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Optimal probabilistic measurement of phase
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When measuring the phase of quantum states of light, the optimal single-shot measurement implements a
projection on the unphysical phase states. If we want to improve the precision further we need to accept a reduced
probability of success, either by implementing a probabilistic measurement or by probabilistically manipulating
the measured quantum state by means of noiseless amplification. We analyze the limits of this approach by
finding the optimal probabilistic measurement that, for a given rate of success, maximizes the precision with
which the phase can be measured.
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Phase is a central concept in both classical and quantum
optics. It was, however, a matter of lengthy dialogue before
the quantum description of phase was established. The initial
attempts of Dirac to treat phase as a canonical conjugate to
photon number failed because it is impossible to represent
phase by a quantum mechanical observable [1]. As a conse-
quence, phase cannot be projectively measured; it can only
be estimated (or guessed) by analyzing the results of other
measurements. Despite this, phase states do exist [2] (even
if they are not orthogonal) and they were eventually used to
construct a well-behaved phase operator [3]. Other attempts
to describe phase properties of quantum states relied on the
measurement-related phase distribution [4]. Both approaches
were later reconciled with the fundamental canonical phase
distribution [5].

The canonical phase distribution characterizes phase prop-
erties of a quantum state and it is completely independent
of its photon number distribution. It can be used to obtain a
wide range of quantities related to phase estimation, but it also
determines how much information about the phase of the state
can be obtained by performing a measurement only on a single
copy of it. True, the ideal canonical phase measurement does
not and cannot exist, but several approximative approaches
have been suggested [6,7].

Aside from improving the actual detector scheme, the
overall performance of phase measurement can be enhanced
also by specific alteration of the measured quantum state. A
highly nonclassical quantum state can in principle lead to an
unparalleled precision [8], while weakly nonclassical states
are both beneficial and experimentally feasible [9]. However,
if the state is unaccessible prior to phase encoding, we need
to rely on operations that can enhance the amount of phase
information already carried by the scrutinized state. Such
operations are commonly referred to as noiseless amplifiers
and a great deal of attention was recently devoted both to the
concept [10] and to the experimental realizations [11]. The
cost of this improvement comes in the reduced success rate of
the operation. The amplification is therefore not very practical
when the measurements can be repeated, but it may be useful
when the event to be detected is rare and we need to be certain
that the only measurement outcome obtained corresponds to
the theoretical value as closely as possible.

However, even in the scenarios in which the probabilistic
approach is worth considering, it would be more prudent to

design an actual probabilistic measurement of phase. Such a
measurement would be conceptually similar to methods of
unambiguous discrimination of quantum states [12], except
that a truly errorless detection would be possible only in the
limit of zero probability. Rather than this regime of limited
interest, the question is how does reducing the success rate of
the measurement help us measure the phase more precisely.
Maybe even more importantly, we ask what the theoretical
limits of this approach are. In this paper we attempt to answer
these questions.

Let us start by reviewing what we actually mean by
the term “phase measurement.” Phase has a well-defined
meaning only in the context of an interferometric setup,
where it expresses the relative length difference between the
two optical paths. In the context of continuous-variable (CV)
quantum optics [13], phase is often considered a stand-alone
property. However, this is only because the other path in the
interferometer, represented by the local oscillator, is taken
for granted. In a sense this is justified, as the local oscillator
is intense enough to be, for all intents and purposes, just a
classical reference framing the associated quantum system.
Measuring the phase of the quantum system is then equivalent
to discerning a value of the parameter φ, which is encoded into
the quantum state by means of an operator exp(iφn̂), where n̂

is the photon number operator. Apart from special cases it is
impossible to determine the parameter φ perfectly. Rather than
complete knowledge, the result of the measurement provides
the observer just with the best guess of the parameter, where the
quality of the guess depends on both the state of the measured
system and the phase measurement employed.

