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Convective and absolute PT -symmetry breaking in tight-binding lattices
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We investigate the onset of parity-time (PT ) symmetry breaking in non-Hermitian tight-binding lattices with
spatially-extended loss-gain regions in the presence of an advective term. Similarly to the instability properties
of hydrodynamic open flows, it is shown that PT symmetry breaking can be either absolute or convective.
In the former case, an initially localized wave packet shows a secular growth with time at any given spatial
position, whereas in the latter case the growth is observed in a reference frame moving at some drift velocity
while decay occurs at any fixed spatial position. In the convective unstable regime, PT symmetry is restored
when the spatial region of gain or loss in the lattice is limited (rather than extended). We consider specifically
a non-Hermitian extension of the Rice-Mele tight-binding lattice model, and show the existence of a transition
from absolute to convective symmetry breaking when the advective term is large enough. An extension of the
analysis to ac-dc driven lattices is also presented, and an optical implementation of the non-Hermitian Rice-Mele
model is suggested, which is based on light transport in an array of evanescently coupled optical waveguides
with a periodically bent axis and alternating regions of optical gain and loss.
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I. INTRODUCTION

Non-Hermitian Hamiltonian models are often encountered
in a wide class of quantum and classical systems [1]. They are
introduced, for example, to model open systems and dissipative
phenomena in quantum mechanics (see, for instance, [1–6]).
In optics, non-Hermitian models naturally arise owing to
the presence of optical gain and loss regions in dielectric
or metal-dielectric structures [7]. A special class of non-
Hermitian Hamiltonians is provided by complex potentials
having parity-time (PT ) symmetry [8,9], that is, invariance
under simultaneous parity transform (P: p̂ → −p̂, x̂ → −x̂,
where p̂ and x̂ stand for momentum and position operators,
respectively) and time reversal (T : p̂ → −p̂, x̂ → x̂, i →
−i). An important property of PT Hamiltonians is to admit
of an entirely real-valued energy spectrum below a phase
transition symmetry-breaking point, a property that attracted
great attention in earlier studies on the subject owing to
the possibility to formulate a consistent quantum mechan-
ical theory in a non-Hermitian framework [8–11]. Indeed,
PT -symmetric Hamiltonians are a special case of pseudo-
Hermitian Hamiltonians, which can be mapped into Hermitian
ones [12]. PT -symmetric Hamiltonians have found interest
and applications in several physical fields, including magneto-
hydrodynamics [13], cavity quantum electrodynamics [14],
quantum-field-theories [11,15], and electronics [16]. More
recently, great efforts have been devoted to the study and the
experimental implementation of optical structures possessing
PT symmetry (see, for instance, [17–30] and references
therein). The huge interest raised by the introduction of PT
optical media is mainly motivated by their rather unique
properties to mold the flow of light in non-conventional
ways, with the possibility to observe, for example, double
refraction and nonreciprocal diffraction patterns [20], unidi-
rectional Bragg scattering and invisibility [21,28,29,31–36],
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nonreciprocity [37], giant Goos-Hänchen shift [38], and
simultaneous perfect absorption and laser behavior [39,40].
So far, PT quantum and classical systems have been mainly
investigated in the unbroken PT phase, where the energies
are real-valued, or at the symmetry breaking point, where
exceptional points or spectral singularities appear in the
underlying Hamiltonian (see, for instance, [19,25,41]). In the
broken PT phase, complex-conjugate energies appear. In the
context of spatially extended dissipative dynamical systems
and hydrodynamic flows [42], breaking of the PT phase
indicates a bifurcation from a marginally stable phase to an
unstable phase. This means that, while an initially localized
wave packet cannot secularly grow in the unbroken PT phase,
it does in the broken PT phase owing to the emergence of
modes with complex energies. In hydrodynamics, an unstable
open flow can be classified as either absolutely or convectively
unstable [43–45]. A one-dimensional flow described by an
order parameter ψ(x,t) is unstable if, for any given localized
perturbation ψ(x,0) at initial time t = 0, ψ(x,t) → ∞ as
t → ∞ along at least one ray x/t = v = const. The instability
is said to be absolute if ψ(x,t) → ∞ along the ray x/t = 0,
whereas it is convective if ψ(x,t) → 0 along the ray x/t =
0 [43]. Physically, in the convectively unstable regime the
initial perturbation grows when observed along the trajectory
x = vt at some drift velocity v, whereas it decays when
observed at a fixed position. Convectively unstable flows
generally arise in the presence of an advective (drift) term in
the system, in such a way that the growing perturbation drifts in
the laboratory reference frame and eventually escapes from the
system. Originally introduced in hydrodynamic contexts, the
concepts of convective and absolute instabilities have found
interest and applications in other physical fields, for example
in the study of dissipative optical patterns and noise-sustained
structures in nonlinear optics [46].

Inspired by the properties of hydrodynamic unstable
flows [43], in this work we introduce the concepts of
convective and absolute PT -symmetry breaking for spatially
extended Hamiltonian systems. Specifically, we investigate the
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symmetry breaking properties of a tight-binding lattice model
with spatially extended alternating gain and loss regions, and
show that the presence of an advective term can change the
symmetry breaking from absolute to convective. The lattice
model that we consider is a non-Hermitian extension of
the famous Rice-Mele Hamiltonian, originally introduced to
model conjugated diatomic polymers [47]. In the convectively
PT -symmetry breaking regime, the PT symmetry can be
restored when the gain or loss region becomes spatially
confined. A physical implementation of the non-Hermitian
Rice-Mele lattice model is proposed using arrays of coupled
optical waveguides in a zigzag geometry with periodically bent
axis and alternating optical gain and loss.

The paper is organized as follows. In Sec. II the Rice-Mele
tight-binding lattice model with non-Hermitian and advective
terms is presented, and a physical implementation based on
light transport in arrays of coupled optical waveguides is sug-
gested. In Sec. III the concepts of absolute and convective PT
symmetry breaking are introduced for periodic potentials, and
the transition from absolute to convective symmetry breaking
for the Rice-Mele lattice model is studied by application of
asymptotic (saddle point) methods. The concepts of convective
and absolute symmetry breaking are also discussed for ac-dc
driven lattice models, where the quasienergy bands. In Sec. IV
the main conclusions and future developments are outlined.
Finally, in two appendixes some technical details on Floquet
analysis of the ac-dc driven lattice model and saddle point
calculations for the Rice-Mele Hamiltonian are presented.

