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Using the weak measurement (WM) and quantum measurement reversal (QMR) approach, robust state transfer
and entanglement distribution can be realized in the spin- 1

2 Heisenberg chain. We find that the ultrahigh fidelity
and long distance of quantum state transfer with certain success probability can be obtained using proper WM
and QMR, i.e., the average fidelity of a general pure state from 80% to almost 100%, which is almost size
independent. We also find that the distance and quality of entanglement distribution for the Bell state and the
general Werner mixed state can be obviously improved by the WM and QMR approach.
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Introduction. Recently, it was shown that weak measure-
ment (WM) and quantum measurement reversal (QMR) can
effectively suppress amplitude-damping decoherence for a
single qubit [1–3]. In particular, weak measurements and
reversal can greatly suppress the disentanglement dynam-
ics of two qubits interacting with their own independent
reservoirs [4–6]. More interestingly, the famous entangle-
ment sudden death (ESD) [7] can be avoided by the WM
and QMR [5]. Now the WM and QMR also have been
widely applied to various aspects of quantum information
processing. In Ref. [8], the authors used the WM and QMR
to generate the concurrence of assistance from tripartite to
bipartite entanglement. In Ref. [9], the authors investigated
entanglement amplification via local weak measurements.
In Ref. [10], the authors discussed the improvement the
fidelity of teleportation through noisy channels using weak
measurement and they utilized the standard state teleportation
scheme, namely a pair of maximally entangled states serving
as state transfer channel. Most of the abovementioned concerns
are focused on the model of the qubit system interacting
with the reservoir.

On the other hand, it is well known that quantum commu-
nication based on quantum spin chain has been first addressed
in the seminal Ref. [11]. The author demonstrated that the
quantum spin chain can be used as a channel for short-distance
quantum communication. Then several methods and models
of a perfect state transfer were suggested [12,13]. The long-
distance state transfer is always an essential task in quantum
information processing. We have not seen any report for the
application of the WM and QMR in the quantum spin chain
model.

In this Brief Report, we explore the WM and QMR approach
to enhance state transfer and entanglement distribution in the
spin- 1

2 Heisenberg chain channel. By investigation, using the
WM and QMR we find that the lowest and highest average
fidelity F̄ of the general pure state through the spin chain
channel can attain 80% and close to 100%. More especially, we
find that the optimal state transfer is almost size independent.
Then we investigate the entanglement distributions of the Bell
state and the Werner-mixed state in the spin chain channel and
find that the distance and quality of entanglement distribution
can obviously improved. In comparison with the scheme of

Ref. [11], the WM and QMR approach indicates its potential
usefulness in quantum information processing based on the
spin chain.

The paper is organized as follows: We give the detailed
scheme for state transfer and entanglement distribution based
on the WM and QMR, followed by results and discussion.
Finally, we give the conclusion of our results.

State transfer and entanglement distribution scheme. Be-
fore describing our scheme, we briefly review the WM and
QMR approach. The WM can be performed by a device that
indirectly monitors a qubit. If the device has no signal (namely,
the null result case), the qubit was only partially collapsed and
we let it evolve. If the device has signal, we discard the result.
The corresponding map of the WM with strength p1 on the
qubit in the computational basis {|0〉,|1〉} can also be written
as ( 1 0

0
√

1 − p1
). The effect of WM is reduction of the weight of

the excited state |1〉, so that the excited state |1〉 will undergo
less influence of decoherence. Conversely, the corresponding
map of the QMR with strength p2 in the computational basis
can also be represented as (

√
1 − p2 0

0 1 ). Thus, the effect of QMR
is restoration of the weight of the excited state |1〉.

In what follows, we discuss state transfer and entanglement
distribution in a linear, open-ended, spin- 1

2 isotropic Heisen-
berg chain which locates in an uniform external magnetic field
using weak measurements and reversal. The entire solution
of the model can be found in Ref. [11], and the transition
amplitude f N

N,1(t0) is

f N
N,1(t0) =

N∑
m=1

amvm,N cos[π (m − 1)/(2N )], (1)

where a1 = 1/
√

N , am�=1 = √
2/N , vm,N = am cos

[π (m − 1)(2N − 1)/(2N )]e−iEmt0 , and Em = 2B + 2J {1 −
cos[π (m − 1)/N ]}. In the following discussions, by
choosing the proper magnetic field B, the transition
amplitude f N

N,1(t0) = 〈N |e−it0H |1〉 is a real number, i.e.,
arg{f N

N,1(t0)} = 0. It is worth mentioning that Bose has also
pointed out that the effect of the spin chain can act as an
amplitude-damping quantum channel. Therefore, the evolution
of the input state ρnin = |φ1〉〈φ1| can be represented by the sum
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FIG. 1. (Color online) Schematic diagram of state transfer in spin
chain by the WM and QMR.

of Kraus operators: ρout = M0ρninM
†
0 + M1ρninM

†
1 , where

M0 = ( 1 0
0 f ), M1 = ( 0 g

0 0 ), and f = |f N
N,1(t0)|, g =

√
1 − f 2.