The simplest single-shot measurement of the phase of opti-
cal signals relies on simultaneous measurement of quadrature
operators X and P , corresponding to the Hermitian and the
anti-Hermitian part of the annihilation operator. The phase can
be then deduced from the measurement results x ′ and p′ by
taking φ = tan−1(p′/x ′). Of course, in addition to knowledge
of the phase, this particular measurement also provides us with
knowledge of the energy of the state. Therefore, the obtained
phase information is not as complete as it could be.

The best possible measurement that can be imagined is
the so-called canonical measurement of phase. It can be
mathematically described as a projection on idealized phase
states |θ〉 = ∑∞

k=0 eiθk|k〉. These phase states are not normal-
ized, which makes them similar to eigenstates of continuous
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operators (such as position and momentum), but they are also
not orthogonal. The nonorthogonality is actually responsible
for the impossibility of measuring phase completely because
a single measured value of θ is not exclusive just to a
single phase state. For any quantum state ρ̂ the results of
the canonical phase measurement can be characterized by the
probability distribution P (θ ) = Tr[ρ̂|θ〉〈θ |], i.e., the canonical
phase distribution. The shape of the distribution is solely given
by the employed quantum state; the encoded phase value is
represented only as a linear displacement. For a particular
measured value θ the value P (θ ) is related to the probability
that the measured value is the encoded value. Simplistically,
we can say that for any quantum state, the quality of phase
encoding is given by the width of the canonical distribution.
This can be formally expressed by evaluating the variance of
the phase distribution, but it is actually more convenient to use
a different quantity that takes into account the periodicity of
the phase in the interval |0,2π〉 [14]. The new quantity is the
phase variance V = |μ|−2 − 1, where μ = 〈exp iθ〉 [15]. The
phase variance is completely independent of displacement in θ

and therefore is completely determined by the state ρ̂. We can
also see that the phase variance solely depends on the value of
the parameter μ, which we are going to use from now on.

For an arbitrary pure quantum state

|ψ〉 =
∞∑

n=0

cn|n〉, (1)

the value of μ can be found as

μ =
∞∑

n=0

cnc
∗
n+1. (2)

If we fix the magnitudes of the individual coefficients, μ will
be maximized when all the coefficients are real and positive.
For quantum states from a limited-dimensional Hilbert space,
the parameter μ can be straightforwardly maximized and
optimal states for phase encoding can be found [6,16,17]. The
existence of such ideal states tells us that there are limits to
how well the phase can be encoded in a limited-dimensional
Hilbert space. In contrast, if the Hilbert space is infinite,
which is the case in CV quantum optics communication, it
is in principle possible to encode the phase perfectly, in such
the way that μ = 1 and consequently the phase variance is
zero. As this is obviously the case in classical communication,
where phase can be encoded and decoded with arbitrary
precision, the inability to measure phase in quantum physics
stems from employing quantum states that are so weak their
Hilbert space is effectively limited. However, there is a key
difference between these states and states from a Hilbert
space with factually limited dimension. The difference is that
the infinite-dimensional Hilbert space offers a possibility of
measuring the state arbitrarily well if we accept a reduced
probability of success.

The idea that measurement can be improved when we
accept a reduced probability of success is not a new one. When
discriminating quantum states drawn from a finite ensemble,
one can accept the existence of inconclusive results (reduced
success rate) in order to reduce the probability of erroneous
result to zero [12]. Similarly, when measuring a continuous
parameter such as phase, it is possible to conditionally

transform the quantum states in such a way that the subsequent
measurement leads to more precise results [10,11]. Taken
as whole, the combination of probabilistic operation and
measurement is essentially a probabilistic measurement. In
the following we develop a unified picture describing the
probabilistic measurement of the phase of a quantum state
and derive bounds for the optimal one. Namely, we will look
for such a measurement that, for a given probability of success,
yields the best possible result.

The extension of the canonical measurement of phase into
the probabilistic regime can be represented by a set of operators
�φ , each of them corresponding to a positive detection event of
value φ and a single operator �0 representing the inconclusive
results. Together these operators form a positive-operator-
valued measure (POVM). For the canonical deterministic
measurement of phase these operators are �

(D)
φ = 1

2π
|φ〉〈φ|.

