
PHYSICAL REVIEW A 88, 043844 (2013)
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At the output of a high-finesse cavity a succession of Lissajous patterns may be observed as the cavity length is
finely tuned inside a “degenerate region” around a reentrant spherical configuration. This behavior is ascribed to
a small parasitic astigmatism of the cavity mirrors. Simple geometrical optics modeling confirms this hypothesis,
and then a more realistic analysis using transverse Gaussian modes reveals that the Lissajous patterns correspond
to an organization of the astigmatism-split modes into a finer substructure of degenerate modes relative to that of a
reentrant spherical cavity. This provides a thorough understanding of the field patterns observed in the degenerate
region, including an intriguing spatial symmetry of the patterns corresponding to opposite displacements with
respect to a specific central cavity length. This investigation represents a generalization of the theory of reentrant
spherical cavities to the astigmatic case.
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I. INTRODUCTION

After more than 30 years of developments, cavity enhanced
absorption spectroscopy is still a subject of active research,
and the domain of application is steadily expanding. This
can be partly attributed to technological progress making
available optics of ever higher quality (in particular highly
reflective mirrors), and also resulting in new and highly
versatile laser systems. New cavity enhanced developments are
today possible only through a deeper understanding and a finer
exploitation of the properties of high-finesse optical cavities.
In particular this concerns transverse modes whose spectral
distribution can be controlled by acting on the cavity geometry,
and whose population by injected photons can by controlled by
acting on the shape and alignment of the excitation laser beam.

Besides cavity enhanced spectroscopy, the question of how
the transverse modes of an optical cavity are excited by
an incoming Gaussian beam is of more general interest. In
particular, determining the coupling coefficients of a laser
mode with the cavity modes is a classic problem of optics.
As early as 1966, Kogelnik [1] elaborated a model giving an
expression for the amplitudes for the first transverse excited
Hermite-Gaussian (HG) modes in the case of a perfectly mode
matched incoming beam affected by a slight tilt angle with
respect to the cavity optical axis. In 1984, Bayer-Helms [2]
gave complete expressions for the coupling of transverse
cavity modes taking into account both mismatching and
misalignments. However, these results are mathematically
complex and do not appear to be computationally efficient.
More recently, in 1996, Lehmann and Romanini [3] proposed,
in their first Appendix, a recursion relationship permitting
to involve a generic (elliptic and astigmatic) misaligned
Gaussian beam together with arbitrary incident waist size
and arbitrary waist position. These developments have been
thereafter revisited by Romanini [4] who corrected for some
errors, making the results exploitable, and generalized the
recursive analytical relations to astigmatic and elliptic cavities
and beams. This allows the fast and accurate modeling of real
systems with up to thousands of excited transverse modes.
In particular, the self-consistency and numerical stability of
the model has been highlighted by simulating the electric field

pattern produced in the cavity for an incoming off-axis beam at
a frequency resonating with one of the N degenerate groups of
modes of a spherical reentrant cavity [4]. In this case, studied
initially by Herriott et al. in 1964 using geometrical optics
arguments [5], the beam spatially overlaps with itself after N

cavity round trips, where N is the so-called reentrant order of
the chosen resonator configuration. As a result, one obtains
a simulated transverse cavity output pattern with N spots,
reproducing with wave optics [4] the result from ray tracing.

In this paper, we apply these recent modeling developments
exploiting the superposition of excited transverse cavity
modes, as well as ray tracing, to realistic cavities affected
by mirror astigmatism, which appears to be hardly avoidable
under normal experimental conditions. This allows a full
understanding of the physics leading to the existence of a
succession of Lissajous patterns appearing at the resonator
output as its length is finely detuned in the vicinity of
a spherical reentrant configuration. Interestingly, in such
degenerate regions of the cavity length, it is found that the
successive transverse field patterns can exhibit a symmetric
behavior with respect to a central mirror separation: Modeling
performed herein will provide a complete understanding of
this observation.

