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Coherent control of tunneling and traversal of ultracold atoms through vacuum-induced potentials
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We study the tunneling and traversal of ultracold �-type three-level atoms through vacuum-induced potentials
in a high-Q mazer cavity. In particular, we discuss the effects of driving-induced atomic coherence on the passage
of ultracold atoms through a high-Q mazer cavity. We consider phase time to study quantum tunneling which
exhibits interesting features due to atomic coherence. For example, negative phase time appears for transmission
of the atoms in both excited and ground states due to the presence of atomic coherence. Further, for certain values
of the driving field, it is found that the phase tunneling time shows an alternate subclassical and superclassical
traversal behavior with the increase in atomic momentum.
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I. INTRODUCTION

Quantum coherence and interference [1] lie at the heart
of many interesting phenomena such as quantum beat lasers
[2], lasing without inversion [3], electromagnetically induced
transparency [4], coherent population trapping [5], laser
cooling and trapping of atoms [6], and a number of other
interesting effects [7]. It also provides some interesting effects
in superconducting quantum bits [8], quantum internet [9],
entanglement in trapped atomic ions [10], and ultracold atoms
in optical lattices [11].

The phenomenon of quantum tunneling has been a problem
of considerable interest due to its fundamental nature [12,13].
Phase time is one among various definitions of tunneling time
which is studied extensively for a number of physical systems
[13]. Recently, this phenomenon was addressed by Arun and
Agarwal [14] in the context of tunneling and traversal of
ultracold two-level atoms through vacuum-induced potentials
[15] in a mazer cavity. The concept of mazer (microwave
amplification via z-motion-induced emission of radiation) was
introduced by Scully et al. [16]. It was shown that the interac-
tion of ultracold atoms with the field inside a high-Q cavity can
be treated as a scattering process with many interesting features
[17–26]. In our early work, it is shown that the presence of
dark states in cascade atomic configuration strongly affect
the behavior of phase tunneling time [27]. Similarly, we
found that phase tunneling time switches from subclassical
to superclassical [28] in the case of off-resonant interactions
of two-level atoms with vacuum cavity mode for a particular
choice of detuning. In this paper, we study the tunneling and
traversal of ultracold atoms in a coherently driven mazer.

II. MODEL

We consider ultracold �-type three-level atoms in which
the two upper levels are coupled by a coherent driving field
� [26]. The atoms are prepared initially in their excited
states, which interact resonantly with the cavity field in the
presence of the driving field. The atomic center-of-mass (c.m.)
motion is treated quantum mechanically and the corresponding
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Hamiltonian of the atom-field system under dipole and rotating
wave approximation is H = HAF + HI , where

HAF = p2
z

2m
+ h̄

∑
i=a,b,c

ωi |i〉 〈i| + h̄ωa†a, (1)

and

HI = h̄gu(z)(a† |b〉 〈a| + a |a〉 〈b|)
+ h̄u(z)(�∗ |c〉 〈a| + � |a〉 〈c|), (2)

here HAF is the Hamiltonian of the free atom and the free cavity
field, and HI is the interaction Hamiltonian in the presence
of a driving field. While pz is the atomic c.m. momentum
along the z axis, m is the mass of the atom, a(a†) corresponds
to annihilation (creation) operators of the single-mode cavity
field with frequency ω, g is the atom-field coupling strength,
and � is the Rabi frequency of the coherent driving field.
The operator |i〉〈i|(i = a,b,c) gives the population in level |i〉
with energy h̄ωi and |i〉〈j |(i,j = a,b,c; i �= j ) describes the
transition from level |j 〉 to level |i〉. For a mesa mode function,
we have

u(z) =
{

1 for 0 < z < L,

0 elsewhere.
(3)

For the resonance case when the cavity field frequency ω

is assumed to be equal to the transition frequency ωab (where
ωab = ωa − ωb) corresponding to levels |a〉 and |b〉 of the
atom, the eigenstates and eigenvalues of the Hamiltonian can
easily be obtained as discussed in Ref. [26]:

V 0
n = 0, V ±

n = ±h̄

√
G2

n + |�|2, (4)

∣∣φ0
n

〉 = Gn√
G2

n + |�|2
|c,n〉 − �√

G2
n + |�|2

|b,n + 1〉 , (5)

|φ±
n 〉 =

√
2

2

(
|a,n〉 ± �∗√

G2
n + |�|2

|c,n〉

± Gn√
G2

n + |�|2
|b,n + 1〉

)
, (6)
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where Gn = g
√

n + 1; and n is the photon number of the
cavity field.

