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Mixing nonclassical pure states in a linear-optical network almost always
generates modal entanglement
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In quantum optics a pure state is considered classical, relative to the statistics of photodetection, if and only
if it is a coherent state. A different and newer notion of nonclassicality is based on modal entanglement. One
example that relates these two notions is the Hong-Ou-Mandel effect, where modal entanglement is generated
by a beamsplitter from the nonclassical photon-number state |1〉 ⊗ |1〉. This suggests that beamsplitters or, more
generally, linear-optical networks are mediators of the two notions of nonclassicality. In this Brief Report, we
show the following: Given a nonclassical pure-product-state input to an N -port linear-optical network, the output
is almost always mode entangled; the only exception is a product of squeezed states, all with the same squeezing
strength, input to a network that does not mix the squeezed and antisqueezed quadratures. Our work thus gives a
necessary and sufficient condition for a linear network to generate modal entanglement from pure-product inputs,
a result that is of immediate relevance to the boson-sampling problem.
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I. INTRODUCTION

Beamsplitters are crucial elements in many applications,
ranging from interferometry and homodyne detection to opti-
cal attenuation and quantum information and computation de-
vices. They are also essential components in many experiments
designed to observe quantum effects, such as the Hong-Ou-
Mandel effect [1]. This effect, which underlies linear-optical
quantum computation, occurs when two identical photons
enter a 50:50 beamsplitter at the same time, one in each input
port. The two photons always exit the beamsplitter together
in the same output mode, making the two output modes
entangled.

Beamsplitters or, more generally, linear-optical networks
are also crucial to the boson-sampling problem [2,3], where the
probability distribution of particular arrangements of bosons at
the output of a linear-optical network is sampled. It is an open
question whether nonclassical input states other than Fock
states lead to interesting sampling problems, i.e., problems
cannot be efficiently simulated with a classical computer, and
a necessary condition for an interesting problem is that the
linear-optical network generates modal entanglement at the
output.

In this Brief Report, we consider the relation between
the nonclassicality of a pure-product-state input to an N -
port linear-optical network (generalized beamsplitter) and
the modal entanglement at the output of the network. We
use a notion of nonclassicality taken from quantum optics:
the only classical pure states, relative to the statistics of
photodetection, are the coherent states. We demonstrate that
given a nonclassical pure product-state input to an N -port
linear-optical network, the output is almost always mode
entangled; the only exception is a product of squeezed states,
all with the same squeezing strength, input to a network that
does not mix the squeezed and antisqueezed quadratures.

A number of authors have discussed the relation between
nonclassicality and entanglement of the input and output
for a linear-optical network. Kim et al. [4] conjectured that
nonclassicality of the input state is a necessary condition for
the network to act as a mode entangler, which was proved by

Wang [5]. Wolf et al. [6] established a connection, for Gaussian
states, between squeezing at the input and the entanglement
of the output. Asbóth et al. [7] proposed to measure the
nonclassicality of the input to an ordinary beamsplitter by
the amount of entanglement that can be generated by the
beamsplitter, ideal photodetectors, and auxiliary classical
states. Tahira et al. [8] considered examples to link the
single-mode nonclassicality of Gaussian states input to an
ordinary beamsplitter to the robustness against noise of the
entanglement at the output.

II. DESCRIPTION OF A LINEAR-OPTICAL NETWORK

An N -port device is described by a unitary operator U that
takes the input state of N modes to the output state,

|�out〉 = U |�in〉. (2.1)

A linear-optical network transforms the N modal annihilation
operators linearly among themselves, i.e., without mixing cre-
ation operators with annihilation operators. The transformation
can thus be written as

aj → U†aj U =
N∑

k=1

akUkj , (2.2)

where U is a matrix that must be unitary in order to preserve
the canonical commutation relations. By introducing a column
vector of the annihilation operators, a = (a1a2 · · · aN )T , we
can write the transformation (2.2) in the compact form

U†aU = UT a. (2.3)

In terms of the column vector of creation operators, a† =
(a†

1a
†
2 · · · a†

N )T , the transformation is U†a†U = U †a†, which
is equivalent to

Ua† U† = Ua†. (2.4)

A linear-optical network preserves the number of photons. We
can multiply U by a phase so thatU |vac〉 = |vac〉; the matrix U

then stores all the information aboutU . Notice that multiplying
U by diagonal unitary matrices on the left and right amounts
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to rephasing the input and output modes without changing the
physical transformation.