It is remarkable, according to our bibliographic search, that
only geometrical optics arguments were applied to analyze
the cavity output field profiles, starting back in 1965 with
the pioneering paper of Herriott and Schulte [6]. Even
though later extended to twisted astigmatic multipass cells
[7], allowing to investigate a wide variety of circulation
patterns (with the aim of reducing multipass cell volumes
as well), no identification of the existence of degenerate
regions for transverse Lissajous profiles can be found in the
literature. Regarding laser resonators, only Chen et al., to the
best of our knowledge, have been employing the quantum
theory to reconstruct high-order transverse patterns observed
in a microchip laser [8,9] having accidental astigmatism.
They performed accurate systematic numerical calculations
based on the similarity between the spherical resonator and
the quantum stationary coherent states of the commensurate
anisotropic two-dimensional harmonic oscillator; however, the
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analogy appears too complex and unsuited for providing a
clear understanding of the physical phenomena investigated
here. In contrast, we propose an in-depth analysis based
on the superposition principle [3] as a description together
significantly simpler and physically intuitive, which fully
accounts for the formation of a succession of Lissajous patterns
around the reentrant configuration of the unperturbed spherical
cavity. These patterns will be shown to correspond to the
organization of the cavity transverse modes in degenerate
groups clustered around the single degenerate group that would
occur in the limit of a reentrant spherical cavity. This present
investigation therefore generalizes and extends the theory of
reentrant cavities to the astigmatic case. Apart from weak
transverse mode coupling in degenerate cavities caused by
mirror surface aberrations [10–12], our experience is that a
small parasitic astigmatism is the most common and effective
situation which causes a splitting of modes (larger than their
spectral width for higher finesses) when one tries to approach
the reentrant configuration. This fact is confirmed by the close
match we find between the observed Lissajous patterns and
the results from modeling an astigmatic cavity.

II. EXPERIMENTAL PROCEDURES AND OBSERVATIONS

Our experimental off-axis cavity injection scheme is pre-
sented in Fig. 1(a). As in our previous work [13], we use an
external cavity diode laser (ECDL; Toptica DL-100) emitting
around 765 nm as a narrow-linewidth continuous wave (cw)
tunable source. The setup includes a Faraday optical isolator
to prevent undesired optical feedbacks toward the ECDL, fol-
lowed by a fiber coupling system. The divergent beam leaving
the fiber is focused by a f = 11 mm lens whose distance from
the input cavity mirror is close to what is needed to match a

TEM00 spatial beam to the corresponding cavity mode. After
this mode matching lens, two steering mirrors [not presented
in Fig. 1(a)] allow to adjust for an off-axis cavity injection.

Our cavity is formed by two concave mirrors (Lay-
ertec GmbH with a specified reflectivity of 99.97% (finesse
∼12 000) at 765 nm, a 1-m radius of curvature, and a 12.7-mm
diameter. All results presented here are obtained with a cavity
length of ∼293 mm finely adjustable over a ± 2-mm range.
This corresponds to a K/N = 1/4 fractionally degenerate
spherical resonator, i.e., a Herriott spherical configuration
with a fourfold reentrant trajectory, and four output beams
generated off each mirror.

Light patterns transmitted by the cavity are directly imaged
onto a charge-coupled device (CCD) camera. The laser
frequency is rapidly swept over almost 15 GHz with a
200-Hz triangular current modulation (4.2 THz/s), providing
frequency-averaged cavity output patterns.

The observed transmission pattern exhibits Lissajous pro-
files at cavity output when the cavity length L is finely tuned
around a specific cavity length, as displayed in Fig. 1(b). As we
will see, this indicates that the cavity is not perfectly spherical,
and that a weak residual astigmatism frustrates the observation
of N = 4 distinct spots on both mirrors for a single reentrant
length value. Each successive sharp pattern is observed by
incrementing the cavity length by �L∼ 0.2 mm. Between
two subsequent sharp patterns, the output appears irregular,
dim, and vague. Our observations lead to isolating a pattern
that occurs for a specific L−