We consider the initial atom-field state |a,n〉, and the initial
wave packet of a moving free atom can be written as ψ(z,t) =
exp(−ip2

z t/2mh̄)
∫

dkA(k)eikz. Here it is assumed that the
Fourier amplitude A(k) determining the position and extent
of the wave packet is such that at z = 0 (entry of the cavity) it
has its peak at t = 0. Therefore, the initial wave packet of the
atom-field system comes to be |�(z,0)〉 = ψ(z,0)|a,0〉. The
wave function of the atom-field system after the interaction
may be obtained by expanding |a,0〉 in the dressed state
basis |φ±

n 〉. The component corresponding to |φ+
n 〉 observes

a square potential barrier of height V +
n and the component

corresponding to |φ−
n 〉 observes a square potential well with

depth V −
n . These components (|φ±

n 〉) suffer both reflection
and transmission. While the component associated with |φ0

n〉
passes through the cavity freely as it sees zero potential. The
transmitted wave function after the interaction can be written
as

|�T (z,t)〉 =
∫

dkA(k)e−i h̄k2

2m
t [Ta,n |a,n〉

+ Tb,n+1 |b,n + 1〉 + Tc,n |c,n〉]eikz, (7)

where k is the c.m. momentum, t is the interaction time, and

Ta,n = 1

2
(τ+

n + τ−
n ), (8)

Tb,n+1 = Gn

2
√

G2
n + |�|2

(τ+
n − τ−

n ), (9)

and

Tc,n = �∗

2
√

G2
n + |�|2

(τ+
n − τ−

n ) (10)

are the transmission amplitudes for atoms finally transmitted
in states |a,n〉, |b,n + 1〉, and |c,n〉, respectively. Here

τ±
n (k) = e−ikL[cos(k±

n L) − i	±
n (k) sin(k±

n L)]−1, (11)

with

k±
n =

√
k2 ∓ k2

n, (12)

k2
n = 2m

√
G2

n + |�|2, (13)

	±
n (k) = 1

2

(
k±
n

k
+ k

k±
n

)
. (14)

In the absence of a coherent driving field, i.e., � = 0,
Eqs. (8)–(10) reduce to the results of Ref. [16], which concern
one-photon mazer action with a two-level atom without atomic
coherence.

To explain the atom-field interaction, the dressed-state
picture of the �-type three-level atomic system is considered,
which provides a clear insight of the interaction. The bare
states of the system describe transitions between |a〉 −→ |b〉
and |a〉 −→ |c〉, governed by the Rabi frequency g and driving
field �, respectively. In terms of the dressed states Eqs. (5)

and (6), we have

|a,0〉 = 1√
2

(|φ+
0 〉 + |φ−

0 〉), (15)

|b,1〉 = 1√
g2 + |�|2

[
g√
2

(|φ+
0 〉 − |φ−

0 〉) − �∗∣∣φ0
0

〉]
, (16)

|c,0〉 = 1√
g2 + |�|2

[
�√

2
(|φ+

0 〉 − |φ−
0 〉) + g

∣∣φ0
0

〉 ]
. (17)

Here the atomic transition between level |a〉 and |b〉 corre-
sponds to the Rabi frequencies ±� and ±(2g + �), whereas
the transition between |a〉 and |c〉 follows the ±g and ±(2� +
g) vacuum Rabi frequencies. It is evident that the atomic
transitions |a〉 to |b〉 and |a〉 to |c〉 do not follow the vacuum
Rabi frequency g and driving frequency �, respectively, as in
the case of bare atomic state transitions. As a result, atoms
initially in their lower states |b〉 or |c〉 experience a dark state.

