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Dispersion cancellation in high-resolution two-photon interference
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The dispersion cancellation observed in Hong-Ou-Mandel (HOM) interference between frequency-entangled
photon pairs has been the basis of quantum optical coherence tomography and quantum clock synchronization.
Here we explore the effect of phase dispersion on ultranarrow HOM dips. We show that the higher-order
dispersion, the linewidth of the pump laser, and the spectral shape of the parametric fluorescence have a strong
effect on the dispersion cancellation in the high-resolution regime with several experimental verifications. Perfect
dispersion cancellation with a linewidth of 3 μm is also demonstrated through 25 mm of water.
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I. INTRODUCTION

Two-photon interference (TPI) first demonstrated by Hong,
Ou, and Mandel (HOM) [1], has become a universal concept
in quantum optics. The dispersion cancellation observed in
HOM interference between frequency-entangled photon pairs
[2,3] is one of the most remarkable phenomena and has
been the basis of novel concepts: quantum optical coherence
tomography (QOCT) [4,5] and quantum clock synchronization
(QCS) [6]. Furthermore, the scientific interest in two-photon
interference between frequency-entangled photon pairs is
increasing rapidly, for example, in time-frequency entangle-
ment measurement by weak measurements [7] and multimode
frequency entanglement [8].

In these concepts and applications, it is critically important
to realize high-resolution (“ultranarrow” linewidth) HOM dips
against phase dispersion, since the depth resolution of QOCT
or the time-synchronization accuracy of QCS is determined
by the linewidth of HOM dips. In more detail, the resolution
of optical coherence tomography [9] using low-coherence
interference (LCI) [10] is highly limited by the group-velocity
dispersion (GVD) [11,12]; a resolution of 20 μm is typical
in ophthalmography without dispersion compensation [13].
Since TPI can achieve better resolution than that of LCI, QOCT
is expected to be an alternative to current OCT. However, in the
past experimental test of dispersion cancellation, the linewidth
of the HOM dip was limited to 19 μm [5], which can still be
well explained by the theory proposed in 1992 [2,3]. Note
that recently the HOM dip with a resolution of approximately
1 μm was demonstrated [14,15]; however, these experimental
demonstrations were without any dispersive media in the
optical paths.

The main motivation of this paper is to explore the
dispersion cancellation in “ultranarrow” HOM dips. It was
conjectured that the nonzero pump-laser linewidth and the
higher-order dispersion may limit the dispersion cancellation
in the high-resolution TPI; however, these effects have not
previously been studied well. Furthermore, in the former
studies, there have been discrepancies in the resolution
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enhancement factor of TPI to LCI. Some studies obtained
a value of 2 [4,5], while others obtained

√
2 [16].

Here we discuss the generalized theory of TPI, which can
explain all of these effects and go on to describe the rigorous
testing of the theory, namely, the dispersion tolerance of
high-resolution TPI. We show that the resolution enhancement
factor depends on the spectral shape of the photons, changing
from

√
2 for a Gaussian shaped spectrum to 2 for a rectangular

one. For the experimental testing of the theory, we constructed
a hybrid LCI and TPI setup on which LCI and TPI experiments
could be performed using the same parametric fluorescence.
We also succeeded in observing the broadening of the TPI
signal that occurs due to the nonzero pump-laser linewidth,
which can be well explained by the proposed theory. From
our results, it is apparent that we achieved “perfect dispersion
cancellation” at high resolutions; the resolution of 3.0 μm was
unchanged even when 25 mm of water, which corresponds
to the diameter of the human eye, was placed in the optical
path. In further testing we used 5-mm-thick zinc selenide
(ZnSe) plate and observed a strong tolerance; the degradation
of the resolution in TPI was tiny (from 3.0 to 3.5 μm),
while the resolution of LCI degrades from 3.0 to 410 μm
in theory. We believe our generalized theory and rigorous
experimental proofs are beneficial not only to QOCT and QCS
but also to the basic understanding of multiparticle quantum
interferences, which are the basis of quantum metrology and
quantum information science.