sym (the “symmetric” cavity length)
that has a “X” profile on M2. An intriguing spatial symmetry
of the Lissajous patterns is, besides, clearly observed for cavity
lengths detuned around this specific cavity length: The same
pattern is obtained at + M�L and –M�L except for a 90◦
rotation and a reflection. It is worth pointing out that the
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FIG. 1. (Color online) (a) Off-axis cavity injection setup. ECDL: external cavity diode laser. Fd: Fibredock. M1,2: high-reflectivity cavity
mirrors. CCD: imaging camera. (b) Transverse patterns observed at the cavity output when the cavity length is finely adjusted in the vicinity of
the “symmetric” length L−

sym, which only depends on astigmatism [see Eq. (5)]. In the present experiment, this cavity length roughly corresponds
to that of a (N ,K) = (4,1) reentrant configuration of a spherical cavity. The cavity length detuning �L between two successive sharp Lissajous
patterns is found to be approximately 0.2 mm, which from modeling should correspond to an astigmatism of �R/R ∼ 0.4%, as confirmed by
previous ring-down measurements on this same cavity [13]. Also are highlighted, on the right-hand side, two examples of irregular and vague
patterns observed between two successive sharp patterns.
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FIG. 2. (Color online) Examples of simulations obtained with ray tracing by the ABCD-matrix formalism. In (a) and (b) are compared
beam spots patterns simulated on the output mirror for different cavity finesses, respectively 2090 and 12 080, when identical cavity length [the
symmetric cavity length L−

sym expressed by Eq. (5)] and identical cavity injection parameters (x0, y0, x ′
0, y ′

0) = (–0.3 mm, 0 mm, 0.17◦, − 0.41◦)
are used. In (c) is modeled a three-dimensional ray trajectory, in the same case as (b), highlighting the patterns obtained on the two cavity
mirrors at the interesting L−

sym cavity length. In (d) are patterns computed when the cavity length is incremented (respectively decremented)
stepwise by �L = ± 0.147 mm with respect to the X pattern at L−

sym = 292.89 mm according to Eq. (5) for Rx = 1002 mm and Ry = 998 mm.
Cavity injection conditions are kept constant.

exact shape of these patterns depends on the incident beam
alignment, once a cavity length that gives a sharp pattern has
been fixed. For example, the X pattern can also be continuously
changed into an “O” profile (passing through crossed ellipses).
Actually these two patterns are complementary as they are
produced at opposite cavity sides, consistent with ray tracing
represented in Fig. 2(c), and with modal simulations based
on Ref. [4] and further developed below. For our setup, i.e.,
for a given cavity injection and cavity astigmatism as well,
these sharp patterns are only observed in a ± ∼2-mm cavity
length range that we will refer to as a degenerate region. As
we will see, other cavity length intervals, where a similar
succession of Lissajous patterns should be observed (except
both for the special X-O profiles occurring at L−

sym and the
intriguing spatial symmetry around it), do exist and are always
centered on configurations that are reentrant in the limit of a
spherical cavity.

III. ASTIGMATIC CAVITY, LISSAJOUS PROFILES,
AND DEGENERATE REGIONS

A. Degenerate cavities and astigmatism: Generalities

Let us recall briefly the framework for degenerate cavities.
Assuming small angles between the propagation axis of the
incoming beam and the optical cavity axis z for which the
paraxial approximation is satisfied, the spatial HG modes
native from a spherical resonator are expressed as [14]

Emn(x,y,z)

= E0
ω0

ω(z)
√

2m+n−1πm!n!
Hm

[√
2x

ω(z)

]
Hn

[√
2y

ω(z)

]

× exp

[
−x2 + y2

ω(z)2

]
exp

{
− ik

[
(x2 + y2)

2r(z)
+ z

]

+ i(m + n + 1)ϕ(z)

}
. (1)
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Here ω(z)= ω0[1 + (z/zR)2]1/2 is the transverse beam radius
at the z position; ω0 and zR = πω2

