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Comment on “Past of a quantum particle”

Zheng-Hong Li,1,2,3 M. Al-Amri,1,2 and M. Suhail Zubairy1,3,*

1Institute for Quantum Science and Engineering (IQSE) and Department of Physics and Astronomy,
Texas A&M University, College Station, Texas 77843-4242, USA

2The National Center for Mathematics and Physics, KACST, P.O. Box 6086, Riyadh 11442, Saudi Arabia
3Beijing Computational Science Research Center, Beijing 100084, China

(Received 24 June 2013; published 29 October 2013)

We present an analysis of a nested Mach-Zehnder interferometer in which an ensemble of identical pre-
and postselected particles leaves a weak trace. A knowledge of the weak value partially destroys the quantum
interference. The results, contrary to some recent claims [Vaidman, Phys. Rev. A 87, 052104 (2013)], are in
accordance with the usual quantum-mechanical expectations.
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I. INTRODUCTION

Weak measurement [1,2], as its name implies, is a kind
of quantum measurement in which the coupling between the
measured system and the measuring device is so weak that the
system remains unaffected during the process of measurement.
A single measurement does not provide any information about
the system but, after a large number of repeated measurements
on an ensemble of identically prepared pre- and postselected
systems, information can be extracted. The notions of weak
measurement and weak values were first introduced in a classic
paper by Aharonov, Albert, and Vaidman in 1988 [1]. Since
then this idea has found a number of interesting applications
in quantum measurement [3–7].

The weak measurements and the physical meaning of weak
values remain a subject of arguments and discussion [8–15].
An example is shown in Fig. 1, in which a small Mach-Zehnder
interferometer is inserted into one arm of a big interferometer.
Let us assume that, if a single photon is sent into the small
interferometer at position F, the detector D3 clicks with
unit probability as a result of interference. In this case, if
a photon is sent at the input and the detector D1 clicks, it
is reasonable to assume that the single photon must have
followed the outer path A and the probability of its existence
inside the smaller Mach-Zehnder interferometer (along paths
F, B, C, and E) must be zero. This observation lies at the
heart of recent schemes for counterfactual computation [16]
and communication [17]. However, it is argued in some recent
papers [18,19] that this conclusion may not be correct. Using
the concept of weak measurement it is shown that, in the
case the detector D1 clicks, the probability of finding the
photon is zero at locations F and E but is nonzero inside
the small interferometer along paths B and C. In the words of
Vaidman [18], “The photon did not enter the interferometer,
the photon never left the interferometer, but it was there.”
This is, to put it mildly, very surprising, and this surprise is
compounded by the claim that the photon number in one arm
of the small interferometer is 1, whereas in the other arm its
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value is −1. As a result, the probability of finding the photon
at position E is zero.

The objective of this paper is to resolve this mystery. We
show that, although the method of weak measurement provides
a very different angle to view quantum systems, both its
mathematics and internal essence obey the usual approach
to quantum mechanics. For the same quantum system, without
the postselected state, quantum mechanics provides us the
probabilities associated with observable quantities. We show
that the same is true even when a weak measurement is made
in a postselected system.

In the following, we will first present some general
arguments to understand the consequences of the weak
measurement on the system. We will then consider an example
of system-meter interaction that can possibly be implemented
via a dispersive atom-field interaction. Our analysis shows that
the disturbance caused by the “weak” measurement partially
destroys the interference and the probability of finding the
photon at E is not zero anymore. This disturbance caused
by a weak measurement is nonzero no matter how weak the
measurement is. We also show that all the results can be
understood within the framework of a conventional quantum-
mechanical approach and the weak measurement does not add
anything further in our understanding and interpretation of the
system considered in Fig. 1.

II. WEAK MEASUREMENT IN A DOUBLE
MACH-ZEHNDER INTERFEROMETER

First we present a brief discussion about the weak mea-
surement. Suppose there is a pointer P that is coupled to
an observable A of a system via a Hamiltonian H = h̄ηAP

with a very weak coupling η. The Hamiltonian perturbs the
system state before measurement (preselected state |ψi〉) as
e−iHτ/h̄|ψi〉 ≈ |ψi〉 − (iHτ/h̄)|ψi〉 = |ψi〉 − iητA|ψi〉P . To
extract the perturbation, we can project it on a postselected
state |ψf 〉, which is independent of the measurement and
allows us to investigate the system with the special final state.
This can also be understand as a precondition. As a result, the
weak value is defined by Aw = 〈ψf |A|ψi〉/〈ψf |ψi〉. We note
that the weak value is not a directly observable quantity in any
real experiment and is to be inferred from the data of an actual
experiment.
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FIG. 1. (Color online) A small Mach-Zehnder interferometer
added in the right arm of the big interferometer. A single-photon pulse
is sent into the setup. BS stands for beam splitter. BS1’s reflectivity
is r and transmissivity is t , while BS2 is a 50-50 beam splitter. D1,
D2, and D3 stand for detectors. L1,L2,L3, and L4 stand for stages
corresponding to the time evolution of the photon.