II. THE MODEL

A. Extended Rice-Mele Hamiltonian and
PT -symmetry breaking

We consider transport of classical or quantum waves
on a PT -invariant tight-binding dimerized superlattice with
nearest- and next-nearest-neighborhood hopping schemati-
cally shown in Fig. 1(a). The evolution of the amplitude prob-
abilities an(t), bn(t) at the two sites of the nth unit cell in the
lattice is governed by the following coupled-mode equations:

i
dan

dt
= −κbn − σbn−1 − ρ exp(iϕ)an+1

− ρ exp(−iϕ)an−1 + igan (1)

i
dbn

dt
= −κan − σan+1 − ρ exp(iϕ)bn+1

− ρ exp(−iϕ)bn−1 − igbn, (2)

where κ,σ > 0 are the nearest-neighborhood modulated
hopping rates within the unit cell, ρ exp(iϕ) is the
complex-valued hopping rate of next nearest sites with
controlled phase ϕ, and g is the gain or loss rate at alternating
sites. The coupled-mode equations (1) and (2) are derived
from the tight-binding Hamiltonian

Ĥ = −
∑

n

(κâ†
nb̂n + σ â†

nb̂n−1 + H.c.)

−
∑

n

[ρ exp(iϕ)(â†
nân+1 + b̂†nb̂n+1) + H.c.]

+ ig
∑

n

(â†
nân − b̂†nb̂n) (3)

FIG. 1. (Color online) (a) Schematic of the non-Hermitian exten-
sion of the Rice-Mele tight-binding lattice model. The lattice unit
cell contains two sites (a dimer), one with gain and the other with
loss. Next-nearest-neighborhood hopping occurs at a rate ρ exp(iϕ).
Convective transport at the PT -symmetry breaking point is obtained
for ρ �= 0 and ϕ �= 0,π . (b) Optical realization of the Rice-Mele
model in a zigzag array of optical waveguides with alternating optical
gain and loss [cross section in the transverse (x,y) plane]. The optical
axis of the array is bent along the paraxial propagation distance t .
Axis bending realizes an effective combined ac-dc driving of the
lattice with forces Fx(t) and Fy(t) along the two transverse directions
x and y.

which is Hermitian in the limiting case g = 0 or after
replacing g → ig. The lattice Hamiltonian (3) is invariant
under simultaneous parity transformation and time reversal,
and can be regarded as a non-Hermitian extension of the
Rice-Mele Hamiltonian [47,48], originally introduced to
model conjugated diatomic polymers [47] and found in other
physical systems as well, for example in cold atoms moving
in one-dimensional optical superlattices [49]. A possible
physical implementation of this Hamiltonian will be discussed
in the following subsection. We note that tight-binding lattice
models with non-Hermitian terms have been introduced and
studied in several recent works [50–53]. In particular, the
limiting case ρ = 0 and κ1 = κ2 of the Hamiltonian (3) was
previously considered in Refs. [21,50], where for the infinitely
extended system PT -symmetry breaking was shown to occur
at g = gth = 0. As discussed in the next section, this kind of
PT -symmetry breaking is always absolute.

For the general case κ1 �= κ2 and ρ �= 0, the onset of PT -
symmetry breaking can be readily determined by analytical
calculation of the energy spectrum of the Hamiltonian (3). To
this aim, let us search for a solution to Eqs. (1) and (2) in the
form of Bloch-Floquet states(

an(t)
bn(t)

)
=

(
A

B

)
exp(−iEt + iqn), (4)

where q is the quasimomentum, which is assumed to vary
in the interval (0,2π ), and E = E(q) is the corresponding
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FIG. 2. (Color online) Energy spectrum of the non-Hermitian Rice-Mele Hamiltonian (3) (a) in the unbroken PT phase (g = 0), (b) at
the symmetry breaking point (g = gth), and (c) in the broken PT phase (g = 3gth). Real and imaginary parts of the energies for the two
superlattice minibands are depicted by the continuous and dashed lines, respectively. Parameter values are κ = 1, σ = 0.8, ρ = 0.6, and
ϕ = π/2, corresponding to gth = |κ − σ | = 0.2.

energy. Substitution of the ansatz (4) into Eqs. (1) and (2) yields
the following homogeneous linear system for the complex
amplitudes A = A(q) and B = B(q):

[E + 2ρ cos(q + ϕ) − ig]A + [κ + σ exp(−iq)]B = 0,
(5)

[κ + σ exp(iq)]A + [E + 2ρ cos(q + ϕ) + ig]B = 0,

which is solvable provided that the determinantal equation∣∣∣∣E + 2ρ cos(q + ϕ) − ig κ + σ exp(−iq)
κ + σ exp(iq) E + 2ρ cos(q + ϕ) + ig

∣∣∣∣ = 0

(6)

is satisfied. This yields the following dispersion relations E =
E±(q) for the two superlattice minibands:

E±(q) = −2ρ cos(q + ϕ) ±
√

−g2 + κ2 + σ 2 + 2κσ cos q

(7)

and the following expressions for the amplitudes A, B of
Bloch-Floquet eigenmodes:(

A±(q)

B±(q)

)
=

(
κ + σ exp(−iq)

ig − E±(q) − 2ρ cos(q + ϕ)

)
. (8)

From Eq. (7) it follows that the energy spectrum is entirely
real-valued for g < gth with gth ≡ |σ − κ|. In this case,
corresponding to the unbrokenPT phase, the energy spectrum
comprises two minibands which do not cross. In particular,
at q = π the two minibands are separated by an energy gap
of width 2

√
g2

th − g2 . As g → g−
th the gap at q = π shrinks

and the two minibands touch at q = π ; as g overcomes
gth, complex-conjugate energies appear near q = π , which
is the signature of PT -symmetry breaking; see Fig. 2. It is
worth noticing that the group velocity vg of Bloch modes
near q = π at the symmetry breaking point, defined by
vg = (dRe(E±)/dq), is given by

vg = −2ρ sin ϕ (9)

which does not vanish provided that ρ �= 0, i.e., in the presence
of next-nearest-neighborhood hopping, and ϕ �= 0,π . As it
will be shown in Sec. III B, a nonvanishing and sufficiently
large group velocity can cause the PT -symmetry breaking to
change from absolute to convective.

B. ac-dc driven lattice model and optical realization of the
non-Hermitian Rice-Mele Hamiltonian

Before discussing the nature of the PT -symmetry breaking
for the extended non-Hermitian Rice-Mele Hamiltonian (3),
it is worth suggesting possible physical implementations of
this model. To realize the Hamiltonian (3), in addition to the
non-Hermitian (gain and loss) terms one needs to implement
next-nearest-neighborhood hoppings with controlled phase ϕ.
Rather generally, tight-binding lattice models with controlled
phase of hopping rates can be realized by combined ac-dc
forcing. Here we briefly propose a photonic realization of
the extended Rice-Mele model, based on light transport in
a superlattice of evanescently coupled optical waveguides.
The Rice-Mele Hamiltonian (3) can be basically obtained
as a limiting case of an ac driven tight-binding lattice
at high modulation frequencies. Another possible physical
system where the combined ac-dc driven lattice model
could be implemented is provided by cold atoms trapped
in optical superlattices [49], where gain is introduced via
atom injection at alternating sites [6,54]. However, in spite
of several theoretical proposals, experimental realizations of
PT -symmetric Hamiltonians using ultracold atoms is still
missing, and hence we limit here to briefly discussing the
photonic system. The optical structure that we consider is
shown in Fig. 1(b) and is basically composed by a sequence of
evanescently coupled optical waveguides in a zigzag geometry
with alternating optical amplification (gain) and loss. The
waveguides are displaced in the horizontal (x) and vertical
(y) directions by the distances dx and dy , respectively. In the
zigzag geometry, non-negligible evanescent coupling occurs
for nearest and next-nearest waveguides [55], with coupling
constants (hopping rates) κ1, κ2 for adjacent guides and κ3