0/λ are, by definition, the
beam transverse dimension at the waist and the confocal or
Rayleigh length, respectively; k = 2π/λ is the wave vector in
vacuum while r(z) = z[1 + (z/zR)2] and ϕ(z) = arctan(z/zR)
are, respectively, the wave-front curvature radius and the Gouy
phase shift. Functions Hm,n(.) are the Hermite polynomials.
From the cavity round-trip self-consistency condition applied
to these spatial modes, the resonator eigenfrequencies νq ,mn

are derived [14]:

νSpherical
q,mn = c

2L

[
q + (m + n + 1)

θ

2π

]
, (2)

where θ = 2arccos(g1g2)1/2 represents the Gouy phase shift
accumulated by the TEM00 mode over one cavity round trip
and g1,2 = 1–L/R1,2 are the geometric cavity parameters, with
R1,2 the radii of curvature for the two mirrors. For every
transverse mode of indices m and n, we see from Eq. (2)
that the resulting spectrum consists of combs of longitudinal
modes (as a function of q) sharing the same basic spacing given
by νq+1,mn–νq ,mn = �νL = c/2L, the cavity free spectral range
(FSR). On the other hand, the transverse mode spacing (when
changing m or n by 1) is �νT = �νLθ/2π . For special cavity
lengths such that the round-trip TEM00 Gouy phase shift is a
low-order rational relative to 2π (that is, θ = 2πK/N where K

and N are two small integers with no common factor verifying
0 <K <N), the resonant frequencies become

νSpherical
q,mn = c

2LN
[Nq + K(m + n + 1)]. (3)

In this case, the cavity exhibits degeneracy involving
different transverse mode families. Indeed, incrementing
(decrementing) the longitudinal mode index q by K while
simultaneously decrementing (incrementing) the sum of the
transverse mode indices (m + n) by N leaves the frequency
unchanged. Consequently, there exist N degenerate groups
of modes being excited between two subsequent TEM00

resonances. This so-called fractionally degenerate resonator,
described above by wave optics, corresponds to a reentrant
spherical resonator in a description based on geometrical
optics [5]. In this latter representation, a paraxial ray follows a
trajectory that closes on itself after N cavity round trips (note
that K represents the number of transverse cycles, i.e., how
many times the ray trajectory cycles around the optical axis),
irrespective of the input beam injection positions and slopes.
This is a direct result of the fact that, in the ABCD-matrix
formalism (ruling Gaussian mode propagation and ray tracing
as well), the N th power of the round-trip cavity propagation
matrix is unity, which implies that the reentrant resonator
preserves input beam coordinates and slopes together after
N cavity round trips.

Recently, we published [13] cavity ring-down spectroscopy
results exploiting degenerate resonators and off-axis injection
in order to take advantage of the cavity transverse mode
structure and, in doing so, refine the spectral domain sampling
grid. There, we discussed the successful observation of N

distinct spots on the cavity mirrors only for a moderate
cavity finesse (F ∼ 2000), while the observation of the above
Lissajous figures occurred with the higher-reflectivity mirrors
also used in this study (F ∼ 12 000). From the selective beating

note measurements of TEM01 and TEM10 modes (appearing
on the ring-down events under specific experimental condi-
tion), we were capable of estimating the slight astigmatism
suggested by the observed Lissajous figures [13], and we
found (supposing identical mirrors) a |Ry − Rx | value of
about 4 mm relative to the specified curvature value R = 1000
mm, i.e., �R/R = 0.4%. To allow direct comparison with
the experience we shall then assume, in the following, an
optical cavity formed of two identical mirrors with radii of
curvature of 1002 and 998 mm along the x and y transverse
directions, respectively. One could argue that this is not a
realistic situation since the astigmatism of the cavity mirrors is
certainly not equal, nor oriented the same way, unless we made
some effort for that to be the case. However, let us consider a
generic astigmatic cavity made of two mirrors with the same
specified curvature but affected by small parasitic variations of
the curvature, along different transverse directions. It is easy to
show that, after expansion to the first order in these variations,
the round-trip matrix of this cavity can be rewritten as the
matrix of a cavity with mirrors possessing the same variation
of the curvature radius along a common transverse direction
(which does not coincide with any of the original directions).