To show the concept more clearly, we again turn to the
example as shown in Fig. 1. We consider the state of the photon
at four stages as shown by the dotted lines. A single photon
is sent into the left-hand side (LHS) of the beam-splitter BS1,
whose function can be described as

UL1 :

{ |100〉 → r|100〉 + t |010〉
|010〉 → r|010〉 − t |100〉 , (1)

where r and t are the reflectivity and transmissivity of BS1

and we have assumed r and t to be real for simplicity’s sake.
The photon-number state |n1,n2,n3〉 is such that n1, n2, and n3

represent the number of photons on the LHS of BS1, between
BS1 and BS2, and the right-hand side of BS2, respectively.
For BS2, the transformation property is the same as it is for
BS1 except that their reflectivity and transmissivity are equal
to 1/

√
2. The mirror M are assumed to be perfectly reflecting.

At the first stage (L1), the photon state is UL1|100〉 =
r|100〉 + t |010〉. Let the operators UL2, UL3, and UL4 describe
operations between the two adjacent stages. We also assume
that a weak measurement of the operator |001〉〈001| is made
at position C. The preselected state at stage L2 is

|ψi〉 = UL2UL1|100〉 = r|100〉 + t√
2

(|010〉 + |001〉), (2)

and, under the condition that D1 clicks, the postselected state
at stage L2 is

〈ψf | = 〈100|UL4UL3 = r〈100| − t√
2

(〈010| − 〈001|). (3)

The weak value corresponding to a weak measurement at
position C is

AC = 〈ψf ||001〉〈001||ψi〉
〈ψf ||ψi〉 = t2

2r2
. (4)

Similarly, we obtain the weak value corresponding to the
weak measurement at position B, which is AB = −t2/(2r2).
A similar calculation also yields, for the measurements at
positions A, E, and F, the weak values AE = AF = 0 and
AA = 1. These results appear strange at first glance, as it seems
that the photon appears at B and C but not at E.

Before further discussion, we answer the important ques-
tion: What is the meaning of the weak value? We note that the
denominator in the expression for the weak value is 〈ψf ||ψi〉 =
〈100|UL4UL3UL2UL1|100〉. It is clear that whether we cal-
culate it as 〈ψf | × |ψi〉 or 〈100| × (UL4UL3UL2UL1|100〉)
(i.e., we let the system evolve stage by stage until stage L4
and then project it on D1) we get the same result. The modulus
square of 〈ψf ||ψi〉 means the probability of D1 clicking,
which is equal to r4. This implies that the photon passes a
classical path without interference. One may argue that the
above discussion is meaningless since the measurement is not
included. However, in the following we show that even if we
include the measurement process the concept of a postselected
state is still not necessary and the weak value only tells us the
level that the original system is perturbed.

The numerator in the expression for the weak value is
〈ψf ||001〉〈001||ψi〉 = 〈100|UL4UL3|001〉〈001|UL2UL1|100〉.
This expression remains the same if we calculate
UL4UL3|001〉〈001|UL2UL1|100〉 at first and then project
it on D1. Nevertheless, the physical meaning of this quantity
is clear: The photon state evolves stage by stage until, at stage
L2, a projection measurement is made so that the photon
state collapses to |001〉. After that, the system evolves again
but with a new initial state. The interference is destroyed
as a result of the projection measurement. The quantity
|〈ψf |001〉〈001|ψi〉|2 represents the probability of D1 clicking
under the condition that the photon is found at position
C. In this case a click at D1 corresponds to a different
situation in comparison with when we did not try to obtain
which-path information. Obviously, since we tried to obtain
the which-path information, the interference is lost.

In a weak measurement, the evolution is given by
e−iHτ |ψi〉 ≈ |ψi〉 − (iHτ )/h̄|ψi〉 = |ψi〉 − iητ |001〉〈001|P
|ψi〉, and the measurement does not disturb the original system
too much. However, the weak value itself is not “weak” and
leads to the partial destruction of interference in the small
Mach-Zehnder interferometer. As mentioned before, the weak
value (which is, in general, complex) cannot be measured
directly. This raises questions concerning its interpretations
as the probability of the existence of the photon. An attempt
to measure this weak value leads to noise that stems from
the measurement process. In particular, the weak value cannot
provide us any information about the photon path without
affecting the next evolution processes of the photon even if the
final state does not change.