For the case of an ordinary beamsplitter, N = 2, Eq. (2.4)
has the general form (modulo irrelevant phase shifts),

U
(

a
†
1

a
†
2

)
U† =

(
cos θ e−iϕ sin θ

−eiϕ sin θ cos θ

)(
a
†
1

a
†
2

)
, (2.5)

where θ ∈ [0,π/2] determines the reflectivity of the beam-
splitter and ϕ ∈ [0,2π ) gives the phase difference of the
output modes. When θ = 0 or π/2, the beamsplitter either
does nothing or swaps the two modes; we exclude from our
discussion these “trivial” beamsplitters, which merely permute
the input modes.

Generally, for N � 2, we impose the requirement that the
linear-optical network cannot be decomposed into smaller net-
works acting on independent subsets of modes by permutations
of the input and output modes, i.e., that we cannot turn U into a
direct sum of more than one block by a transformation P1UP2,
where P1 and P2 are permutation matrices. We call such a
network connected. We lose no generality by considering only
connected networks because in a disconnected network, each
disconnected block can be studied separately.

One consequence of the connectedness is that no output
mode is simply a rephased input mode. Formally, this means
that no row (column) of U consists of zeros and a single
element of magnitude one; stated differently, this nontriviality,
which generalizes that for N = 2, means that all elements of
U have magnitude strictly less than unity:

|Ukj | < 1 for all k,j ∈ 1,2, . . . ,N. (2.6)

Now we can state precisely the question we address: What
pure-product states input to a connected N -port linear-optical
network lead to a product output state?

III. BARGMANN-FOCK REPRESENTATION

The tool we use to answer this question is the Bargmann-
Fock (BF) representation [9–11], which maps every pure
quantum state |�〉 for N modes to a particular analytic
(holomorphic) function on CN ,

B(z) = B(z1,z2, . . . ,zN ) = e|z|2/2 〈z|�〉 = 〈vac|ezTa|�〉
=

∑
n1,...,nN

〈n1, . . . ,nN |�〉√
n1! · · · nN !

z
n1
1 · · · znN

N . (3.1)

Here an overbar denotes a complex conjugate, and

|z〉 = D(z)|vac〉 = e−|z|2/2ezTa† |vac〉 (3.2)

is an N -mode coherent state, with

D(z) =
N∏

j=1

ezj a
†
j −zj aj

= exp(zT a† − zT a) = e−|z|2/2ezTa†e−zT a (3.3)

being the multimode displacement operator. The state is
reconstructed from the BF representation by

|�〉 = B(a†)|vac〉. (3.4)

The inner product of |�〉 and |�〉 = C(a†)|vac〉 is given in
terms of the BF representation by

〈�|�〉 =
∫

d2Nz
πN

C(z)B(z)e−|z|2 . (3.5)

A displaced state |�〉 = D(y)|�〉 has a BF representation

C(z) = 〈vac|ezTa D(y)| � 〉 = B(z − y)eyTze−|y|2/2. (3.6)

The transformation (2.3) takes a very simple form in the BF
representation

Bout(z) = 〈vac|ezTa U |�in〉
= 〈vac|ezTUTa|�in〉 = Bin(Uz). (3.7)

Hence, we also have

|�out〉 = Bin(Ua†)|vac〉. (3.8)

For an N -mode pure-product input state,

|�in〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψN 〉 , (3.9)

the BF representation is a product,

Bin(z) = B1(z1)B2(z2) · · · BN (zN ), (3.10)

where Bj

(
zj

)
is the BF representation of the j th mode.