Keeping the pure-state projector structure intact, we can
express the probabilistic POVMs as

�
(P )
φ = 1

2π
F |φ〉〈φ|F †, �

(P )
0 = 1 −

∫
�

(P )
φ dφ. (3)

Here F = diag(f0,f1, . . .), where |fj | � 1 for all j = 0,1, . . .,
is an operator diagonal in Fock space. It is practical to represent
the probabilistic measurement by a filter, transmitting and
modifying the quantum state with some limited probability,
followed by the deterministic canonical phase measurement.
The operator F then plays the role of the probabilistic filter
and the task of finding the optimal measurement is reduced to
finding the optimal operator F .

After the first glance at the problem, one issue immediately
becomes apparent. For any quantum state ρ, the probability of
successful measurement P = 1 − Tr[ρ�

(P )
0 ] is dependent on

the choice of the measured state. The optimal measurement
therefore needs to be tailored to a specific state or to a class
of states. However, let us first approach the task in a general
way. Suppose we have an input quantum state (1). For phase
encoding it is best when all the coefficients cn are real and
positive, so we will assume this is the case [18]. The act of the
filter transforms this state into a new one

|ψf 〉 = 1√
P

∞∑
n=0

fncn|n〉, (4)

where P = ∑∞
n=0 f 2

n c2
n is the probability of success and the

filter parameters fn are also considered real and positive. For
any given probability P , the act of finding the optimal filter
relies on maximization of

μ =
∞∑

n=0

fnfn+1cncn+1 (5)

under the condition
∑∞

n=0 c2
nf

2
n = P . The problem can be

reduced to solving the system of equations

fn−1an−1 + fn+1an = λfnxn,

n = 0,1, . . . , (6)
∞∑

n=0

xnf
2
n = P,
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where an = cncn+1, xn = c2
n, f−1 = 0 by convention, and λ

is the Lagrange multiplier. Finding the solution under the
most general conditions is not an easy task. Fortunately, there
are some simplifications that can be made, provided we are
applying the filtration to the practically significant coherent
states.

A coherent state |α〉 = e−|α|2/2 ∑∞
k=1

αk√
k!

|k〉 can be consid-
ered a quantum version of a classical complex amplitude of
light. It can be used to describe the state of light produced
by a well-stabilized laser and it has a place both in classical
communication [19] and in quantum cryptography [20], both
of which can employ phase encoding. Coherent states are
fairly well localized in the Fock space: For any coherent state
there always exists a finite N -dimensional Fock subspace
such that the probability of the state manifesting outside of
it can be made arbitrarily small. As a consequence, those
higher Fock dimensions do not significantly contribute to the
state’s properties and the values of the respective filters can
be set to one, i.e., fn = 1 for all n � N . Of course, with
severe filtering leading to extremely low success rates, some
previously dismissable Fock numbers can start being relevant,
but this can be remedied by choosing an even higher photon
number N ′ as the new threshold of significance.

This dramatically simplifies the process of finding the
optimal filter. All the filter coefficients for n = 0, . . . ,N can
be now expressed in the form

fn = f0Pn(λ), (7)

where Pn(λ) is a polynomial of λ defined by the recursive
relation

Pn+1(λ) = λxnPn(λ) − an−1Pn−1(λ)

an

, (8)

with P0(λ) ≡ 1 and P1(λ) = x0/a0. Since f0 can be obtained
from the condition fN = f0PN (λ) = 1, getting the full solu-
tion is reduced to finding the correct value of the Lagrange
multiplier λ, which is one of the roots of the polynomial
equation

N∑
n=0

xnPn(λ)2 =
(

P − 1 +
N∑

n=0

xn

)
PN (λ)2. (9)

To be of physical relevance, the obtained λ needs to be real and
it has to lead to a filter with parameters, which are all positive
and bounded by one. Among the values of λ satisfying those
condition, the one corresponding to the global extreme, rather
than just a local one, needs to be selected by directly checking
the respective value of μ.

