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Stability of N-soliton molecules in dispersion-managed optical fibers
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We investigate the stability of N -soliton molecules in dispersion-managed optical fibers with focus on the
recently realized 2- and 3-soliton molecules. We calculate their binding energy using an averaged nonlinear
Schrödinger equation. A combination of variational and numerical solutions to this equation shows that it
describes well the intensity profiles and relative separations of the experimental molecules. Extending the
calculation to larger values of N , the binding energy per soliton is found to saturate at N � 7.
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In the last two decades, developments in fiber-optic com-
munications have demonstrated that dispersion management
(DM) presents a novel attractive type of nonlinear carrier of
information in optical fiber links. A few years ago, a stable
bound state of two DM solitons in optical fibers was realized
experimentally [1] and most recently 3-soliton molecules in
DM optical fibers were also realized by the same group [2]. The
main motivation behind creating such molecules is to increase
the bit rate of data transfer in optical fibers. Coding with
two or more solitons per clock period increases the alphabet
beyond the binary scheme of a single soliton. In this manner,
the Shannon limit [3], which soon will be reached, may be
exceeded [4].

The main concern in soliton molecules being data carriers is
their stability against disintegration. Hence, intensive interest
in their stability has emerged [5–11]. The existence of a
nonzero binding energy of the soliton molecules is an indi-
cation of its stability. The energy of a stable soliton molecule
should have a minimum for a finite separation between the
solitons. In Ref. [12] it was shown that the energy of a 2-soliton
molecule indeed exhibits such a minimum, and the potential
of interaction was also shown to be of molecular type.

The main aim of the present work is to provide a theoretical
framework that explains the stability of 2- and 3-soliton
molecules as observed by Mitschke and co-workers [2,4].
Specifically, we will show variationally that there is indeed
a nonzero binding energy for 3-soliton molecules in DM
fibers. The calculation provides an estimate for the strength
of the bond between the solitons and shows regions in the
parameter space where the molecule becomes unstable. Here,
we address the problem of calculating the binding energy of
the soliton molecule using an averaged nonlinear Schrödinger
equation (NLSE). It was shown in Ref. [13] that solitons in DM
fiber can be described by an effective nonlinear Schrödinger
equation with constant coefficients and a quadratic potential.
The averaged equation is more appealing for capturing the
main features of the binding mechanism. At first, we show
that the averaged equation is not integrable, hence variational
and numerical approaches will be followed. For both cases
we compare the intensity profiles with the experimental ones
and obtain a good agreement. Finally, the calculation is then
extended to the larger values of N up to N = 12.

We first show that the evolution of solitons in dispersion-
managed dissipative optical fibers obeys a NLSE with a

quadratic potential [13] which is integrable [14]. It turns out,
however, that integrability restricts the time dependence of
the dispersion to the nonrealistic case of exponential form.
Therefore, an effective NLSE will be derived by averaging over
one period of the dispersion map [13]. The effective equation
will then be used to calculate the binding energy of the soliton
molecule.

Solitons in dispersion-managed dissipative optical fibers
are described by the following NLSE:

i qz + d(z)

2
qtt + |q|2 q = −i �(z) q, (1)

where q(t,z) is the envelope function of the soliton and
the subscripts denote partial derivatives. Here z and t are
normalized distance and time, and d(z) corresponds to the
dispersion management map defined by

d(z) =
{

d+, 0 � z � L+,

d−, L+ < z � L+ + L−,
(2)

where d+,− are constant group velocity dispersions of the
fiber segments L+,−, respectively. The loss (gain) corresponds
to positive (negative) �(z).

The transformation q(t,z) = exp[− ∫
�(z) dz] u(t,z)

moves the loss term to the coefficient of the nonlinear term. A
quadratic phase chirp develops due to the propagation of the
soliton in the fiber which corresponds to the transformation
u(t,z) = w(t,z) a(z) exp[i C(z) t2/2], where C(z) is a real
function. With the scaling transformations τ = p(z) t ,
w(t,z) = W (t,z) a(z), where p(z) = exp[− ∫

C(z) dz] and
a(z) is a real function, the last equation takes the form

i Wz + d p2

2
Wττ + a2 e−2

∫
� dz |W |2 W − 1

2
κ τ 2 W = 0,

(3)

where

ȧ/a + C d/2 = 0, (4)

ṗ/p + C d = 0, (5)

which give a = c1
√

p, where c1 is a real arbitrary constant,
and defining

κ = Ċ + d C2

p2
, (6)
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FIG. 1. A closed orbit in the p-C plane, which solves Eqs. (4)–(6),
with the experimental parameters d− = −4.259 ps2/km,
d+ = 5.159 ps2/km, L+ = 22 m, and L− = 24 m of Ref. [4]
and the assignments κ+ = 0.009 and κ− = −0.01.