We introduce the logarithm of the BF representation,

G(z) = ln B(z) , (3.11)

which is analytic (because the composition of two analytic
functions is also analytic) everywhere in its domain except for
singular points at the zeros of B. For a product input state, we
have

Gin(z) = G1(z1) + G2(z2) + · · · + GN (zN ). (3.12)

Our question now reduces to the following: What states of the
form Gin(z), when input to a connected N -port linear-optical
network, lead to an output

Gout(z) = Gin(Uz) (3.13)

that also separates into a sum over modes as in Eq. (3.12)?
Before moving on, notice that a displacement of the input

state is equivalent to a displacement of the output state; i.e.,
since U D(y)U† = D(UTy),

U D(y)|�in〉 = D(UTy)U |�in〉. (3.14)

The displacement operator is a product of local operators
on the modes, so displacement does not change any modal
entanglement properties of the input or the output. In particular,
displacement cannot change a product state into an entangled
state.

IV. CONDITIONS FOR A CONNECTED NETWORK
NOT TO GENERATE ENTANGLEMENT

To address our main question, we use the Maclaurin
expansion of Gin(z) at the origin; as discussed above, this
expansion requires that 〈vac|�in〉 = Bin(0) �= 0. Although this
does not generally hold, we can make it so, without changing
the status of product states and entanglement, both at the input
and output, by displacing the state so that it has a vacuum
component, i.e., 〈vac|D(y)|�in〉 �= 0.
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This preliminary step having been taken, the Maclaurin
expansion of Gin(z) can be written as

Gin(z) =
N∑

j=1

( ∞∑
d=0

λ
(d)
j zd

j

)
=

∞∑
d=0

N∑
j=1

λ
(d)
j zd

j , (4.1)

where λ
(d)
j is the dth expansion coefficient of Gj (z). A product

output state means that Gout(z) has a similar expansion,

∞∑
d=0

N∑
j=1

ξ
(d)
j zd

j = Gout(z) =
∞∑

d=0

N∑
k=1

λ
(d)
k

⎛
⎝ N∑

j=1

Ukjzj

⎞
⎠

d

.

(4.2)

To save space below, we introduce column vectors for the
input and output expansion coefficients at each d: ξ (d) =
(ξ (d)

1 · · · ξ
(d)
N )T and λ(d) = (λ(d)

1 · · · λ
(d)
N )T .

Analyticity requires that the equality in Eq. (4.2) hold order
by order in d, i.e.,

N∑
j=1

ξ
(d)
j zd

j =
N∑

k=1

λ
(d)
k

⎛
⎝ N∑

j=1

Ukjzj

⎞
⎠

d

. (4.3)

Indeed, analyticity further requires equality for each monomial
in z; we now explore the consequences of this requirement.

For d = 0, we have
N∑

j=1

ξ
(0)
j =

N∑
j=1

λ
(0)
j , (4.4)

a condition that can always be satisfied. For d = 1, we have a
straightforward linear relation between input and output,

ξ
(1)
j =

N∑
k=1

λ
(1)
k Ukj ⇐⇒ ξ (1) = UT λ(1). (4.5)

For d = 2, we have

ξ
(2)
j δjj ′ =

N∑
k=1

λ
(2)
k Ukj Ukj ′, (4.6)

which can be rewritten in the more transparent form

Ukj ξ
(2)
j = λ

(2)
k Ukj . (4.7)

If U is connected, Eq. (4.7) can be satisfied only when
|ξ (2)

j | = |λ(2)
j | = constant for all j ∈ {1,2, . . . ,N}. Using the

freedom to rephase input and output modes, we can make the
coefficients ξ

(2)
j and λ

(2)
j real, and once this is done, Eq. (4.7)

implies that U is real.
For d = 3, the cross terms on the right-hand side of

Eq. (4.3), i.e., those monomials involving more than one zj ,
must vanish, and for the noncross terms, we must have

ξ
(d)
j =

N∑
k=1

λ
(d)
k Ud

kj ⇐⇒ ξ (d) = UT
d λ(d), (4.8)

where Ud is the matrix whose elements are dth powers of the
elements of U , i.e., (Ud )jk = Ud

jk . We now show that these
conditions cannot be satisfied by any linear-optical network
unless λ(d) vanishes.