III. PHASE TUNNELING TIME

In this section, we study the tunneling time of the atoms
initially prepared in their excited states passing through a high-
Q mazer cavity initially in a vacuum state. For this purpose,
we consider the transmission amplitude say in the excited state
Ta,0 ≡ |Ta,0|eiφ(k) which incorporates the effects of driving-
induced atomic coherence see Eq. (8), and depends on the
vacuum coupling energy h̄g ≡ h̄2k2

0/2m. Here k0 represents
the amount of momentum for which the corresponding kinetic
energies of the incoming atoms reach to the height of the
potential barrier V +

n . We consider a Gaussian wave packet
with amplitude A(k) = exp[−(k − k)2/σ 2], associated with
the atoms with k and σ as its mean momentum and width,
respectively. The normalized transmitted wave function for
the atoms in the excited state |a〉 with z � L is given by

|�T (z,t)〉 = 1

(2π )3/4

√
2

σ

∫ ∞

−∞
dk exp[−(k − k)2/σ 2]

× e−i(h̄k2/2m)t |Ta,0|eiφ(k)eikz|a,0〉. (18)

The integrand in Eq. (18) survives for small width σ of the
wave packet only in a small range of wave numbers k centered
about the mean momentum k. In an earlier study, Arun and
Agarwal obtained an approximate solution of the integral in
Eq. (18) by considering terms up to second order in the Taylor
expansion and assuming σ � k to approximate |Ta,0(k)| ≈
|Ta,0(k)| such that the transmitted wave function at z = L is
given by [14]

|�T (z,t)〉|z=L

≈ 1

(2π )3/4

√
2

σ
exp[i(kL + φ(k) − Et/h̄)]

× |Ta,0(k)|
√

2π(
2
σ 2 + iα

) exp

(
−E(t − tph)2

m
(

2
σ 2 + iα

)
)

|a,0〉 .

(19)

Here, E = (h̄k)2/2m is the average energy of the inci-
dent atom, whereas α = h̄t/m − ∂2φ/∂k2|k=k represents the
spreading of the wave packet as it propagates. It is clear that
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phase time has no significance when Taylor expansion of the
phase does not converge or terms beyond the second order are
important in the expansion.

The envelop of the transmitted wave packet
|〈a,0|�T (z,t)〉|2 reaches its peak value when the total
phase �(k) of the integrand exhibits extremum at the wave
number k = k. The time for the appearance of the peak of the
wave packet at the exit of the cavity can be obtained using the
stationary phase condition as in [14]

∂�(k)

∂k

∣∣∣∣
k=k

= ∂

∂k
[kL + φ(k) − (h̄k2/2m)t]

∣∣∣∣
k=k

= 0.

(20)

This leads to the phase tunneling time

tph = m

h̄k

(
∂φ

∂k
+ L

) ∣∣∣∣
k=k

. (21)

In the absence of cavity there will be zero reflection, thus
the transmission probability gets to its maximum value, i.e.,
|Ta,0| = 1, with invariant phase ∂φ

∂k
= 0. Consequently, in free

space, as clear from Eq. (21), the phase time converges to the
classical time tcl ≡ mL/h̄k.

IV. RESULTS AND DISCUSSION

Here we present the results of our numerical simulations
using Eq. (21). In Fig. 1, we show the plots of phase time (solid
line) for atoms transmitted in excited state |a,0〉 as a function

/
ph

cl
t
t

/
ph

cl
t
t

0/k k

(a)

(b)

FIG. 1. (Color online) Dimensionless phase time (solid curve)
and transmission probability |Ta,0|2 (dashed curve) of a three-level
atom in excited state vs the mean momentum. Here, k0L = 10π

(a) �̃ = 0 and (b) �̃ = 26.