Note that Eq. (3) can be easily put into integrable form [15].
However, integrability restricts d(z) to be exponential, which
is not a realistic option. Typically, Eqs. (4) and (5) are solved
using Nijhof’s method [16], where a close orbit in the p-C
plane guarantees a unique solution for appropriate values of
κ+ and κ− defined as

κ(z) =
{

κ+, 0 � z � L+,

κ−, L+ < z � L+ + L−.
(7)

A closed orbit was indeed found using the experimental
parameters of Ref. [2] (see below), as shown in Fig. 1. Using
the solutions for p(z) and C(z), Eq. (3) can be averaged over
one dispersion period to give

iWz + β

2
Wττ + A0|W |2W − 1

2
K0τ

2 W = 0, (8)

where 〈· · ·〉 ≡ ∫ L

0 (· · ·)dz/L, β = 〈dp2〉, A0 = c2
1〈p〉, and

K0 = 〈κ〉, and a dissipationless fiber �(z) = 0 was considered.
Thus, solitons in a dispersion-managed fiber are described by
this averaged equation. It does indeed describe the core and
oscillatory tails of the dispersion-managed solitons [13]. This
equation will be used in the following to calculate the binding
energy and equilibrium size of soliton molecules.

For numerical purposes, it is useful to reduce Eq. (8) to a
dimensionless form. First we introduce the parameters z′ =
A0 z, β ′ = β/A0, and K ′

0 = K0/A0. Then Eq. (8) becomes

iWz′ + β ′

2
Wττ + |W |2W − 1

2
K ′

0τ
2W = 0. (9)

We introduce the dimensionless variables Z = z′/L′, T =
τ/τm, and � = W

√
L′, where τm is the characteristic time

scale equal to the pulse duration of the laser source and
L′ = (L+ + L−)A0 is the length of the dispersion map period.
In terms of these parameters, the dimensionless NLSE takes
the form

i�Z + D

2
�T T + |�|2� − 1

2
BT 2� = 0, (10)

where D = β ′L′/τ 2
m and B = K ′

0L
′τ 2

m. We use the experi-
mental parameters for the DM map corresponding to the setup
of [2]. The pulse duration τm = 0.25 ps, d− = −4.259 ps2/km,
d+ = 5.159 ps2/km, A0 = 1.7 W−1km−1, L+ = 24 m, L− =
22 m, and L′ = 0.078 W−1. Note that d(z) here is the negative
of that in Refs. [2,4]. Using these experimental values in
Nijhof’s method, as described above, we get β = 〈dp2〉 =
0.71 and K0 = 〈κ〉 = −0.0156. Notice that A0 = c2

1〈p〉 = 1.7
is given as an experimental parameter which accounts for
a specific selection of the arbitrary constant c1. Thus, the
scaled coefficients D and B take the values D = 0.521 and
B = −4.5 × 10−5.

We use a variational calculation to show that 2- and
3-soliton molecules have indeed nonzero binding energy. This
will be evident from the minimum of the energy in terms
of a finite separation between solitons. The depth of the
minimum will give an estimate to the strength of the bond in the
molecule.

We employ the following 3-soliton trial wave function

�(Z,T ) = A

3∑
j=1

Aj exp

[
− (T − ηj )2

q2
+ iϕj

]
(11)

where A guarantees the normalization of � to the number
of solitons in the molecule, namely, N = 3. The variational
parameters q(Z), ϕ(Z), and η(Z) correspond respectively to
the width, phase, and peak position of the soliton. The energy
functional corresponding to Eq. (10) reads

E =
∫ ∞

−∞

[
D

2
|∇�|2 + BZ2|�|2 − 1

2
|�|4

]
dT . (12)

In real units, this energy can be expressed as E[J ] =
(τm/L′)E.

Plotting the energy as a function of the soliton width q using
the experimental values of all other parameters, as in Ref. [4],
a minimum is obtained at q = 0.32 ps which is close to the
experimental value for the 3-soliton molecule. In terms of the
separation between solitons, 	1 = η1 − η2 and 	2 = η2 − η3,
Fig. 2 shows that the energy has a local minimum for finite
values of separations, namely, at (	1,	2) = (−1.0,−1.2).
This agrees also with the experimental values for equilibrium
separations, as will be shown more clearly below in Fig. 3. The
fact that there is also a minimum at 	1 = 	2 = 0 indicates
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FIG. 2. Binding energy of three solitons relative to that of the
single-soliton energy Ess as function of the separation 	1 and 	2

with same experimental parameters of Refs. [2,4] and for D = 0.521
and B = −4.5 × 10−5.
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FIG. 3. (Color online) Field amplitude envelopes along
dispersion-managed fiber of 2-soliton molecule (left), 3-soliton
molecule (right). Green solid line: our variational calculation; blue
dotted line: experimental data of [2]; and red dashed line: simulation
of [2].

that the stability of the soliton molecule is reduced due to the
possibility of tunneling from the off-centered minima to the
one at the origin, signifying the merging of the three solitons
into one.

The value of the energy at the local minimum represents
a measure of the strength of the bond in the molecule. The
binding energy of the 3-soliton molecule relative to that of the
single-soliton energy, denoted by Ess , is taken from Eq. (12)
and equals E/Ess = 0.9.