Now we can roughly answer why AB and AC are nonzero
but AE = 0. The main reason is that these three measurements
are not made on the same system at the same time. If
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we do not make any measurement at B or C, there is no
doubt that no photon will be found at E. A straightforward
calculation without a postselected state leads to the same result.
However, if we make a measurement at B or C, the situation is
different. Since interference is destroyed, the photon has some
probability leaking into E and finally causes D1 to click. The
probability of finding the photon at E is not zero anymore.

So far we have qualitatively discussed the effect of
weak measurement and shown that the approach of weak
measurement should not lead to a paradox that does not exist in
the usual quantum approach. In particular we have discussed
the idea that the weak value describes the noise corresponding
to the measurement. In the following, we consider a model
to show that the conclusion that the photon exists in paths B
and C but not E is not correct and the explanation in terms of
negative photon numbers is not needed.

III. WEAK NONDEMOLITION MEASUREMENT

We consider a weak quantum nondemolition measurement
using a Hamiltonian of the form H = h̄ηac

†ac|b〉〈b|, where
the system operator is a

†
cac = |001〉〈001|, indicating the

measurement is at position C and state |b〉 is the state of the
meter.

Such a Hamiltonian can, for example, be realized by a
single three-level atom in the cascade configuration in the arm
C [20,21]. The upper two levels |a〉 and |b〉 are dispersively
coupled to the photon with a detuning � such that η = h̄g2/�

[22], with g being the atom-field coupling coefficient. The
atom, acting as a meter, is initially prepared in a superposition
of the middle level |b〉 and the lower level |c〉, i.e., |ψA〉 =
(|b〉 + |c〉)/√2.

According to the photon-atom interaction at position C, the
projection of the evolved state on the final state |α〉|ψf 〉 (with
D1 clicking and the atom found in level α with α = b,c) is

〈α|〈ψf |e−iHτ/h̄|ψi〉|ψA〉
≈ 〈α|〈ψf |(1 − iHτ/h̄)|ψi〉|ψA〉

= 〈α|〈ψf ||ψi〉
( |b〉 + |c〉√

2
− iACητ

|b〉√
2

)

≈ 〈α|〈ψf ||ψi〉(e−iηACτ |b〉 + |c〉)/
√

2. (5)

We assume that the atom undergoes the unitary transformation
|b〉 → (|b〉 + i|c〉)/√2, |c〉 → (i|b〉 + |c〉)/√2 after its inter-
action with the photon wave packet at C. The amplitude be-
comes 〈i|〈ψf ||ψi〉[eiηACτ (|b〉 + i|c〉) + (i|b〉 + |c〉)]/2. The
probabilities of finding the atom in levels |b〉 and |c〉 are

Pb = 1
2 |〈ψf ||ψi〉|2[1 − sin(ηACτ )], (6)

Pc = 1
2 |〈ψf ||ψi〉|2[1 + sin(ηACτ )]. (7)

The weak value AC can now be inferred from Pb and Pc as
follows:

AC = 1

ητ
arcsin

Pc − Pb

Pb + Pc

. (8)

We also note that

|〈ψf ||ψi〉|2 = Pb + Pc. (9)

Thus the weak value AC is obtained indirectly under the
first-order approximation. The probability of D1 clicking
does not change as a result of weak measurement since
|〈ψf ||ψi〉|2 = Pb + Pc. This makes it tempting to claim that
the weak measurement has no influence on the final outcome,
and we should be able to conclude that the photon exists in
path C but not E. The situation is, however, more complex,
and we look at it more carefully.

The evolved state at stage L2 after the measurement is

(1 − iHτ/h̄)|ψi〉|ψA〉
= (1 + i)

[
r|100〉 + t√

2
(|010〉 + |001〉)

]
(|b〉 + |c〉)/2

− i
t√
2
ητ |001〉(|b〉 + i|c〉)/2. (10)

Here the last term is the noise term. It is true that, due to the
weak nature of interaction (ητ � 1), the direct measurement
of the atomic levels |b〉 and |c〉 cannot give us significant
information of the photon path. However, the distribution of
the photon in different paths has changed corresponding to the
measurement. The quantum interference is partially destroyed.
For example, if the atom is found in level |b〉, the probability
of finding the photon at E is η2τ 2t2/16. Since the components
of the photon state at position E corresponding to |b〉 and
|c〉 have different phases, they have different contributions for
the interference happening at BS1. In one case the probability
of D1 clicking increases, and in the other case it decreases,
resulting in a null effect. However, in the following, we
show that, if we carry out our calculation exactly (instead
of restricting only to the first order in ητ ), the measurement
changes the probability of D1 clicking in the order (ητ )2.