(a)

(b)

/
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cl
t
t

/
ph

cl
t
t

0/k k

FIG. 2. (Color online) Dimensionless phase time (solid curve)
for transmission of a three-level atom in state |b,1〉 vs the mean
momentum. The transmission probability |Tb,1|2 is shown with a
dashed curve in (a) and in the inset of (b). Here, k0L = π/2 and
(a) �̃ = 0 and (b) �̃ = 10.

of mean momentum k/k0 for cavity length k0L = 10π . We
take, � = 400 kHz [29] and by taking coupling constant g as
100–10 kHz, temperature of the atoms will be in the range
10−7–10−8 K for k/k0 = 0.1 [14]. In the absence of any
driving field [see Fig. 1(a)], the result discussed in [14]
is obtained, which is quite obvious from the fact that our
system reduces to a two-level atom. Here it is clear that
the phase time is smaller than the classical time, i.e., the
system behaves superclassically. Next we take the driving
field of strength �̃ = �/g = 26, while keeping the rest of the
parameters unchanged. There is a clear change in the behavior
of phase time [see Fig. 1(b)] as compared to the case with
zero driving field. Here we get negative phase time values
for ultracold atoms (1 
 k/k0). Negative phase time implies
that even before entering into the interaction region, the peak
of the wave packet emerges from the exit of the cavity. It
is a quite interesting situation and is probably due to the
interference between the incoming wave and the wave which
is reflected from the inner walls of the cavity. Quantitatively
a negative value of phase time appears when the derivative of
the phase of transmission amplitude has negative value with
magnitude greater than L [see Eq. (21)]. Negative phase time
is quite similar to the concept of negative group velocities for
electromagnetic pulse propagation through dielectric media
[30]. It is clear that phase time switches to negative values
in the presence of a driving field. It is also noted that the
phase time follows the resonant behavior of the transmission
probability.
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FIG. 3. (Color online) Dimensionless phase time (solid curve)
and transmission probability (dashed curve) of a three-level atom in
state |c,0〉 vs the mean momentum. Here, k0L = 10π and (a) �̃ = 15
and (b) �̃ = 25.

Next, we consider the behavior of the phase tunneling time
for transmission of the atoms in their lower states, |b,1〉 and
|c,0〉. In Fig. 2(a) for zero driving field, phase time is positive
and shows both superclassical and subclassical behaviors
corresponding to various values of k/k0. Now by introducing
a driving field �̃ = 10, phase time takes negative values for
some particular momentum and approaches the classical limit
for fast atoms as shown in Fig. 2(b). The switching of phase
time from positive to negative values by adjusting �̃ appears
for transmission of the atoms in state |b,1〉. For transmission
of the atoms in state |c,0〉 a similar flipping of phase tunneling
time by tuning �̃ is shown in Fig. 3.

To confirm the early arrival of the transmitted peak, we
perform a numerical simulation of the Gaussian wave-packet
propagation. In Fig. 4, we plot the normalized probability
density P ≡ |〈b,1|�T (z,t)〉|2/σ at the exit of the cavity,
i.e., z = L. It can be seen that the peak of the transmitted
wave packet appears at t/tcl ≈ −1.1 which matches the phase

-10 -5 0 5 10

0.99
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0.994

0.996

0.998

1

P

cltt /

FIG. 4. (Color online) Normalized probability density P ≡
|〈b,1|�T (z,t)〉|2/σ at z = L as a function of dimensionless time t/tcl.
The solid (dashed) curve represents P after transmission through
the cavity (in free space). The parameters used are k0L = π/2,
�̃ = 10, σ/k0 = 0.01, k̄/k0 = 3.33. Both solid and dashed curves
are normalized to unity.

time in Fig. 2(b) at k̄/k0 = 3.33. For comparison, we also plot
the envelope of the wave packet that travels through the same
distance L in free space. In this case, peak of the free wave
packet occurs at the expected time, i.e., t/tcl = 1.

V. CONCLUSIONS

In conclusion, we have considered the tunneling and
traversal of coherently driven ultracold �-type three-level
atoms through a high-Q mazer cavity. Our results show that the
behavior of phase tunneling time is remarkably modified in the
presence of driving-induced atomic coherence. In particular,
we obtained negative phase time values for all three states
with different values of the driving field. More interestingly,
we find that phase time can be switched between superclassical
and subclassical traversal behavior by controlling the applied
driving field �. It is also noted that phase time shows an
alternate subclassical and superclassical traversal behavior
with the increase in energies of the atoms.
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