for next-nearest guides, as indicated in Fig. 1(b). The values
of the coupling constants κ1, κ2, and κ3 are determined by
certain overlapping integrals of the optical modes trapped in
the waveguides, and they are usually exponentially decaying
functions of waveguide separation. For dielectric waveguides,
the coupling constants take real and positive values. The
difference of couplings κ1 and κ2 can be controlled by changing
the horizontal (dx) and vertical (dy) distances of waveguides,
with κ1 = κ2 for dx � dy . For straight waveguides, the array
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of Fig. 1(b) thus realizes the extended Rice-Mele model of
Fig. 1(a) with κ = κ1, σ = κ2, ρ = κ3 and ϕ = 0. To realize
an effective complex-valued amplitude for the hopping rate
between next-nearest-neighborhood guides, i.e., ϕ �= 0, we
bend the waveguide axis in both x and y directions along
the paraxial propagation distance t , so that the optical axis
of the array describes a curved path with parametric equations
x = x0(t) and y = y0(t). Arrays of waveguides with arbitrarily
curved axis in three dimensions can be realized, for example,
by the technique of femtosecond laser writing in optical glasses
(see, for instance, [56]). In the tight-binding and paraxial
approximations, light transport in the superlattice with a bent
axis is governed by the following coupled-mode equations
(see, for instance, [57]):

i
dAn

dt
= −κ1Bn − κ2Bn−1 − κ3(An+1 + An−1)

− [Fx(t) + Fy(t)]nAn + igAn, (10)

i
dBn

dt
= −κ1An − κ2An+1 − κ3(Bn+1 + Bn−1)

− [Fx(t) + Fy(t)]nBn − Fx(t)Bn − igBn, (11)

where An, Bn are the mode amplitudes of light trapped in the
alternating waveguides with optical gain and loss, respectively,
g is the optical gain or loss coefficient, and

Fx(t) = −2πnsdx

λ

d2x0

dt2
, Fy(t) = 2πnsdy

λ

d2y0

dt2
(12)

account for the axis bending in the horizontal (x) and vertical
(y) directions [57,58]. In Eq. (12), λ is the wavelength of
the propagating light and ns is the substrate refractive index
at wavelength λ. Note that Eqs. (10) and (11) describe a
dimerized lattice with external forcing, with Fx(t) and Fy(t)
playing the role of the external forces. Note also that, in
the absence of axis bending, i.e., for Fx = Fy = 0, Eqs. (10)
and (11) reproduce the extended Rice-Mele model [Eqs. (1)
and (2)] with ϕ = 0. The equivalence of the driven lattice
model [Eqs. (10) and (11)] with the static Rice-Mele lattice
model [Eqs. (1) and (2)] with ϕ �= 0 can be established as
follows. Let us tailor the axis bending profiles x0(t) and y0(t)
in the horizontal and vertical directions to realize the following
ac-dc forces Fx(t) and Fy(t) :

Fx(t) = U − (	ω) cos(ωt + φ)

Fy(t) = −U − (	ω) cos(ωt − φ),
(13)

where U , 	, and ω are real-valued positive parameters. In
our optical waveguide system, the combined ac-dc forcing
corresponds to a sinusoidal axis bending with spatial frequency
ω superimposed to a parabolic path [59]. Note that the
sinusoidal bending is not in phase for the horizontal and
vertical directions owing to the phase term φ. Let us further
assume that the resonance condition

Mω = U (14)

is satisfied for some integer M , and let us introduce the
amplitudes an, bn via the gauge transformation

An(t) = an(t) exp[iϕn + in�(t)], (15)

Bn(t) = bn(t) exp[iϕn + iβ + in�(t) + i�(t)], (16)

where we have set

�(t) =
∫ t

0
dt ′[Fx(t ′) + Fy(t ′)], �(t) =

∫ t

0
dt ′Fx(t ′), (17)

β = Mφ − 	 sin φ, and

ϕ = 2Mφ + Mπ. (18)

Substitution of Eqs. (15) and (16) into Eqs. (10) and (11) yields
a system of coupled equations for the amplitudes an(t) and
bn(t) with time-periodic coefficients of period T = 2π/ω. As
shown in the Appendix A, if the system is observed at discrete
times τ = 0,T ,2T ,3T ,..., the evolution of the amplitudes
an(τ ), bn(τ ) can be mapped into the dynamics of an effective
static lattice (i.e., with time-independent hopping rates) which
sustains two minibands with dispersion relations E±(q) given
by the quasienergies of the original time-periodic system. In
particular, in the large modulation limit ω 	 κ1,κ2,κ3,g, i.e.,
for T → 0, it can be shown (see Appendix A) that the ac-dc
driven lattice model exactly reproduces the Rice-Mele static
model [Eqs. (1) and (2)] with effective hopping rates given by

κ = κ1JM (	), (19)

σ = κ2JM (	), (20)

ρ = κ3J0(2	 cos φ), (21)

and with the phase ϕ given by Eq. (18), where Jn is the
Bessel function of first kind and order n. Therefore, the zigzag
waveguide array of Fig. 1(b) with alternating optical gain
and loss and with a suitable axis bending effectively realizes
the extended Rice-Mele lattice model of Fig. 1(a) with a
nonvanishing advective term ϕ and with controlled hopping
rates κ , σ , ρ.

III. CONVECTIVE AND ABSOLUTE PT -SYMMETRY
BREAKING

In this section we introduce the notion of convective and
absolute PT -symmetry breaking, inspired by the concepts of
convective and absolute unstable flows in hydrodynamics [43–
45], and then we apply such concepts to the non-Hermtiian
Rice-Mele and ac-dc driven models presented in Sec. II.