In Fig. 3 we compare the intensity profile obtained by our
variational calculation with the experimental and simulation
results of Ref. [2] for both 2-soliton and 3-soliton molecules.
The figure shows a good agreement between the variational
calculation on the one hand and the experimental data and
the direct numerical solution of the NLSE on the other. Our
curves were calculated using the experimental values of all
parameters apart from the separations between solitons which
were left as variational parameters. The intensity profile was
then calculated using the solitons separations obtained by
minimizing the energy functional.

To study the equilibrium properties of N -soliton molecules,
we extend the variational formalism of the previous section to
larger values of N . Therefore, we consider the generalized
Gaussian trial function

�(T ,Z) = A

Ns∑
j=1

Aj exp

[
− (T − ηj )2

q2
+ iϕj

]
, (13)

where Aj = A0[1 + γ (−1)j ], ηj = −(Ns − 1)/2 + (j −
1)	, and ϕj = π (−1)j with Ns being the number of solitons
in the molecule. This represents a string of N solitons each
of width q, amplitude Aj , center-of-mass position ηj , and
phase φj . For simplicity, the amplitudes were taken to alternate
between A0(1 + γ ) and A0(1 − γ ), the separation between
adjacent solitons is 	, and phases alternating between π and
−π . In this manner, the parameter space is reduced to two
parameters only, γ and 	. Using the trial function, Eq. (13),
in the energy functional, Eq. (12), it is straightforward to
calculate the energy of the N -solitons molecule. The energy
expressions turn out to be lengthy and hence will not be shown
here for convenience. One can see from Fig. 4 that the binding
energy of three solitons is the largest (in magnitude) among
all other molecules. The binding energy starts to stabilize
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FIG. 4. (Color online) Left panel: Energy minimum vs the
number of solitons for A0 = 1, γ = 0.5, δ = 0.5, D = 0.521, and
B = −4.5 × 10−5. Red solid line: Emin1; blue dotted line: Emin2; and
green dashed line: Emin3. Right panel: Solitons separations vs the
number of solitons for the same parameters. Red solid line: 	min1;
blue dotted line: 	min2; and green dashed line: 	min3. Emin1,2,3 and
	min1,2,3 correspond, respectively, to the energy and separation at the
first, second, and the third minima of the energy.

when the number of solitons reaches 7. Another important
remark is that the odd number of soliton molecules is more
stable than the even ones. A similar behavior is obtained for
the separation where it decreases with increasing number of
solitons to saturate at Ns � 7. Also, a careful observation of
the same figure shows that the separation between the second
and third solitons converges at Ns > 4 to zero, which means
that all solitons will eventually collapse into one and therefore
the molecule does not exist for this case.

To verify that the equilibrium positions in Fig. 4 correspond
to stable molecules, we have solved numerically the NLSE
for three solitons. Our numerical solution was performed
by the split-step fast Fourier transform method [17], with
2048 Fourier modes and the step size was δz = 5 × 10−4.
In one case, we started the simulation with solitons located
at the equilibrium initial positions and in another case with
initial positions that were deviated from the equilibrium
ones. Figure 5(a) shows that a stable soliton exists and the
oscillations of the solitons are almost absent, while in Fig. 5(b),
larger amplitude oscillations are caused by the deviation
from the equilibrium positions. This clearly indicates that the
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FIG. 5. (Color online) Spatiotemporal plot of the field amplitude
for a 3-soliton molecule with (a) the equilibrium positions that
minimize the energy, as in Fig. 4, and (b) compressed initial positions:
η1 = 4.0, η2 = 5.3, η3 = 7.0. The parameters are the same as in
Fig. 4.
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FIG. 6. (Color online) Field amplitude envelopes along
dispersion-managed fiber of 4-soliton molecule for the same parame-
ters as in Fig. 4. Blue dashed line: our numerical simulation of NLSE;
red dotted line: our variational calculation.

equilibrium positions in Fig. 4 indeed correspond to stable
molecules.

To check the validity of our variational calculations for
many soliton molecules, we solve again numerically our
NLSE. Figure 6 shows that our numerical simulation agrees
reasonably well with our variational calculation for four soliton
molecule.

In conclusion, we have considered N -soliton molecules
propagating in dispersion-managed optical fibers. The well-
known effective nonlinear Schrödinger equation was first
rederived and then shown to be not integrable for the realistic
situation. Using a variational calculation, the binding energy
of the soliton molecules was calculated with emphasis on the
2- and 3-soliton molecules. From the locations and depths of
the local minima in the equilibrium energy of the molecule, the
bond length and strength were calculated. The calculated sizes
of the 2- and 3-soliton molecules agreed favorably with the
experimental values and the numerical simulation as shown in
Fig. 3. Furthermore, we have solved numerically the NLSE
and verified the stability of the 3-soliton molecules, as shown
in Fig. 5. In addition, the field amplitudes of our trial function
agreed favorably with the numerical solution, as shown in
Fig. 6.

It should be noted that Raman scattering and higher order
dispersion terms ought to affect the equilibrium properties of
the molecule. These effects will be investigated in a future
work. The calculation was also extended for larger molecules
to show a nonmonotonic dependence of the molecule’s binding
energy and size in terms of the number of its constituent
solitons.
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