Interestingly enough, not all combinations of α, P , and N

lead to physical filters. In fact, for any specific pair of values
of α and P , there are only a handful of values of N providing
physically relevant filters. This is illustrated in Fig. 1, where
it can be seen that for log10 P = −1.3 both N = 2 and 3
provide a physical filter (N = 3 is optimal). There is no filter
for N = 1 because it is just impossible to reach such a low
probability by damping only a single coefficient. There are
also no physical filters for N � 4: All the obtained values of
λ are either complex or lead to filters that are not bounded
by one. This could be resolved by adding additional boundary
conditions for the set of equations, but it turns out that it
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FIG. 1. (Color online) Value of μ for the optimal probabilistic
measurement of the phase of the coherent state with α = 0.5
dependent on the probability of success. Differently colored areas
correspond to filters with different filter parameters N .

is not necessary, as in these cases the optimal filter can be
obtained for a different value of N . The particular optimal N

needs to be found numerically. Fortunately this is a simple
matter of checking a range of values of N and finding the one
that leads to positive results. For illustration, several values
of N optimal for some range of α and P are depicted in
Fig. 2. As another illustration, Fig. 3 shows improvement of
the probabilistic measurement for several coherent states with
different amplitudes. Finally, the optimal filters for a specific
coherent state and a range of success probabilities are depicted
in Fig. 4.

We have introduced the concept of optimal probabilistic
measurement of quantum phase and shown how such a
measurement can be constructed. The approach can be used for
any quantum state, but we have mainly focused on practically
relevant coherent states, for which we have managed to obtain

−2.0
−1.8

−1.6
−1.4

−1.2
−1.0

−0.8
−0.6

−0.4
−0.2

0.2
0.4

0.6
0.8

1.0
1.2

1.4
1.6

1.8
2.0

0

5

10

15

log
10

 P
α

op
tim

al
 N

m
ax

FIG. 2. (Color online) Optimal filter parameters N dependent on
the coherent amplitude of the coherent state α and the probability of
the successful measurement P .
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FIG. 3. (Color online) Value of μ for the optimal probabilistic
measurement of the phase for various coherent states.

the form of the optimal measurement in a semianalytic form.
The probabilistic aspect of the measurement can be represented
by a filter transmitting various Fock space elements with
different amplitudes. The derived optimal measurement sets an
upper bound on the trade-off between the quality and the prob-
ability of success of phase measurements. The filter required
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FIG. 4. (Color online) Optimal filters for the coherent state with
α = 0.5 and a range of success probabilities.

for such a measurement is a highly nonlinear operation, but
in light of the recent advent of manipulating light on the
individual photon level [11], it might be within experimental
reach.
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A 51, 84 (1995).
[6] H. M. Wiseman and R. B. Killip, Phys. Rev. A 56, 944 (1997);

57, 2169 (1998).
[7] K. L. Pregnell and D. T. Pegg, Phys. Rev. Lett. 89, 173601

(2002).
[8] P. Kok, A. N. Boto, D. S. Abrams, C. P. Williams, S. L.

Braunstein, and J. P. Dowling, Phys. Rev. A 63, 063407 (2001).
[9] H. Yonezawa, D. Nakane, T. A. Wheatley, K. Iwasawa,

S. Takeda, H. Arao, K. Ohki, K. Tsumura, D. W. Berry,
T. C. Ralph, H. M. Wiseman, E. H. Huntington, and A. Furusawa,
Science 337, 1514 (2012).

[10] T. C. Ralph and A. B. Lund, in Proceedings of the Ninth Interna-
tional Conference on Quantum Communications Measurement
and Computing, edited by A. Lvovsky, AIP Conf. Proc. No. 155
(AIP, New York, 2009); P. Marek and R. Filip, Phys. Rev. A 81,
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