Generally speaking, our scheme was divided into three steps
as shown in Fig. 1: (1) Before going through the spin chain
channel, the transferred initial quantum state was implemented
with WM; (2) the quantum state of implementing the WM
transfers in the spin chain channel; (3) after undergoing the
spin chain channel in a reasonable time t0, the QMR with
strength p2 was applied to the corresponding state.

Here, we assume that the general quantum state to
be transferred initially prepared in |φin〉 = cos(θ/2)|0〉 +
eiϕ sin(θ/2)|1〉 is located at the first spin of the total spin chain,
while all the other spins are in the |0〉 state, where |0〉 and |1〉
denote the spin down and up states, respectively.

After the sequence of a WM with strength p1 in first spin,
spin chain channel, and QMR with strength p2 in the N th spin,
the corresponding output state in N th spin becomes

ρout = 1

P2
[(α1

√
1 − p2|0〉 + β1f |1〉)

× (α∗
1

√
1 − p2〈0| + β∗

1 f 〈1|) + (1 − p2)|β1|2g2], (2)

where P2 = (1 − p2)(1 − f 2|β1|2) + f 2|β1|2 is the total suc-
cess probability of both the WM and QMR,

α1 = cos(θ/2)√
cos2(θ/2) + (1 − p1) sin2(θ/2)

(3)

and

β1 =
√

1 − p1e
iϕ sin(θ/2)√

cos2(θ/2) + (1 − p1) sin2(θ/2)
. (4)

If we have a priori knowledge about the magnitude of
transition amplitude f , we can perform the optimal QMR
with p2 = 1 + f 2(p1 − 1) as pointed out in Refs. [1,3]. After
employing the optimal QMR, the final output state can be
obtained as

ρ
opt
out = Tp|φin〉〈φin| + Tf |0〉〈0|

Tp + Tf

, (5)

where Tp = (1 − p1)f 2 and Tf = sin2(θ/2)(1 − p1)2f 2g2.
It is well known that the efficiency of a quantum state
through the quantum spin channel can be measured by the
average fidelity over all input states |φin〉 in the Bloch sphere,
that is, F̄ opt = (1/4π )

∫ 〈φin|ρopt
out (t0)|φin〉d	 [14]. After some

straightforward calculations, we obtain the explicit expression

of the the average fidelity as

F̄ opt = 1

2
+ 1

(1 − p1)(1 − f 2)
− ln[1 + (1 − p1)(1 − f 2)]

(1 − p1)2(1 − f 2)2
,

(6)

and the optimal success probability of both the WM and QMR,

P
opt
2 = 1

2 (1 − p1)f 2[2 + (1 − p1)(1 − f 2)]. (7)

Obviously, we can see that from Eq. (7) the optimal success
probability P

opt
2 is a monotonically decreasing function of p1

for fixed f .
Furthermore, we study entanglement distribution in the

same model using the WM and QMR. In what follows, we
assume that a pair of particles A and B are initially in the
extended Werner-like (EWL) mixed state, which has the form
[15]

ρ(0) = 1 − r

4
I + r|
〉〈
|, (8)

where r denotes the purity of the initial state and |
〉 =
α|01〉 + √

1 − α2|10〉 is the Bell-like state with α real. It is
obvious that the state given by Eq. (8) for α = 1/

√
2 will

reduce to the well-known Werner state [16], while for r = 0
and r = 1, the corresponding states become a totally mixed
state and a well-known Bell state, respectively. Here, we
assume that one of the pair of particles A and B, i.e., particle B
is located in the first spin of the spin chain. It is obvious that the
particle A and the N th spin (because of particle B transferred
to the N th spin by free evolution) will establish entanglement.