A. Definition of absolute and convective PT -symmetry
breaking for a periodic potential

In this subsection we present the rather general definition
of convective and absolute PT -symmetry breaking for a
continuous system in one spatial dimension x, described
by a PT -invariant Hamiltonian Ĥ = −∂2

x + V (x) with a
potential V (x) = VR(x) + igVI (x), where VR(−x) = VR(x)
and VI (−x) = −VI (x) are the real and imaginary parts of the
potential and g � 0 is a real-valued parameter that measures
the strength of the non-Hermitian part of the potential. The
concept of convective and absolute PT -symmetry breaking
is meaningful in case where at the symmetry breaking point
complex-conjugate energies emanate from the continuous
spectrum of Ĥ , i.e., the corresponding eigenstates are not
normalizable. In fact, if the symmetry breaking arises be-
cause of the appearance of pairs of normalizable states with
complex-conjugate energies, the PT -symmetry breaking is
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FIG. 3. (Color online) Schematic of wave packet evolution in the
convective and absolute PT -symmetry breaking regimes. The dotted
lines show the evolution of the wave packet along the path x = 0.

always absolute and cannot be convective, according to the
hydrodynamic definitions of absolute and convective unstable
flows briefly mentioned in the Introduction section and for-
mally defined below. An important case where PT -symmetry
breaking arises because of the emergence of extended (non-
normalizable) states with complex conjugate energies is the
one of a periodic potential, V (x + d) = V (x). In this case,
the energy spectrum is absolutely continuous and composed
by energy bands. We assume that the energy spectrum of Ĥ is
entirely real-valued for g � gth, corresponding to the unbroken
PT phase, whereas complex-conjugate energies appear for
g > gth, where gth � 0 determines the symmetry breaking
point. For example, for the potential VR(x) = cos(2πx/d)
and VI (x) = sin(2πx/d)PT -symmetry breaking is attained at
gth = 1 [20,33–35]. Let us then consider an initial wave packet
ψ(x,0) at time t = 0, and let ψ(x,t) = exp(−iĤ t)ψ(x,0)
be the evolved wave packet at successive time t . In the
unbroken PT phase, one has ψ(x,t) → 0 as t → ∞ at any
fixed position x owing to delocalization of the wave packet
in the lattice. However, in the broken PT phase, i.e., for
g > gth, owing to the appearance of complex energies the
wave packet ψ(x,t) is expected to secularly grow as t → ∞.
According to the definitions of unstable flows in hydrodynamic
systems [43,44], the PT -symmetry breaking is said to be
absolute if ψ(x,t) → ∞ at x = 0 (or at any fixed position
x = x0), whereas it is said to be convective if ψ(x,t) → ∞
along the ray x = vt for some drift velocity v, but ψ(x,t) → 0
at x = 0 (or at any fixed position x = x0). The physics behind
the definition of absolute and convective unstable flows is
rather simple and is visualized in Fig. 3. In the convectively
unstable regime, an initial wave packet (perturbation) drifts
in the laboratory reference frame with some velocity v, and
along the ray x = vt , i.e., in the reference frame moving
with the wave packet, the perturbation secularly grows with
time. The drift velocity v is basically determined by the
wave-packet group velocity at the quasimomentum k = ks

where the maximum growth rate (i.e., largest imaginary part of
the energy) occurs. However, at a fixed position x = x0 (e.g.,

x0 = 0), the perturbation ψ(x0,t) can grow only transiently,
but finally it vanishes as t → ∞ owing to the (possibly fast)
drift of the growing wave packet [see Fig. 3(a)]. Conversely,
in the absolutely unstable regime the perturbation grows
so fast that, even in the presence of an advective term (a
drift), at a fixed spatial position x0 the perturbation ψ(x0,t)
grows indefinitely with time [see Fig. 3(b)]. To determine
whether the PT -symmetry breaking is convective or absolute,
let us consider the Hamiltonian Ĥ with g > gth, and let
us consider an initial wave packet given by a superposition
of Bloch-Floquet modes φk(x) = uk(x) exp(ikx) with energy
E = E(k), i.e., Ĥφk(x) = E(k)φk(x), with uk(x + d) = uk(x)
and in which the quasimomentum k varies from −∞ to ∞ to
account for all the lattice bands (extended band representation).
The wave packet then evolves according to the relation

ψ(x,t) =
∫ ∞

−∞
dkF (k)uk(x) exp[ikx − iE(k)t], (22)

where F (k) is the spectrum of excited Bloch-Floquet modes.
Along the ray x = vt one has

ψ(t) =
∫ ∞

−∞
dkF (k)uk(vt) exp[ikvt − iE(k)t]. (23)

The determination of the nature (absolute or convective)
of the PT -symmetry breaking entails the estimation of the
asymptotic behavior of ψ(t) as t → ∞. Since uk(x) is a
limited and periodic function of x, we can study the asymptotic
behavior of the associated wave packet

ψ1(t) =
∫ ∞

−∞
dkF (k) exp[ikvt − iE(k)t] (24)

obtained by dropping the term uk(vt) under the in-
tegral in Eq. (23). In fact, it can be readily shown
that lim supt→∞|ψ(t)| → ∞ (→0) if and only if
lim supt→∞|ψ1(t)| → ∞ (→0). Note that for the determi-
nation of the asymptotic behavior of ψ1(t) we only need
to evaluate the integral on the right-hand side of Eq. (24)
for those values of k for which Im{E(k)} � 0, the other
modes giving no contribution (they are surely decaying). The
asymptotic behavior of ψ1(t) as t → ∞ can be determined,
under certain conditions which are generally satisfied, by the
saddle-point (or steepest descent) method [43]. This entails
analytic continuation of the function E(k) is the complex k

plane and, using the Cauchy theorem, the deformation of the
path of the integral along a suitable contour which crosses
a (dominant) saddle point ks of E(k) − kv in the complex
plane, along the direction of the steepest descent [43–45].
The asymptotic behavior of the integral is then given by the
value of the exponential part of the integrand calculated at the
saddle point. More precisely, for a saddle point of order n � 2,
i.e., for which E(k) = E(ks) + v(k − ks) + (dnE/dkn)ks

(k −
ks)n + o((k − ks)n), for t → ∞ one has [60]

ψ1(t) ∼ F (ks)

|t(dnE/dkn)ks
|1/n

(n!)1/n	

(
1

n

)
× exp[itvks ± iπ/(2n)] exp[−itE(ks)], (25)
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where the saddle point ks in the complex plane is determined
from the equation (

dE

dk

)
ks

= v. (26)

The decay or secular growth of ψ1(t) thus depends on the
sign of the imaginary part of E(k) at the saddle point k = ks .
It can be readily shown that, for g > gth, there is always
a velocity v = vs for which the solution ks to Eq. (26) is
real-valued and corresponds to the maximum growth rate
[i.e., the maximum of Im(E(k)) > 0], so that along the ray
x = vst the amplitude ψ1(t) shows a secular growth. To
determine whether the symmetry breaking is either convective
or absolute, we should consider the asymptotic behavior of
ψ1(t) for v = 0, which is determined by the sign of the
imaginary part of E(k) at the saddle point k = ks obtained
from Eq. (26) with v = 0. Hence, the PT -symmetry breaking
is absolute if Im{E(ks)} > 0, whereas it is convective if
Im{E(ks)} � 0, where the saddle point ks is determined from
the equation (dE/dk)ks

= 0. As a general rule of thumb,
for g larger but close the PT -symmetry breaking threshold,
indicating by ks the quasimomentum on the real axis with
maximum growth rate, i.e., that maximizes Im(E(k)) for k real,
thePT -symmetry breaking is absolute if the group velocity vg

at k = ks , given by vs = (d Re(E)/dk)ks
, vanishes, whereas is

it expected to be convective for a nonvanishing (and possibly
large) value of vs . Physically, the latter regime corresponds to
the case where, owing to a nonvanishning group velocity, the
unstable growing Bloch-Floquet mode is advected away, for
an observer at rest, fast enough that it decays in time when
observed at a fixed spatial position.