For such an astigmatic cavity, in place of Eq. (2) eigenfre-
quencies are given as

νAstigmatic
q,mn = c

2L

[
q +

(
m + 1

2

)
θx

2π
+

(
n + 1

2

)
θy

2π

]
, (4)

where it appears that each transverse dimension x,y has its own
round-trip Gouy phase shift expressed by θx,y = 2arccos(1–
L/Rx,y). We will see below that for specific values of L close
to a reentrant configuration, this expression allows for the
degeneracy of transverse modes in finely spaced subgroups
around the frequencies where the reentrant spherical cavity
would present a single degenerate group of modes. Further,
we will also see that this organization of modes in degenerate
subgroups corresponds to the generation of Lissajous patterns,
both in geometrical optics and in wave optics.

In analogy with Eqs. (2) and (3), one would be tempted
to consider the cavity configurations such that the Gouy
phase shifts are a ratio of small integers: θx = 2πKx/N ,
θy = 2πKy/N . The result would be that modes with the same
value of Nq+mKx+nKy are degenerate in frequency, and one
would also expect that the intracavity trajectory traces out a
Lissajous pattern, as discussed by Herriott et al. [6] and later
extended by McManus et al. [7] when accounting for the twist
of the astigmatic mirror axes about the central cavity axis.
However, this condition cannot be met close to a configuration
corresponding to the reentrant spherical cavity, as we are
considering here. Like Rx and Ry , θx and θy have very similar
values, thus their ratio may correspond at best to a ratio of quite
large integers (which cannot correspond to the observed low-
order Lissajous patterns). From consideration of transverse
modes frequencies, we will see that the right condition is to be
written as Nθx/2π–1 = Kx , Nθy/2π–1 = Ky .

B. Geometrical optics analysis

Herriott et al. have shown that, in the presence of cavity
astigmatism, an intracavity light beam may propagate back and
forth between the two mirrors in a manner such that its impact
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spots on the mirrors trace out a Lissajous pattern [6]. This
replaces the observation of simple elliptical spot trajectories
for a spherical cavity [5]. It comes about by considering that the
transverse coordinates of the nth impact spot on the mirror after
injection are (xn,yn) = (Asin(nθx/2 + α), Bsin(nθy/2 + β)),
where A, B, α, and β are constants including injection
conditions (input beam coordinates and slopes) as well as
mirror spacing and focal lengths. As defined earlier, θx and θy

are the Gouy phase shifts and depend on the cavity geometry
and on the mirror curvatures in particular.

Lissajous patterns like those in Fig. 1(b) could be observed
for high-enough mirror reflectivities [13]. This fact can be
understood by considering that the modest mirror astigmatism
demands many round trips before becoming manifest as a
walk off of the reflected spots from a basic elliptic trajectory
to give rise to a Lissajous figure. To illustrate this point we
compare in Figs. 2(a) and 2(b) two calculated spot patterns
obtained when one varies the mirror reflectivity from 99.85%
to 99.97%. The corresponding cavity free photon lifetimes, i.e.,
respectively, 0.65 and 3.25 μs, enable the circulating beam to
bounce about 667 and 3333 times on each mirror, respectively.
For the low-finesse cavity case, as in Fig. 2(a), beam spots
are still roughly describing an ellipse, whereas the Lissajous
transverse pattern imposed by the mirror astigmatism is fully
developed when the cavity finesse is high enough to allow
sweeping the spots trajectory until it comes back to the initial
position. This closure of the Lissajous pattern occurs only
for specific cavity lengths, independently of the input beam
parameters.