II. A GENERALIZED THEORY OF TPI

Here we derive an equation to describe the HOM dips,
taking into account the effects of the arbitrary spectral shape
of the parametric fluorescence, linewidth of the pump laser,
and higher-order dispersion of the media.

Before discussing TPI, we consider LCI. Figure 1(a) shows
a scheme of the LCI. The normalized interferogram I (τ ) with
a temporal delay τ between two arms is given by

I (τ ) = 1 + Re

{
e−iω0τ

∫
d�|fo(�)|2e−i�τ+i2dβ(�)

}
, (1)

where � is the frequency deviation about the central frequency
ω0, fo is a normalized spectral probability amplitude [17],
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FIG. 1. (Color online) Schematic of LCI (a) and TPI (b). BS
stands for beam splitter. τ is the temporal delay, and β is the wave
vector in a dispersive media of thickness d .

d is the thickness of the media, and β(�) = β(0) + β(1)� +
1
2!β

(2)�2 + · · · is the wave vector of the light in the dispersive
media. β(1) is the inverse of the group velocity, and β(2) repre-
sents the GVD. Here we define the resolution �L by the full
width at half maximum (FWHM) of the interferogram. With-
out any dispersive media, �L is the FWHM W of the Fourier
transform of the power spectrum W (FT{|fo(�)|2}). With a
dispersive media, the degraded resolution �L′ due to the GVD
is given by �L′ = �L[1 + (2

√
ln 2c

√
β(2)d/�L)4]

1
2 [17],

where �L is the original resolution and c is the speed of
light in a vacuum. Thus, �L′ has a minimum value of �L

as seen from �Lth ∼ 2
√

2 ln 2c
√

β(2)d, which becomes zero
when β(2) and d are zero, as is the case when no dispersive
media is present. The degradation becomes more significant
when �L is small (high resolution). For example, the OCT
resolution is generally limited to approximately 20 μm due to
the dispersion of the human eye (β(2)d ∼ 720 fs2) [18].

Next, we discuss the interferograms measured by a TPI
setup [Fig. 1(b)]. At first, the biphoton state produced by
parametric down-conversion from a source can be described
by

|�〉 =
∫∫

dωsdωifq(ωs,ωi)|ωs〉s|ωi〉i, (2)

where fq(ωs,ωi) is a normalized spectral probability amplitude
of the biphoton and |ωs(i)〉s(i) represents the signal (idler)
photon state with the frequency ωs(i) [19]. The biphoton
spectral amplitude fq can be given by

fq(ωs,ωi) = ξp(ωs,ωi)fs(ωs)fi(ωi), (3)

where ξp(ωs,ωi) represents the phase-matching condition and
fs(i)(ωs(i)) is a normalized spectral probability amplitude of the
signal (idler) photons [20]. The spectrum of each photon of the
biphoton is determined by a spatial mode where each photon
resides. Then the normalized coincidence count rate C(τ ) of
two output modes with a temporal delay τ is given by

C(τ ) = 1 − Re

{∫∫
dωsdωifq(ωs,ωi)f

∗
q (ωi,ωs)

× eiφ(ωs,ωi,τ )+iη(ωs,ωi)

}
, (4)

where phase terms φ and η account for the temporal delay τ and
the dispersion β, respectively. This is the generalized equation
of a TPI interferogram, from which the dispersion tolerance at
high resolutions can be deduced. Based on this equation, we
discuss the resolution enhancement of TPI compared to LCI,

the degradation of the resolution due to the nonzero pump
linewidth, and the higher-order dispersion effect.

First we consider the resolution enhancement. For sim-
plicity, we consider the case in which a pump laser is
monochromatic. For a monochromatic pump with the fre-
quency ωp, signal and idler photon frequencies are perfectly
correlated due to the conservation of the energy ωp = ωs + ωi,
and the biphoton spectral amplitude is written as

fq(ωs,ωi) = δ(ωp − ωs − ωi)fs(ωs)fi(ωi), (5)

where ξp is a delta function. Substituting Eq. (5) into Eq. (2),
the biphoton state is given by