B. Absolute and convective PT -symmetry breaking for the
non-Hermitian Rice-Mele Hamiltonian

In this subsection we describe in detail the nature of thePT -
symmetry breaking for the extended Rice-Mele Hamiltonian
defined by Eq. (3). As shown in Sec. II A, the superlattice
comprises two minibands, with dispersion relations E±(q)
and corresponding Bloch-Floquet modes defined by Eqs. (7)
and by Eqs. (4) and (8), respectively. After setting ψ(n,t) =
(an(t),bn(t))T , let us consider the propagation of an initial wave
packet ψ(n,0) in the lattice, which is assumed to be given by
a superposition of Bloch-Floquet modes belonging to the two
minibands with spectral functions F±(q). The evolved wave
packet at time t is then given by

ψ(n,t) =
∫ 2π

0
dqF+(q)φ+(q) exp[iqn − iE+(q)t]

+
∫ 2π

0
dqF−(q)φ−(q) exp[iqn − iE−(q)t], (27)

where we have set φ±(q) = (A±(q),B±(q))T . As shown in
Sec. II A,PT -symmetry breaking occurs when the gain or loss
parameter g is increased to overcome the threshold value gth =
|κ − σ |. Correspondingly, complex conjugate energies appear
for a wave number q close to q0 = π [see Fig. 2(c)]. Note that,
since Im{E(q)} � 0 for one miniband and Im{E(q)} � 0 for
the other miniband, one of the two integrals on the right-hand
side of Eq. (27) decays toward zero as t → ∞, and therefore

we can limit ourselves to considering the contribution arising
from the other integral involving unstable modes. Assuming,
for the sake of definiteness, Im{E+(q)} � 0 and Im{E−(q)} �
0, one has

ψ(n,t) ∼
∫ 2π

0
dqF+(q)φ+(q) exp[iqn − iE+(q)t] (28)

as t → ∞. The asymptotic form of the integral on the right-
hand side of Eq. (28) along the ray n = vt can be estimated
by the saddle-point method and takes a form similar to the
one given by Eq. (25). According to the analysis presented
in Sec. III A, the PT -symmetry breaking is thus convective
if Im{E+(qs)} � 0, whereas it is absolute for Im{E+(qs)} >

0, where qs is the dominant saddle point obtained from the
equation (dE+/dq)qs

= 0, i.e.,

2ρ

κσ
(cos ϕ sin qs sin ϕ cos qs) = sin qs

−ε2 + 2κσ (1 + cos qs)
.

(29)

In Eq. (29) we have set ε2 = g2 − g2
th, which provides a

measure of the distance from the PT -symmetry breaking
point. To simplify our analysis, let us consider the case where
the gain or loss parameter g is larger but close to its threshold
value gth, so that ε2 is a small quantity. In this case the solutions
to Eq. (29) can be determined analytically by an asymptotic
analysis in the small parameter ε. The calculations are detailed
in Appendix B. The main result of the calculations is that the
PT -symmetry breaking is convective for

|vg| >
√

σκ (30)

whereas it is absolute in the opposite case |vg| � √
σκ , where

vg = −2ρ sin ϕ is the group velocity at the symmetry breaking
point of the most unstable mode with wave number q = π [see
Eq. (9)]. Hence, as expected, a sufficiently large advective term
in the extended Rice-Mele Hamiltonian can change the PT -
symmetry breaking from absolute to convective. Note that for
ρ = 0 or ρ �= but real-valued, the symmetry breaking is always
absolute. As discussed in the next subsection, an important
physical implication of the convective (rather than absolute)
PT -symmetry breaking is that the unbroken PT phase can
be restored in the convectively regime by making the region
of alternating gain and loss sites in the lattice spatially limited
rather than extended.

C. Numerical results

We checked the predictions of the theoretical analysis
and the transition form absolute to convective PT -symmetry
breaking induced by advection for both the static Rice-Mele
lattice of Fig. 1(a) and the ac-dc driven lattice of Fig. 1(b)
by direct numerical simulations. As an example, in Fig. 4
we depict the evolution of a wave packet in the Rice-Mele
lattice with advective term (ρ �= 0, ϕ �= 0,π ), showing the
transition from convective [Fig. 4(a)] to absolute [Fig. 4(b)]
PT -symmetry breaking. The numerical results are obtained
by solving the coupled-mode equations (1) and (2) using
an accurate fourth-order variable-step Runge-Kutta method
assuming as an initial condition a Gaussian wave packet with
carrier wave number q0 = π at lattice sites an solely, namely
an(0) = exp[−2(n/w)2 + iq0n] and bn(0) = 0, where w is the
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FIG. 4. (Color online) Numerically-computed wave packet evo-
lution (snapshots of |ψ(n,t)|2) for the Rice-Mele Hamiltonian Eq. (3)
in (a) convective, and (b) absolute PT -symmetry breaking regimes.
The lower panels show the detailed temporal evolution of the
occupation probabilities of the lattice sites an along the two rays
indicated in the upper panels by the tilted solid curve (path n = vgt

with maximum growth, dashed curve) and by the vertical arrows (path
n = 0, solid curves). Parameter values are given in the text.

size of the wave packet. Such an initial condition mainly
excites (unstable) Bloch-Floquet modes with imaginary energy
at wave numbers q close to the most critical one q = q0 = π .
Parameter values used in the simulations are κ = σ = 1
(corresponding to gth = 0), ϕ = π/2, g = 0.05, and ρ = 0.7
in Fig. 4(a), and ρ = 0.3 in Fig. 4(b). In Fig. 4(a), the condition
|vg| >

√
σκ is satisfied and, according to the analysis of

Sec. III B, the symmetry breaking is of convective nature.
In fact, while the wave packet |ψ(t)|2 secularly grows along
the ray n = vgt , it decays when observed at a fixed spatial
position (e.g., n = 0), as shown in the lower panel of Fig. 4(a).
Conversely, in Fig. 4(b) the advective term in the Rice-Mele
Hamiltonian is lowered so that |vg| is smaller than

√
σκ; in

this case the symmetry breaking is absolute, as clearly shown
in the lower panel of Fig. 4(b).

A similar transition from absolute to convective PT -
symmetry breaking for increasing advection is observed in
the ac-dc driven lattice model of Fig. 1(b) presented in
Sec. II B. As shown in Appendix A, the dynamical properties
of the ac-dc driven lattice at discretized times τ = 0,T ,2T , . . .

can be mapped into the ones of a static lattice with an
energy band structure that is determined by the quasienergy
spectrum E(q) of the ac-dc driven lattice. In particular, at large
modulation frequencies the driven lattice model, defined by
Eqs. (A1) and (A2), exactly reproduces the Rice-Mele model
with effective hopping rates κ , σ , ρ and phase ϕ given by

FIG. 5. (Color online) Numerically computed quasienergy mini-
bands E±(q) for the ac-dc driven lattice model [Eqs. (10) and (11)]
for increasing values of the modulation frequency ω: (a) ω = 6,
(b) ω = 15, and (c) ω = 150. The other parameter values are given in
the text. In (d) the energy minibands of the static Rice-Mele lattice are
shown, that correspond to the asymptotic limit ω → ∞. Solid curves
refer to the real part of E±(q), whereas the thin dotted curves to the
imaginary part of E±(q). For the sake of clearness, the imaginary part
of E±(q) has been multiplied by a factor of 10.