Similar to the above discussion for the state transfer case,
before and after through a spin chain we implement the WM
in the first spin and QMR in the N th spin, respectively. We
finally can derive the final state in the computational basis
{|00〉,|01〉,|10〉,|11〉},

ρAN(t0) =

⎛
⎜⎜⎜⎝

ρ11 0 0 0

0 ρ22 ρ23 0

0 ρ23 ρ33 0

0 0 0 ρ44

⎞
⎟⎟⎟⎠ , (9)

where the elements of the density matrix ρ11 = η11/P4,
ρ22 = η22/P4, ρ33 = η33/P4, ρ44 = η44/P4, ρ23 = η23/P4

correspond to other parameters given by η11 = (1 − p4)
[1 − r + (1 − f 2)(1 − p3)(1 − r + 4rα2)]/4, η22 =
f 2(1 − p3)(1 − r + 4rα2)/4, η33 = (1 − p4)[2 − p3 − f 2(1 −
p3)(1 − r) + 2r + p3r − 4rα2]/4, η44 = f 2(1 − p3)(1 −
r)/4, η23 = f r

√
1 − p3

√
1 − p4α

√
1 − α2. The total success

probability of the both WM with strength p3 and QMR with
strength p4 is defined as

P4 = {2(1 − p4) + (1 − r + 2rα2)

× [p4f
2(1 − p3) − p3(1 − p4)]}/2. (10)

The concurrence for ρAN(t0) given by Eq. (9) can be expressed
as [17,18]

CAN(p3,t0,p4) = 2Max{0,|ρ23|−√
ρ11ρ44}, (11)

The exact expression for the concurrence is too cumbersome
and is not reported here.
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FIG. 2. (Color online) The optimal average fidelity F̄ opt (a) and
success probability P

opt
2 (b) as functions of the transition amplitude

f and the WM strength p1.

Results and discussion. First, we consider state transfer by
means of the WM and QMR. In light of Eqs. (6) and (7), we
plot the average fidelity F̄ opt and total success probability P

opt
2

as functions of the transition amplitude f and the WM strength
p1 as shown in Fig. 2. From Fig. 2(a), we can clearly see that
the average fidelity F̄ opt always will exceed the highest fidelity
F = 2/3 of classical transmission of a quantum state for any
f �= 0 and p1. More interestingly, the lowest average fidelity
can also reach 80% for the small WM strength p1 and the
highest average fidelity F̄ opt will be close to 1 for the large
p1. However, the higher fidelity comes at the expense of the
success probability, as shown in Fig. 2(b). Moreover, from
Fig. 2 it is easy to see that as the WM strength p1 is larger, the
the state transfer is also larger for each transition amplitude f ,
but this is the reverse for the success probability. There is hence
a tradeoff between success probability and the average fidelity,
such that the desirable value of p1 depends on the practical
consideration. The general conclusion of the tradeoff between
information gain and reversibility in weak measurement was
proved in Ref. [19], which is one of distinct features of
weak measurement. We calculate the average fidelity F̄ opt

and success probability P
opt
2 for some p1 and fixed f = 0.5;

i.e., when p1 = 0.1, F̄ opt = 0.849 and P
opt
2 = 0.301; when

p1 = 0.6, F̄ opt = 0.918 and P
opt
2 = 0.115.

We also numerically calculate the average fidelity F̄ opt for
some spin length NL with the WM and QMR for fixed p1 = 0.2
and p1 = 0.99 and without control in Table I. Throughout this
report the time interval t ∈ [0,4000/J ], which is the same
as in Ref. [11]. First we consider a small p1 = 0.2 case as

TABLE I. The average fidelity F̄ opt for different spin chain length
NL with the WM and QMR for fixed p1 = 0.2 and p1 = 0.99 and
F̄ without control. The results are obtained in a time interval t ∈
[0,4000/J ], which is the same as in Ref. [11].

NL 5×102 1×103 2×103 5×103 8×103

F̄ opt 0.835 0.834 0.833 0.832 0.832 p1 = 0.2
F̄ opt 0.997 0.997 0.997 0.997 0.997 p1 = 0.99
F̄ 0.561 0.548 0.538 0.527 0.515 without control

shown in Table I and find that the average fidelity F̄ opt is more
than 80% for longer spin chain. Then we also consider the
average fidelity F̄ opt for large p1 = 0.99 as shown in Table I
and find that almost perfect state transfer for longer spin chain
can be realized. In Ref. [11], the author pointed out that the
average fidelity of a general pure state will exceed the highest
fidelity for a classical transmission of a quantum state until
the chain length N is larger than 80. Here, from Table I we
can clearly see that in our scheme the average fidelity F̄ opt ≈
99.7% but with certain success probability for N = 8 × 103

and p1 = 0.99. More especially, the high average fidelity is
almost size independent. Then we also calculate the average
fidelity without control. From Table I, we can find that the
average fidelities with the WM and QMR are always more than
2/3 while the average fidelities without control are always less
than 2/3 for large spin number. Now the success probability
for large spin number may be not too high. However, from
the above discussion we can learn that the WM and QMR
approach in enhancing the average fidelity of state transfer
through the spin chain channel is very useful.