|�〉 =
∫∫

dωsdωiδ(ωp − ωs − ωi)fs(ωs)fi(ωi)|ωs〉s|ωi〉i

=
∫

dωsfs(ωs)fi(ωp − ωs)|ωs〉s|ωp − ωs〉i

=
∫

d�fs(�)fi(−�)|ωp

2
+ �〉s|ωp

2
− �〉i

≡
∫

d�fq(�)|ωp

2
+ �〉s|ωp

2
− �〉i, (6)

where the signal (idler) photon frequency ωs(i) is ωp/2 ± �

with the frequency deviation � and fq(�) ≡ fs(�)fi(−�).
Equation (6) is usually used as a description of the entangled
biphoton state [3,5]. Then the TPI interferogram in Eq. (4) can
be written by

C(τ ) = 1 − Re

{ ∫
d�fq(�)f ∗

q (−�)e−i2�τ

}

= 1 − Re

{ ∫
d�|fq(�)|2e−i2�τ

}
, (7)

where φ is −2�τ and η is zero. The TPI resolution, which
is the FWHM of the interferogram, is half of the FWHM W

of the Fourier transform of the spectrum W (FT{|fq(�)|2})/2,
and the resolution enhancement factor Re is given by

Re = 2
W (FT{|fo(�)|2})

W (FT{|fs(�)|2|fi(�)|2}) . (8)

Now we discuss Re for the same bandwidth of LCI and
TPI (fo = fs,i). Equation (8) suggests that the resolution
enhancement depends on the spectral shape of the photons. Re

is 2 for a rectangular shaped spectrum, where |fs(�)||fi(�)| =
|fs,i(�)|. For a Gaussian shaped spectrum, Re reduces to√

2 because the biphoton spectral width is reduced by
√

2
compared to the single photon spectral width. These results
suggest that the discrepancy observed in the previous reports
[4,5,16] is due to the difference in the spectral shape of the
source used.

Next we consider the dispersion tolerance taking into
account a nonzero pump linewidth. When the pump laser has
a nonzero linewidth, the biphoton spectrum is given by Eq. (3)
and then the TPI interferogram in Eq. (4) with a dispersive
media can be written as

C(τ ) = 1 − Re

{ ∫∫
dωsdωi|ξp(ωs,ωi)|2|fs(ωs)|2|fi(ωi)|2

× e−i(ωs−ωi)τ+i2d[β(ωs)−β(ωi)]

}
, (9)

043845-2



DISPERSION CANCELLATION IN HIGH-RESOLUTION . . . PHYSICAL REVIEW A 88, 043845 (2013)

where each photon spectral amplitude is assumed to be the
same (fs = fi). For a monochromatic pump, η is 4dβ(1)�

and the GVD β(2) is completely canceled within the second-
order dispersion approximation, indicating a perfect disper-
sion tolerance. However, the dispersion tolerance becomes
imperfect for a pump with a certain nonzero linewidth.
When ξp is the Gaussian of ωp = ωs + ωi with the band-
width �ωp and fs(i) is also Gaussian with the bandwidth
�ωs(i), the original resolution �L degrades to �L′ = [1 +
(�ωs,i�ωpβ

(2)d/8
√

2 ln 2)2]
1
2 �L [21], where β(2) cannot be

canceled. The degradation becomes more significant when the
pump linewidth is larger.

Finally, we consider the higher-order dispersion effect. For
higher-order approximation of dispersion in the media, the
interferogram with a monochromatic pump can be written from
Eq. (4) as

C(τ ) = 1 − Re

{ ∫
d�|fq(�)|2

× e−i2�τ+i4d( β(3)

3! �3+··· )

}
, (10)

where the low-order dispersion β(1) is omitted. The third-order
dispersion β(3) is not canceled as all odd-order dispersion.
The asymmetric phase dispersion with the cubic dependence
β(3)�3 makes interferograms asymmetric [22]. Though the
higher-order dispersion is small in general cases, the contri-
bution is not negligible at high resolutions due to the large
frequency component �.