Eqs. (18)–(21). As an example, in Figs. 5(a)–5(c) we show
the numerically computed quasi energies of the two minibands
(real and imaginary parts) for the ac-dc driven lattice above the
PT -symmetry breaking point for parameter values κ1 = κ2 =
2.1124, κ3 = 1.4784, M = 1, 	 = 1.109, φ = −π/4, g =
0.05 and for increasing values of the modulation frequency
ω. Parameter values have been chosen such as to reproduce,
at large modulations frequencies, the static Rice-Mele lattice
with parameters as in Fig. 4(b). The quasienergies have been
obtained by numerical computation of the Floquet exponents
for the eigenvalue problem defined by Eqs. (A6) and (A7) given
in Appendix A. For comparison, in Fig. 5(d) the minibands of
the static Rice-Mele lattice with parameters of Fig. 4(b) are
also depicted. According to the theoretical analysis, in the high
modulation regime the quasienergy spectrum of the driven
lattice asymptotically reproduces the spectrum of the static
Rice-Mele model [compare Figs. 5(c) and 5(d)]. At low or
moderate values of the modulation frequency ω, deviations
from the two models can be clearly appreciated [compare
Figs. 5(a) and 5(b) with Fig. 5(d)]. In particular, the driven
lattice model at low modulation frequencies shows a wider
range of wave numbers with complex energies, and the real
parts of the quasienergies for the two minibands are not
degenerate. Nevertheless, the transition from convective to
absolute symmetry breaking, which is basically related to the
value of the group velocity (the derivative of the real part
of the quasienergy) of the unstable mode at the symmetry
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FIG. 6. (Color online) Numerically computed wave packet evo-
lution (snapshots of |ψn(t)|2) for the ac-dc driven lattice model in
(a) convective, and (b) absolutePT -symmetry breaking regimes. The
lower panels show the detailed temporal evolution of the occupation
probabilities of the lattice sites an along the two paths indicated in the
upper panels by the tilted solid curve (path n = vgt with maximum
growth, dashed curve) and by the vertical arrows (path n = 0, solid
curves). Parameter values are given in the text.

breaking point, can be observed even at moderate modulation
frequencies. This is shown, as an example, in Fig. 6, where
we depict the numerically computed evolution of the same
initial Gaussian wave packet as in Fig. 4 but in the ac-dc driven
lattice for a modulation frequency ω = 15 and for κ3 = 1.4784
[Fig. 6(a)], corresponding to a convective symmetry breaking,
and κ3 = 0.6336 [Fig. 6(b)], corresponding to absolute PT -
symmetry breaking.

As a final comment, it is worth discussing a physically rele-
vant implication of convective versus absolute PT -symmetry
breaking. In the convectively unstable regime, the growing
wave packet drifts in the laboratory reference frame fast
enough that locally (i.e. at a fixed spatial position) it is observed
to decay in spite of its growth in a moving reference frame (see
Figs. 3 and 4). Let us now consider a lattice with a spatially
confined (rather than infinitely extended) region of unit cells
with gain and loss. In the convective regime, advection pushes
the wave packet far from the “non-Hermitian” region of the
lattice, and hence after a transient the wave packet ceases to
grow. Conversely, in the absolute symmetry breaking regime
it is expected to grow indefinitely even for a spatially finite
extension of unit cells with gain and loss. Such a simple
physical picture suggests that in the convectively unstable
regime PT symmetry (i.e., an entirely real-valued energy
spectrum) may be restored when the gain or loss region in
the lattice is spatially limited. We checked such a prediction

FIG. 7. (Color online) Numerically computed energy spectrum
(real and imaginary parts) of the Rice-Mele Hamiltonian (32) with a
finite number of unit cells with gain and loss regions for (a) ρ = 0, and
(b) ρ = 2, ϕ = π/2. The other parameter values are κ = σ = 1 and
g = 0.5. For the sake of clearness the imaginary parts of the energies
(square points) are multiplied by a factor of 2. The total number of unit
cells of the lattice is N + 1 = 301, and the eigenvalues are ordered
for increasing values of the real part of the energy. The number of
dimers with loss and gain is Ng + 1 = 21, and they are located at the
center of the lattice.

by considering the Rice-Mele lattice Hamiltonian (3) with a
spatially dependent gain or loss term vanishing at infinity,
namely

Ĥ = −
∞∑

n=−∞
(κâ†

nb̂n + σ â†
nb̂n−1 + H.c.)

−
∑

n

[ρ exp(iϕ)(â†
nân+1 + b̂†nb̂n+1) + H.c.]

+ i

∞∑
n=−∞

gn(â†
nân − b̂†nb̂n), (31)

where gn → 0 as n → ∞. In particular, we numerically
computed the energy spectrum of Ĥ by considering a square-
wave profile of gn, i.e., gn = g for |n| � Ng/2 and gn = 0
otherwise. This case corresponds to a central lattice section
comprising (Ng + 1) dimers with gain and loss (i.e., locally
non-Hermitian), and and abrupt transition to two outer lattice
sections with locally-Hermitian dimers (i.e., gn = 0). In the
numerical simulations, the total number of unit cells (N + 1) is
finite, corresponding to truncation of the outer lattice sections.
As an example, in Fig. 7 we show the numerically computed
energies of the truncated lattice described by the Hamiltonian

Ĥ = −
N/2∑

n=−N/2

(κâ†
nb̂n + σ â†

nb̂n−1 + H.c.)

−
N/2∑

n=−N/2

[ρ exp(iϕ)(â†
nân+1 + b̂†nb̂n+1) + H.c.]

+ ig

Ng/2∑
n=−Ng/2

(â†
nân − b̂†nb̂n) (32)

for Ng = 10, N = 300, and for parameter values corre-
sponding to absolute [Fig. 7(a)] and convective [Fig. 7(b)]
PT -symmetry breaking in the extended (i.e., N,Ng → ∞)
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limit. Note that, within numerical accuracy, the energy spec-
trum is entirely real-valued in the convective regime [Fig. 7(b)],
whereas pairs of complex-conjugate energies persist in the
absolute regime [Fig. 7(a)]. It should be noted, however, that
restoring the PT symmetry in the convective regime is not a
strict rule, since the interfaces from the outer lattice regions
to the inner (non-Hermitian) lattice section might sustain
localized (interface) modes with imaginary energies, which
cannot be predicted by our simple picture. Moreover, it is
expected that restoring of the PT symmetry depends on the
choice of the profile gn; for example a smooth (rather than
sharp) transition from the inner (locally non-Hermitian) to
the outer (locally Hermitian) regions is expected to avoid the
appearance of interface states. Symmetry breaking in case
of inhomogeneous gain or loss parameter gn would require
a further study; however, this goes beyond the scope of the
present work.