Figure 2(d) also displays Lissajous patterns simulated when
one varies the cavity length in the vicinity of a central specific
value L−

sym. The characteristic shape of this pattern observed
for this cavity length obviously depends on the cavity injection
parameters, and herein both the input beam coordinates and
slopes are chosen as needed if we were expecting to observe
on the mirrors a circular trajectory of the reflected spots in
the hypothetic case of a spherical cavity [5]. However, it can
be shown that in order to obtain the X and the O patterns
that are characteristics of this cavity configuration, two mirror
separations are possible:

L±
sym = RxRy

Rx + Ry ± √
2RxRy

R2
x + R2

y

. (5)

They arise from Gouy phases satisfying the specific conditions
θx–π/2 = –(θy–π/2), so that both an ellipse and a cross
trajectory of the reflected beam are obtained on the mirrors.
Figure 2(c) shows an example of the evolution of this
beam trajectory within the cavity. For our mirror curvatures,
these specific patterns are found for L−

sym = 292.89 mm and
L+

sym = 1707.09 mm. We note that by using Rx = Ry , in Eq. (5),
L−

sym becomes equal to the conventional reentrant resonator
Lr = R[1–cos(πK/N )], i.e., 292.89 mm for mirrors with
radius of curvature R = 1000 mm exactly, as derived for a
spherical (N ,K) = (4,1) reentrant cavity.

Other patterns presented in Fig. 2(d) match our laboratory
observation of Fig. 1, i.e., a succession of Lissajous profiles
at successive cavity lengths separated by a constant step size
�L= 0.147 mm. In particular, for symmetric cavity length
variations ± M�L around L−

sym, transverse patterns are linked

by a spatial (–i) transformation, i.e., a mapping of the beam
spots’ coordinates expressed as xn(Lsym + �L) = yn(Lsym–
�L), yn(Lsym + �L) = −xn(Lsym−�L).

To resume, the observed sharp patterns can be associated
to impact spot trajectories that are closing during the cavity
photon lifetime. On the other hand, the irregular and vague
patterns result from spots that keep running on the mirror
surfaces without tracing a closed trajectory. The fact that so
many different Lissajous patterns are generated by varying
the cavity length over a small interval is due to the fact that
(Nθx/2π–1)/(Nθy/2π–1) varies rapidly since it is the ratio of
two quantities which are close to zero.

C. Wave optics analysis

After the previous straightforward geometrical optics pic-
ture, we now aim at considering a more complete description
enabled by wave optics. This involves excitation of transverse
cavity modes by a Gaussian-profile beam incident on the opti-
cal resonator, and we can apply the framework developed in [4]
for realistic cavities affected by small parasitic astigmatism.
The excited intracavity field is then written as a sum over
projection coefficients times the corresponding mode functions
and the corresponding frequency comb of resonances (Airy
formula in the astigmatic case as a function of the round-trip
phase shift ϕ = 2π2Lλ = ω2L/c):

EA
mn(x,y,z,ϕ) =

∞∑
m

∞∑
n

CmnE
A
mn(x,y,z)

T

1 − R exp[iϕ]
,

(6)

where R, T = 1–R–l, and l are the familiar intensity mir-
rors’ reflectivity, transmission, and losses, respectively. The
projection coefficients Cmn of the incoming spatial Gaussian
beam profile EB

00 onto the transverse cavity modes EA
mn are

given by the overlap integral
∫∫

EB
00(x,y)EA∗

mndxdy which
may be calculated on any plane transverse to the cavity axis
z. EA∗

mn is the complex conjugate of the TEMmn astigmatic
cavity eigenmode expressed by Eq. (1) modified to allow
for independent waist size, wave-front curvature radius, and
Gouy phase for x and y. Analytical expressions for an efficient
calculation of the Cmn coefficients are provided in Ref. [4].

In Fig. 3(a) is an example of the distribution of the absolute
values of the coupling coefficients |Cmn| for a Gaussian
beam incident off axis on a slightly astigmatic cavity. The
figure caption gives details about cavity and incident beam
parameters. Note that the values of the coupling coefficients are
independent on the transverse plane where they are calculated
[4]. In Fig. 3(b) is a numerical application of Eq. (6) to present
the cavity excitation field profiles modeled on planes z = 0
(input mirror) and z =L (output mirror) for the cavity length
L−

sym = 292.89 mm as given by Eq. (5). These clearly match the
transverse patterns obtained by geometrical optics (Fig. 2) and
by experimental observation [Fig. 1(b)]. We also display, in
Figs. 3(c) and 3(d), examples of cavity excitation field profiles
obtained for two cavity lengths detuned by �L = ±0.585 mm
away from L−