III. THE HYBRID LCI/TPI EXPERIMENTAL SETUP

To experimentally test the generalized theory for high-
resolution TPI, we constructed a hybrid experimental setup for
both LCI and TPI as illustrated in Fig. 2. The cw pump-laser
beam (wavelength, 404 nm; linewidth, ∼100 kHz; power,
100 mW) is focused at a type-I phase-matched β-barium-
borate (BBO) crystal, cut by a long-pass filter and stopped
by a damper. Parametric fluorescence occurs as frequency-
entangled biphotons are generated with a center wavelength
of 808 nm and a bandwidth of 75 nm. For LCI experiments,
photons transferred through a polarization-maintaining fiber
from FCA serve as classical lights. The optical delay cτ is
determined by a delay mirror A and a dispersive media can
be set in front of the other mirror. Interfered light is detected
by a single-photon-counting module (SPCM, Perkin Elmer,
SPCM-AQRH-14). For the TPI experiments, signal photons

FIG. 2. (Color online) Schematic of the experimental setup,
showing the light source (left) and the hybrid LCI/TPI interferometer
(right).

from the FCA travel through the dispersive media, and idler
photons from the FCB are reflected at the delay mirror B with
an optical delay cτ . The coincidence count rate at the FC1,2 is
measured by two SPCMs.

IV. RESULTS AND DISCUSSION

A. Spectral-shape dependence of the resolution enhancement

First, we verified the theory for the resolution enhancement
factor Re. For a Gaussian shaped spectrum [Fig. 3(a)],
experimental LCI and TPI interferograms show FWHMs of
4.2 ± 0.1 [Fig. 3(b)] and 3.0 ± 0.1 μm [Fig. 3(c)], respec-
tively. Interferograms are expressed in units of the optical
delay cτ/2 to represent the physical displacement of the delay
mirrors. We used a Gaussian fit to measure the FWHMs of
the interferograms. The obtained Re was 1.4 ± 0.1, which
is consistent with the theoretical factor of

√
2. We then

used a trapezoidal shaped spectrum [Fig. 3(d)] produced
by controlling the tilting angle of the BBO crystal. The
Re factor of 1.7 ± 0.1 obtained from the 3.9 ± 0.1-μm LCI
[Fig. 3(e)] and the 2.3 ± 0.1-μm TPI [Fig. 3(f)] FWHMs is
also fairly consistent with the theoretical value of 1.69. Thus,
the experimental results supported our proposed theory.

B. Perfect dispersion cancellation

Next we performed perfect dispersion tolerance with a
narrowband pump laser. A 25-mm-thick volume of water,
which is about the diameter of the human eye, was enclosed
by two 1-mm-thick BK7 glass plates and placed as the
dispersive media. Dispersion tolerance for a water is important
in particular for the QOCT application. LCI resolutions of 3.0
and 4.2 μm over the threshold (�Lth ∼ 20 μm) are expected to
significantly degrade to 55 and 37 μm, respectively. Actually,
the LCI interferogram broadened to 36.8 ± 0.4 μm [Fig. 4(c)]
from the original resolution of 4.2 μm [Figs. 3(b) and 4(a)]. In
contrast, the TPI interferogram was unchanged with a width
of 3.0 ± 0.1 μm [Fig. 4(d)] from the original resolution of
3.0 μm [Figs. 3(c) and 4(b)]. Thus, perfect dispersion tolerance
has been successfully demonstrated.

FIG. 3. (Color online) Experimental LCI and TPI interferograms
for two spectral shapes: For the Gaussian shaped spectrum (a), the
4.2-μm LCI (b) and the 3.0-μm TPI (c) widths show a resolution
enhancement factor Re of 1.4; for the trapezoidal shaped spectrum
(d), the 3.9-μm LCI (e) and the 2.3-μm TPI (f) widths show a value
of 1.7 for Re. The experimental data (red dots) and Gaussian fit curves
(black solid line) are plotted. The integration time is 1 s per point in
panels (b), (c), (e), and (f).
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FIG. 4. (Color online) Experimental LCI and TPI interferograms
for the Gaussian shaped spectrum: The 4.2-μm LCI (a) and 3.0-
μm TPI (b) widths without any media and the broadened 37-μm
LCI (c) and unchanged 3.0-μm TPI (d) widths using 25 mm of
water as a dispersive media. The integration time is 1 s per point in
panels (a)–(d).