IV. CONCLUSIONS

In this work we have introduced the concepts of convective
and absolute PT -symmetry breaking for wave transport in
periodic complex potentials, inspired by the hydrodynamic
concepts of convective and absolute instabilities in open
flows. In particular, we have investigated analytically and
numerically the transition from absolute to convective PT -
symmetry breaking in two tight-binding lattice models: a
non-Hermitian extension of the Rice-Mele dimerized lattice,
originally introduced to model conjugated diatomic polymers,
and an ac-dc driven lattice, which reproduces the Rice-Mele
model in the large modulation frequency limit. In the context
of spatially extended dissipative dynamical systems, PT -
symmetry breaking can be viewed as a phase transition from a
marginally stable state (the unbrokenPT phase) to an unstable
state (the broken PT phase). The instability arises because of
the appearance of pairs of complex-conjugate energies in the
broken PT phase. The distinction between convective and
absolute PT -symmetry breaking arises when considering the
evolution of a wave packet in the brokenPT phase: while in the
absolute symmetry breaking case the wave packet amplitude
observed at a fixed spatial position secularly grows in time, in
the convective symmetry breaking case the amplitude grows
in a reference frame moving at some drift velocity, however it
decays when observed at a fixed spatial position, i.e., for an
observer at rest. A convective regime is generally found when
the unstable modes have a group (drift) velocity large enough
that at a fixed spatial position the wave packet decay due to the
drift overcomes the growth due to the instability. The nature
(either absolute or convective) of the PT -symmetry breaking
is basically determined by the sign of the imaginary part of
the energy (for static lattices) or quasienergy (for periodically
driven lattices) at the dominant band saddle point in complex
plane. An interesting application of the concepts of convective
and absolute symmetry breaking is found when considering
a spatially limited region of gain or loss in the system, i.e.,
when the periodicity of the system is broken and the imaginary
part of the potential is confined to a limited region of space.
Owing to the fast drift of a wave packet in the convective
regime, after a transient the wave packet escapes from the
imaginary potential region and thus it ceases to grow. This

means that the instability is only transient, i.e., we expect
that PT symmetry is restored in the convective regime when
the imaginary potential is spatially confined. This is not the
case of the absolute symmetry breaking regime, where the
broken PT phase is expected to persist even for a spatially
limited imaginary potential. Other possible applications and
developments of the hydrodynamic concepts of convective
and absolute instabilities can be foreseen into the rapidly
growing field of wave transport in PT -symmetric quantum
and classical systems. For example, like for hydrodynamic
and dissipative optical systems [43,46], interesting effects
(like the appearance of noise-sustained structures [46]) might
be envisaged for convective PT -symmetry breaking in the
presence of classical or quantum noise [30].

APPENDIX A: FLOQUET ANALYSIS OF THE AC-DC
DRIVEN LATTICE AND EFFECTIVE STATIC

LATTICE MODEL

In this Appendix we present a Floquet analysis of the driven
lattice model defined by Eqs. (10) and (11) with time-periodic
coefficients and show that, at discretized times, it behaves
like an effective static lattice with a band structure that is
determined by the quasienergy spectrum of the driven lattice.
To this aim, let us note that, after the gauge transformation
defined by Eqs. (15) and (16) given in the text, the evolution of
the amplitudes an(t), bn(t) is governed by the following linear
system of equations:

i
dan

dt
= −κ1F (t)bn − κ2G(t)bn−1 − κ3H (t)an+1

− κ3H
∗(t)an−1 + igan, (A1)

i
dbn

dt
= −κ1F

∗(t)an − κ2G
∗(t)an+1 − κ3H (t)bn+1

− κ3H
∗(t)bn−1 − igbn, (A2)

with time-dependent coefficients F (t), G(t), and H (t) given
by

F (t) = exp[iβ + i�(t)],

G(t) = exp[iβ − iϕ + i�(t) − i�(t)], (A3)

H (t) = exp[iϕ + i�(t)].

In the previous equations, the functions �(t) and �(t) and
constant parameters ϕ and β are defined by Eqs. (17) and (18)
given in the text. For the driving terms Fx , Fy defined by
Eq. (13), one has explicitly

F (t) = exp[iMφ + iMωt − i	 sin(ωt + φ)],

G(t) = exp[−iM(φ + π ) + iMωt + i	 sin(ωt − φ)], (A4)

H (t) = exp[iM(2φ + π ) − 2i	 cos φ sin(ωt)].

where we assumed the resonance condition U = Mω. Since
the coefficients F (t), G(t), and H (t) are periodic in time with
period T = 2π/ω, the solution to Eqs. (A1) and (A2) can
be obtained from Floquet theory of linear periodic systems.
Specifically, the general solution to Eqs. (A1) and (A2) is
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given by an arbitrary superposition of Bloch-Floquet states(
an(q,t)

bn(q,t)

)
=

(
A(q,t)

B(q,t)

)
exp[iqn − iE(q)t], (A5)

where q is the wave number (quasimomentum), which varies
in the range (0,2π ), E(q) is the quasienergy, with −ω/2 �
E(q) < ω/2, and A(q,t), B(q,t) are periodic in time with
period T . The quasienergy E(q) and corresponding Floquet
states (A(q,t),B(q,t))T are found by solving the eigenvalue
problem

E(q)A = −i
dA

dt
− κ3[H exp(iq) + H ∗ exp(−iq)]A

+ igA − [κ1F + κ2G exp(−iq)]B, (A6)

E(q)B = −i
dB

dt
− κ3[H exp(iq) + H ∗ exp(−iq)]B

− igB − [κ1F
∗ + κ2G

∗ exp(iq)]A (A7)

in the interval (0,T ) with the periodic boundary conditions
A(q,T ) = A(q,0) and B(q,T ) = B(q,0). Floquet theorem
ensures that the quasienergy spectrum comprises two branches
E(q) = E±(q), like for the static lattice model discussed
in Sec. II A, with corresponding Floquet states φ±(q,t) =
(A±(q,t),B±(q,t))T . Note that, if the dynamics of the system
defined by Eqs. (A1) and (A2) is observed at discretized times
τ = 0,T ,2T , . . . , from Eq. (A5) and owing to the periodicity
of the functions A(q,t) and B(q,t) it follows that it is equivalent
to the dynamics of a static lattice with two minibands whose
dispersion relations E±(q) are given by the quasienergies of the
periodic system. In fact, after setting ψ(n,t) = (an(t),bn(t))T ,
an initial wave packet, obtained from the superposition of
Bloch-Floquet states with arbitrary spectra F±(q), evolves in
time according to the relation

ψ(n,t) =
∫ 2π

0
dqF+(q)φ+(q,t) exp[iqn − iE+(q)t]

+
∫ 2π

0
dqF−(q)φ−(q,t) exp[iqn − iE−(q)t].