Because a linear-optical network preserves photon number,
the transformation (3.7) takes a monomial in zj to a polynomial

of the same degree. In particular, the transformation

N∑
j=1

λ
(d)
j zd

j −→
N∑

k=1

λ
(d)
k

⎛
⎝ N∑

j=1

Ukj zj

⎞
⎠

d

=
N∑

j=1

ξ
(d)
j zd

j (4.9)

can be regarded as the transformation from the BF representa-
tion of an input state,

|�in〉 =
N∑

j=1

λ
(d)
j (a†

j )d |vac〉, (4.10)

which is normalized to 〈�in|�in〉 = d ! |λ(d)|2, to the BF
representation of an output state, |�out〉 = U |�in〉, which is
normalized to 〈�out|�out〉 = d ! |ξ (d)|2. Since the transforma-
tion preserves normalization, we must have

|λ(d)|2 = |ξ (d)|2 = ∣∣UT
d λ(d)

∣∣2
. (4.11)

We now invoke several results about matrix norms (see
Ref. [12], especially Chap. 5 and Example 5.21) to write∣∣UT

d λ(d)
∣∣2

|λ(d)|2 �
∥∥UT

d

∥∥2
2 � ||Ud ||1

∥∥UT
d

∥∥
1. (4.12)

Here ||M ||2 is the spectral norm (2-norm) of M , i.e., the largest
singular value of M (square root of the largest eigenvalue
of M†M), and ||M ||1 = maxk

∑
j |Mjk| is the maximum-

column-sum norm (1-norm) of M . For d � 3, the nontriviality
condition (2.6) implies that the 1-norm of Ud and UT

d are both
strictly less than 1:

||Ud ||1 = max
k

∑
j

∣∣Ud
jk

∣∣ < max
k

∑
j

|Ujk|2 = 1, (4.13)

and likewise for ||UT
d ||1. Together these results mean that

equality cannot be attained in Eq. (4.11) and thus the output
state cannot be a product state if Gin(z) has any terms of degree
d � 3.

Summarizing, we have the following circumstances where
a pure-product input to a connected linear-optical network
produces a product-state output:

(i) Gin(z) has only constant and linear terms, i.e.,

Gin(z) = − 1
2 |λ|2 + λT z. (4.14)

This is the input coherent state e−|λ|2/2eλT a† |vac〉 = |λ〉.
(ii) Gin(z) has quadratic but not higher terms, and the input

and output modes can be rephased so that

Gin(z) = −N

2
ln(cosh γ ) − 1

2
λT y + λT z − tanh γ

2
zT z

(4.15)

and U = U is a real matrix. Here the second-order coefficients
are λ

(2)
j = − 1

2 tanh γ , j = 1, . . . ,N , with γ real, and y is
written in terms of the real and imaginary parts of λ as
y = (λRe−γ + iλI e

γ ) cosh γ . The input state is obtained by
squeezing and then displacing the vacuum,

|�in〉 = e−λT y/2eλT a†

(cosh γ )N/2

N∏
j=1

exp

(
− tanh γ

2
a
† 2
j

)
|vac〉

= D(y)S1(γ ) · · · SN (γ )|vac〉, (4.16)

044301-3



BRIEF REPORTS PHYSICAL REVIEW A 88, 044301 (2013)

where

Sj (γ ) = eγ (a2
j −a

† 2
j )/2 (4.17)

is the squeeze operator for the j th mode. The imaginary part of
Gin(0) in Eq. (4.15), which gives the overall phase of |�in〉, is
chosen so that the second equality in Eq. (4.16) holds without
an additional phase factor.

V. CONCLUSION

For coherent input states, no entanglement can be generated
by any linear-optical network. All nonclassical pure-product
inputs to a connected network produce entanglement at the

output, except particular kinds of displaced-squeezed vacuum
states input to a particular sort of network. The exception can
always be reduced, by rephasing of input and output modes,
to the situation where the input modes are all squeezed by the
same amount along the same phase-space axes and the optical
network acts identically on the squeezed and antisqueezed
quadratures without mixing them.
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