On the other hand, we discuss entanglement distribution
by means of the WM and QMR approach. It is obvious
that the state given by Eq. (8) for α = 1/

√
2, r = 1 will

reduce to the Bell state. According to Eqs. (10) and (11), we
plot the concurrence CAN (a) and success probability P4 (b)
as the WM strength p3 and the QMR strength p4 for the Bell
state as shown in Fig. 3. The other parameter is the transition
amplitude f = 0.170, namely for N = 500. From Fig. 3(a),
we can clearly see that CAN is a monotonically increasing
function of p4 for fixed f and p3, but this is the reverse for
the success probability P4 as shown in Fig. 3(b). Then we
can also see that from Fig. 3 that the both CAN and P4 are
a monotonically decreasing function of p3 for fixed f and
p4. In order to obtain the better concurrence CAN and success
probability P4, we need to choose the proper p3 and p4. We
calculate the concurrence CAN and success probability P4 for
some cases, i.e., when p3 = 0.1 and p4 = 0.7, CAN = 0.301
and P4 = 0.294; when p3 = 0.1 and p4 = 0.9, CAN = 479
and P4 = 0.107.

Furthermore, we also concretely list the concurrence CAN

for some spin length NL with the WM and QMR for fixed
p3 = 0.1 and p4 = 0.9 and without control in Table II. Table II
shows that the entanglement distribution CAN can still maintain
high entanglement through longer spin chain. When compared
with Ref. [11], in which the entanglement is 0.135 for N =
1000, in our scheme the entanglement can reach 0.396 with
certain success probability for the same spin number. In sum,
the WM and QMR can strongly suppress decoherence for
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FIG. 3. (Color online) The concurrence CAN (a) and success
probability P4 (b) as the WM strength p3 and the QMR strength
p4 for the Bell state. The other parameter is the transition amplitude
f = 0.170, namely for N = 500, and the time interval is the same as
in Table I.

the entanglement distribution of the pure state in spin chain
channel. Then we also calculate entanglement distribution for a
general Werner mixed state, namely letting α = 1/

√
2, r = 0.8

in Eq. (8). We find that the WM and QMR approach is also
very effective.

Conclusions. In conclusion, we have studied the WM and
QMR approach to realize robust state transfer and entangle-
ment distribution through the spin- 1

2 Heisenberg channel by
means of the WM and QMR. We found that the average

TABLE II. The concurrence CAN for different spin chain lengths
NL with the WM and QMR for fixed p3 = 0.1 and p4 = 0.9 and C̄AN

without control. The time interval are the same as in in Table I.

NL 5×102 1×103 2×103 5×103 8×103

CAN 0.479 0.396 0.322 0.243 0.140 with control
C̄AN 0.170 0.135 0.107 0.079 0.045 without control

fidelity of state transfer and entanglement distribution can be
obviously enhanced by the WM and QMR. This investigation
has indicated that the WM and QMR have potential usefulness
in quantum information processing based on spin chain model
although the WM and QMR are a probabilistic approach. Here,
it is worth stating that the spin- 1

2 Heisenberg chain can act
as an amplitude-damping quantum channel, as pointed out in
Ref. [11], which is the reason why the WM and QMR approach
can be employed to enhance state transfer and entanglement
distribution in the spin chain. The idea of manipulating spin
chain by the WM and QMR can also be applied to the case
of two parallel Heisenberg spin chains, which will be an
interesting topic. As for the current experimental development
for the WM and QMR to suppress amplitude-damping deco-
herence, we can refer to Ref. [5], which implements protection
of entanglement of photons subjected to amplitude-damping
decoherence using the WM and QMR. In addition, some
spin chain models can be theoretically and experimentally
simulated in trapped ions [20,21], coupled quantum dots [22],
ultracold quantum gases [23], and Josephson junctions [24].
Therefore, we hope that the scheme proposed may be tested
by experimental setup in the near future.
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