular, we find a fixed
vector |1) € H,, such that the following equation is valid for
all density matrices py,

(NGEDF (p)IVi) = Tr[G(R)F(Pg)hcl, Ve, (20)

where the trace on the right hand side is calculated over the
space H,. Let {||¢,))} be a basis in H, such that ¢,(u) =
((xq = ull@n)). Substituting pe =3, Pa.mll®n)) ((#m]| and
(1lxAdp) = Vi x(u,v) into Eq. (20) and following the steps
in Eq. (17), we obtain the equation for the unknown y

/X(u,v)ﬁ(v)dv = ¢, W), 2y

which has a unique solution x (u,v) = §(u — v); therefore,
3(Ap) / dx
N/TS Vhk
Note that according to Eq. (7), the vector |1) corresponds to
an identity density matrix.

Equation (20) is as a generalization of Eq. (18) to the case
when |W, ) represents the Wigner function of arbitrary mixed
states [see Eq. (7)].

Additionally, the ket vector |1) maps an observable
F(%4,pq) € L(Hyp), which is an element of the Hilbert space
L(Hp) of linear operators acting on H,,, into a vector from
H,p as

(xhp|1) = 1) = lxi, =0). (22)

F(&q,pI1) = [F(xq,pq)) €
F(%4.Pq) € L(Hxp).

Hop.
! (23)

In other words, each observable corresponds to a vector in
the Hilbert phase space, such that the observable’s average is
calculated as the scalar product (F (x4, pg)| W) (20).

V. A REALIZATION OF THE HILBERT PHASE SPACE 'H,,

Both H,, and H, have been considered so far as abstract
infinite-dimensional vector spaces with no direct connection
between them. Following Ref. [49], we shall construct a
realization of the Hilbert phase space H,, in terms of the
space of quantum-mechanical wave functions H,,.

A set of linear operators acting on H,, endowed with the
Hilbert-Schmidt inner product (A,f?) =Tr (ATB), forms the
Hilbert space L(H,). Throughout this section, we assume
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that A,B,C € L(H,). In particular, the set L(H,) includes
all density matrices and observables of the form F(%,, p,).
Define linear operators (i.e., superoperators) w(B) and

Q(C) acting in L(H,,) as [49]
o(B)A = (1/2){B,A}, QA =[C,Al, (24

where {E,A} = BA+ ABand a)(é)A denotes the result of the
action of the linear map o(B) on A as an element of L(H,); a
similar interpretation holds for the notation SZ(C‘ )A. One can
readily demonstrate that

[QB),QUC)A = 4[w(B),o(C))A = [[B
[o(B),C)IA = (1/2){A,[B,C]).

Hence, the Hilbert phase space H., can be equated to £(H,)
with the classical operators (2) realized as

16]’AA]7
(25)

e = Q(pg)/ (i),
hp = —Q(R,)/ (i),

X = w()eq)a

(26)

ﬁ = w(ﬁq),

where X,,p, € L(H,). Other realizations of H,, can be
similarly constructed.

Equations (20), (23), and (26) bridge the developed Hilbert

phase space formalism with the Mukunda approach to the
Wigner function [49].

VI. IMPLICATIONS FOR PHASE SPACE FORMULATION
OF QUANTUM MECHANICS

The Hilbert phase space is an alternative formulation of
quantum mechanics obtained as the merger of the wave
function and phase space representations via the operational
dynamical modeling (Fig. 2). While the connection with the
wave-function formulation has already been elucidated in
previous sections [in particular, see Egs. (16), (18), and (20)],
there is more to be considered [in addition to Eq. (7)] regarding
the connection with quantum mechanics in phase space [2—4].

The Moyal bracket {{,}}—a cornerstone of the
quantum mechanical phase space formalism—is defined
as [3,4,50,51]

(gl hk 0 8 _h/{ 8 8
1.8 ——f(xp)sln<28 9 2 opox )g( D)
27

for any smooth functions f(x, p) and g(x, p). Using the identi-

) — ——
ties exp(ad/dy) f(y) = f(y)exp(ad/dy) = f(y + a), we ex-
pand the Moyal bracket

ihk 8 8 ihk 0 0 ihk 0 0 ihik 0 0
{f.el} = —f(x P)|:e P( 2 axop 75£> - p(— 2 oxop + T$B_>:|g(x’p)
1 ihk 0 ihk 0 ihk 0 ihk 0
Zﬂ[f<x+73—”’ 2 ax> f("_Ta +7£)}g<x’f’>
1 hx . hk, . hk,. . Bk,
= e (le[f< - 7)»1),17 + 7%) - f(x + 7)»1»17 - Tkxﬂlg), (28)
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where g(x,p) = (px|g). Thus, we established the Moyal
bracket realization in the Hilbert phase space. The function
f of noncommutative variables in Eq. (28) should be defined
according to the Weyl calculus, as explained in Ref. [52]. The
operators :I:ix and +4 » (known as the Bopp operators [52,53])
are analogues of the left and right derivatives.

An elementary consequence of Eq. (28) is the equivalence
between Eq. (6) and Moyal’s equation of motion [3] (see also
Ref. [54]),

2
W _qmwy., Hep =L +vw. @)
at 2m
Here W is the Wigner function of an arbitrary (in general,
mixed) state.

VII. CONCLUSIONS

We demonstrate that the Wigner distribution of a pure
quantum state is a wave function [Egs. (6), (16), and (18)]

PHYSICAL REVIEW A 88, 052108 (2013)

in the introduced Hilbert phase space. The latter is an
alternative formulation of quantum mechanics obtained as
a meld of the wave function (the Dirac bra-ket) and phase
space (the Wigner function) representations as well as the
Koopman—von Neumann classical mechanics. The dynamical
equation (6) is valid for any nonpure state, providing a
starting point for an efficient numerical algorithm for the
Wigner function propagation [55]. In the current paper,
we have studied dynamics in the Cartesian coordinates. In
the next work, we will extend our formalism to rotational
dynamics.
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