C. Degradation due to the nonzero pump linewidth

To test the effect of the nonzero pump linewidth, the 25 mm
of water and a 20-mm-thick BK7 plate were used, which gave
a total GVD delay β(2)d of 1700 fs2. For the narrowband pump
laser (linewidth ∼100 kHz), complete dispersion cancellation
was achieved with an unchanged FWHM of 3.0 ± 0.1 μm
[Fig. 5(a)]. In contrast, for a broadband pump laser (linewidth
∼1 THz, a laser diode), the FWHM broadened to 3.5 ± 0.2 μm
[Fig. 5(b)] with a degradation factor of 1.2 ± 0.1. This
broadening is close to the theoretical value of 1.17, meaning
our proposed theory has been verified.

D. Higher-order dispersion effect

Finally, we tested the higher-order dispersion effect.
A 5-mm-thick ZnSe plate (β(2) ∼ 1000 fs2/mm, β(2)d ∼
5000 fs2 [23]) was used as a highly dispersive media.
β(2)d corresponds to the dispersion caused by 200 mm
of water, which is expected to result in the LCI reso-
lution degrading from 3.0 to 410 μm. Even with this
large GVD, the TPI interferogram maintains a resolution
of 3.5-μm FWHM by an improvement of over 120 times
[Fig. 6(a)]. The tiny degradation can be explained by the
third-order dispersion effect. A theoretically simulated TPI
interferogram considering the third-order dispersion (β(3) ∼
870 fs3/mm, β(3)d ∼ 4400 fs3) successfully reproduced the
experimental result [Fig. 6(b)]. The sign of the asymmetry

FIG. 5. (Color online) TPI interferograms with dispersive media
(25 mm of water and a 20-mm-thick BK7 plate) using narrowband
(100 kHz) (a) and broadband (1 THz) (b) pumping-laser linewidths.
The nonzero pump linewidth degrades the resolution from 3.0 to
3.5 μm. The integration time is 1 s per point in panels (a) and (b).

FIG. 6. (Color online) The experimental TPI interferogram with
a 5-mm-thick ZnSe plate as a highly dispersive media (a) and
a theoretical plot considering the third-order dispersion (b). The
integration time is 1 s per point in panel (a).

is determined by the sign of β(3), and the oscillation comes
from the high-frequency component |�|. A strong dispersion
tolerance with a highly dispersive media has been observed,
and the higher-order dispersion effect has been demonstrated.

The resolution degradation factors due to the nonzero pump
linewidth and the higher-order dispersion are both theoretically
estimated to be 1.0 and nonobservable when the resolution of
19 μm [5] is assumed. This fact suggests that these effects
have become able to be observed due to our high-resolution
(3 μm) two-photon interference experiment (the factors are
1.2 and 1.3, respectively, in our experiment.)

It should be also mentioned that the chirped-pulse interfer-
ometry [16,24] and the phase-conjugate OCT [25,26] are also
promising alternatives to QOCT. In these schemes, the photon
flux of the light source can be much higher compared to QOCT,
but the realized bandwidth of the correlated light source seems
much broader in QOCT [27]. Research using these alternative
approaches will have beneficial positive mutual feedback for
further investigations.

V. CONCLUSION

In conclusion, we investigated the dispersion tolerance of
high-resolution HOM interference and clarified all effects of
the spectral shape of the source, the linewidth of the pump
laser, and the higher-order dispersion using a generalized
equation in both theoretical and experimental sides at high
resolutions. We have found that the discrepancy in the
resolution enhancement factor is due to the difference in
the spectral shapes of sources and experimentally verified
the spectral dependence. We have also demonstrated perfect
dispersion tolerance at 3-μm resolution by using a narrowband
pump laser and observed a nonperfect dispersion tolerance for
a nonzero pump-laser linewidth. We further demonstrated a
strong dispersion tolerance in highly dispersive media and
observed the higher-order dispersion effect. Our results are
important for QOCT and QCS and also offer important insights
into quantum information science and technology based on
multiparticle quantum interferences.
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