(A8)

If the evolution of the wave packet is observed at dis-
cretized times τ = lT with l = 0,1,2,3, . . . , since φ±(q,lT ) =
φ±(q,0) is independent of τ , from Eq. (A8) it follows that
ψ(n,τ ) shows the same evolution as the one of a wave packet in
a static dimerized lattice with energy band dispersion given by
the quasienergies E±(q) of the time-periodic lattice [compare
Eq. (A8) with Eq. (27) given in the text]. Therefore, all the
dynamical aspects of the time-periodic system defined by
Eqs. (A1) and (A2), including the onset of PT -symmetry
breaking and its convective or absolute nature, can be derived
from an equivalent static lattice with a band structure given by
the quasienergy band structure of the original time-periodic
system. In particular, as discussed in Sec. III the convective or
absolute nature of the symmetry breaking will be determined
by the imaginary part of the quasienergies at the dominant
saddle point.

The determination of the quasienergy spectrum E±(q)
generally requires us to resort to a numerical analysis of
Eqs. (A6) and (A7). An approximate analytical form the

quasienergies can be obtained, however, in the large-frequency
limit. In fact, assuming κ1,κ2,κ3,g � ω, the change of the
amplitudes A and B over one oscillation cycle are small, so
that in Eqs. (A6) and (A7) we may neglect the derivative
terms (dA/dt), (dB/dt) and replace the functions F (t), G(t),
H (t) with their average values over the oscillation cycle
(rotating-wave approximation); namely one can set

E(q)A � −κ3[〈H 〉 exp(iq) + 〈H ∗〉 exp(−iq)]A

+ igA − [κ1〈F 〉 + κ2〈G〉 exp(−iq)]B, (A9)

E(q)B � −κ3[〈H 〉 exp(iq) + 〈H ∗〉 exp(−iq)]B

− igB − [κ1〈F ∗〉 + κ2〈G∗〉 exp(iq)]A. (A10)

where 〈· · · 〉 denotes the time average. Using the identity
of Bessel functions exp(i	 sin x) = ∑∞

n=−∞ Jn(	) exp(inx),
from Eq. (A4) one readily obtains

〈F 〉 = 〈G〉 = JM (	), 〈H 〉 = J0(2	 cos φ) exp(iϕ), (A11)

where ϕ = M(π + 2φ). A comparison of Eqs. (A9) and
(A10) with Eq. (5) given in the text shows that, in the
large-modulation limit, the ac-dc driven lattice described by
Eqs. (A1) and (A2) effectively describes the static Rice-Mele
lattice [Eqs. (1) and (2) given in the text], where the effective
hopping rate κ , σ and ρ are given by Eqs.(19)–(21) and the
phase ϕ by Eq. (18).

APPENDIX B: DETERMINATION OF THE SADDLE POINT
FOR THE EXTENDED RICE-MELE LATTICE MODEL

In this Appendix we calculate the saddle points qs , i.e., the
roots qs of Eq. (29) given in the text, which determine the
convective or absolute nature of the PT -symmetry breaking
for the non-Hermitian Rice-Mele Hamiltonian (3). To this aim,
it is worth introducing the variables Xs = cos qs and Ys =
sin qs . After some algebra, from Eq. (29) it follows that Xs and
Ys are the roots (in the complex plane) of following system of
algebraic equations:

X2
s + Y 2

s = 1, (B1)(
κσ

2ρ

)2

Y 2
s = (

cos2 ϕY 2
s + sin2 ϕX2

s − 2 cos ϕ sin ϕXsYs

)
×(−ε2 + 2κσ + 2κσXs). (B2)

To simplify the analysis, let us consider the case where the
gain or loss parameter g is larger but close to its threshold
value gth, so that g2 − g2

th = ε2 is a small quantity. Note that,
for ε → 0, a solution to Eqs. (B1) and (B2) is Xs = −1 and
Ys = 0, corresponding to qs = π , i.e., to the wave number
where the most unstable mode arises at the PT -symmetry
breaking threshold. For ε2 > 0, we look for a solution to
Eqs. (B1) and (B2) in the form of power series,

Xs = −1 + α2

2
− α4

4!
+ · · · (B3)

Ys = −α + α3

3!
− α5

5!
+ · · · , (B4)

where α = qs − π is a small amplitude of order εγ with γ > 0
to be determined. Note that, at leading order in α, the energy
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E+(qs) is given by

E+(qs) � −2ρ cos ϕ − 2ρ sin ϕα +
√

κσα2 − ε2. (B5)

Note also that, with the ansatz (B3) and (B4), Eq. (B1) is
automatically satisfied for any α. The small complex amplitude
α can be determined by substitution of Eqs. (B3) and (B4) into
Eq. (B2) and setting equal the terms of lowest order on the
left and right sides of the equations so obtained. Three cases
should be distinguished.

(1) |vg| �= √
σκ , where vg = −2ρ cos ϕ. In this case

Eq. (B2) is satisfied at leading order for α ∼ ε (i.e., γ = 1);
namely, one obtains

α2 = ε2v2
g

κσ
(
v2

g − κσ
) . (B6)

For v2
g > σκ , the two roots α of Eq. (B6) are real-valued,

and correspondingly the imaginary part of E+(qs), with qs =
π + α, vanishes [see Eq. (B5)]. Therefore, for v2

g > σκ one
has ψ(n,t) → 0 as t → ∞ along the ray n/t = 0; i.e., the
PT -symmetry breaking is convective. Conversely, for v2

g <

σκ according to Eq. (B6) the amplitude α is purely imaginary,
and correspondingly for one of the two roots the imaginary
part of E+(qs) is positive according to Eq. (B5). In this case

|ψ(n,t)| → ∞ as t → ∞ along the ray n/t = 0; i.e., the PT -
symmetry breaking is absolute.

(2) |vg| = √
σκ and ϕ �= ±π/2. In this case one obtains

α ∼ ε2/3, i.e., γ = 2/3, and α satisfies the cubic equation

α3 = − sin ϕε2

2κσ cos ϕ
. (B7)

Two of the three roots of such an equation are complex-valued,
and correspondingly one can readily shown from Eq. (B5)
that a positive imaginary part for the energy E+(qs) arises
from one of the two complex roots. In fact, since ε2 is of
higher order than α2 and 2ρ cos ϕ = √

κσ , from Eq. (B5)
one has Im{E+(qs)} � 2vgIm(α). Therefore in this case the
PT -symmetry breaking is absolute.

(3) |vg| = √
σκ and ϕ = ±π/2. In this case one has α ∼

ε1/2, i.e., γ = 1/2, and α satisfies the quartic equation

α4 = − ε2

κσ
. (B8)

The four roots of such an equation are complex-valued,
two with positive and two with negative imaginary parts.
Correspondingly, like in the previous case a positive imaginary
part for the energy E+(qs) does appear because Im{E+(qs)} �
2vgIm(α). Therefore the PT -symmetry breaking is absolute
like in the previous case.
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