The photon-atom state at stage L2 is given by

e−iHτ |ψi〉|ψA〉
=

[
r|100〉 + t√

2
(|010〉 + |001〉)

] |b〉 + |c〉√
2

+ t

2
(e−iητ − 1)|001〉|b〉

→ 1 + i

2

[
r|100〉 + t√

2
(|010〉 + |001〉)

]
(|c〉 + |b〉)

+ t

2
√

2
(e−iητ − 1)|001〉(|b〉 + i|c〉). (11)

In the last step, we made the same unitary transformation for
|b〉 and |c〉 as discussed above [namely, |b〉 → (|b〉 + i|c〉)/√

2, |c〉 → (i|b〉 + |c〉)/√2]. The photon-atom state evolves
to

UL4UL3e
−iHτ |ψi〉|ψA〉

= UL4

[
1 + i

2
(r|100〉 + t |001〉)(|c〉 + |b〉)

+ t

4
(e−iητ − 1)(|001〉 − |010〉)(|b〉 + i|c〉)

]

= 1 + i

2
(r2|100〉 + rt |010〉 + t |001〉)(|c〉 + |b〉)

+ t

4
(e−iητ − 1)(|001〉 − r|010〉 + t |100〉)(|b〉 + i|c〉).

(12)
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Regardless of whether we find the atom in level |b〉 or |c〉, the
probability of finding the photon at E is t2

4 [1 − cos(ητ )]. The

probability of D1 clicking is now given by Pb+Pc =r4+ t2

2

[1−cos(ητ )]( t2

2 − r2), where Pb = | 1+i
2 r2 + t2

4 (e−iητ − 1)|2
and Pc = | 1+i

2 r2 + i t2

4 (e−iητ − 1)|2. An interesting observa-
tion is that, if we project Eq. (11) directly on the postselected
state, we get the same result.

Here we note that the probability of D1 clicking is
changed due to the influence of measurements. In the weak
measurement approximation, these results reduce to Pb ≈
r4[1 − sin(ACητ )]/2 and Pc ≈ r4[1 + sin(ACητ )]/2, yield-
ing the same results as given in Eqs. (6) and (7). The
second-order difference in the clicking rate of D1 which comes
from measurement disappears.

So here is the resolution of the confusion. First we note
that, although the probability of finding the photon at E is
second order in ητ , the amplitude is still first order. This linear
amplitude proportional to the transmissivity (−iητ t2/4),
when added to the amplitude along path A (r2(1 + i)/2),
yields Pb that is linear in ητ . A similar result is obtained for
Pc. This important observation clarifies that, no matter how
weak the quantum nondemolition measurement at B or C is, it
destroys the interference leading to a nonzero amplitude at E,
which when combined with the amplitude along A gives the
correct detection probability at detector D1. As the probability
of finding the photon at E appears to be zero in the linear
approximation, we can be led to the erroneous claim that
the photon does not exist at E when a weak measurement is
made at B or C. However, we see that it is the linear amplitude
at E that is responsible for the experimentally observable
quantities Pb and Pc in the linear order.

Up to now, we proposed a detailed design of making a weak
measurement at location C to show that the essence of the weak
measurement is not different from usual quantum-mechanics
methods. More importantly, we showed that, no matter how
weak the measurement is, a measurement always disturbs the
original system. This is the price we always need to pay in
order to get the information in an interferometric system of
the type shown in Fig. 1. Thus we obtain contribution not only
from the original system (from path A in our case) but also
from the perturbation coming from measurements we made
(in path B and/or C).

In order to emphasize our point, we can consider another
measurement on the same system at the same time. For
example, we can place the meter atoms at positions C
and E and carry out the joint measurement. If Vaidman is
correct [18,19], the pointer at E should not find any photon.
However, even when we do the calculation that follows the
logic of weak measurement, the corresponding joint weak
value yields a different result in accordance with the usual
quantum-mechanical expectation. The joint weak value [23]
corresponding to a click at D1 is given by

〈ψf |UL4|010〉〈010|UL3|001〉〈001|UL2UL1|ψi〉
〈ψf |UL4UL3UL2UL1|ψi〉 = t2

2r2
. (13)

This value is nonzero and is equal to AC . The reason is that
if the photon is found at C (and finally causes D1 to click) it
must pass through path E.

IV. CONCLUDING REMARKS

In summary, we have considered a generic system of
measurement of weak values in a nested Mach-Zehnder
interferometer and have shown, via a straightforward quantum-
mechanical calculation, that the weak measurement and
the subsequent evolution are consistent with our quantum-
mechanical expectations. There is no mystery or paradox in the
simple setup of Fig. 1. The quantum-mechanical paradigm that
a measurement disturbs the system can explain the outcome of
a potential experiment. We note that we considered a particular
model for the system-meter interaction to illustrate our results
but similar conclusions can be drawn in other systems, such
as in [12]. We also mention that the three-box paradox [2]
corresponds to the special case r = 1/

√
3 and t = √

2/3.
A resolution of this paradox can be analyzed within the
framework presented in this paper. For a careful analysis of
weak measurement, the effect of the measuring device or the
meter should be included in the subsequent evolution.
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