sym. It thus appears, for identical cavity length
variations ± M�L as well as identical cavity and injection
beam parameters, that modeled electric field profiles exhibit
the observed behavior already modeled by geometrical optics.
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FIG. 3. In (a) is an example of distribution of the absolute values of the projection coefficients |Cmn| as a function of the transverse numbers
m and n for a cavity length of 292.89 mm made of two identical mirrors with radii of curvature Rx = 1002 mm and Ry = 998 mm. Here we
chose an incident beam that is mode matched to the cavity, then misaligned in position and angle in the same manner as in Fig. 2, i.e., with (x0,
y0, x ′

0, y ′
0) = (–0.3 mm, 0 mm, 0.17◦, − 0.41◦). In (b) are the transverse field distributions simulated at the symmetric cavity length L−

sym on
both the input and output mirrors, respectively. Plots (c) and (d) show two patterns modeled at cavity output (z = L) for L−

sym ± 0.588 mm,
which correspond to ± 4�L relative to Fig. 2(d).

However, the fact that one can see slight discrepancies be-
tween experimental and simulated patterns, e.g., respectively,
the “three-bar” patterns at ± 4�L in Fig. 1(b) against the
“two-bar” patterns at ± 4�L in Fig. 2(d) and Figs. 3(c)
and 3(d), is partly due to differences in the input beam
parameters. Modeling can show that the three-bar pattern is
created on the input mirror rather than on the output mirror
as depicted. It is possible that small alignment variations
during the experimental recording took place and different
figures may have a varying degree of sensitivity to these small
variations. Another point that is to be taken into account is
that “higher-order” deformation of the mirror surfaces may
contribute to distort the observed patterns away from the
calculated ones. Still, the good general agreement indicates
that astigmatism is by far the dominating mirror defect.

Finally, we remark that all the patterns modeled in
Figs. 3(b)–3(d) result practically from the same projection
coefficients whose absolute values are represented in Fig. 3(a).
Indeed, the variation of the superposition integral giving these
coefficients is small for the small cavity length changes consid-
ered here. The differences in the observed profiles, however,
arise from the interference between the transverse cavity eigen-
modes excited by the scanning laser field. Interference can
occur and produce structured and stationary field patterns only
if at least some of the excited modes are degenerate. Indeed, as
we are going to illustrate shortly, even a fine modification of
the cavity length may induce Gouy phase shifts which make
the excited transverse modes degenerate in groups.

As displayed in Fig. 4(a), the (N ,K) reentrant condition cor-
responds, before introducing the astigmatism, to a frequency

degeneracy of the TEMmn modes into N groups [3], leading
to N cavity transmission peaks uniformly distributed over
the cavity FSR [see Eq. (3)]. This corresponds to a reentrant
beam passing N times around the cavity and cycling K times
around the optical axis before overlapping with itself, as we
mentioned earlier. It is important to note a surprising fact,
i.e., that an incident beam of varying frequency coming in
resonance with any of the N groups of degenerate modes will
produce a superposition of these modes always corresponding
to the same trajectory of N impact spots on the mirrors. Only
the field phase distributions will be different when exciting one
or another of these N groups of modes [4]. Therefore, even if
the incident beam frequency tunes across several cavity FSRs
as in our experiment, or else if the beam is polychromatic, the
N spots pattern is still readily observable. Therefore, even if
the incident beam frequency tunes across several cavity FSRs
as in our experiment, or else if the beam is polychromatic, the
N spots pattern is still identically produced.

In the presence of astigmatism, the cylindrical symmetry
breaks and the degeneracy is lifted according to Eq. (4). Thus,
for each of the N resonances, the transmission function of
the astigmatic cavity presents a bell-shaped quasiresonance
as visible in Figs. 4(b) and 4(c) when L is close to L−

sym,
i.e., a packet of individual transverse resonances which may
present a fine structure made of subgroups of degenerate
modes, as in Fig. 4(b). It turns out that the width of this
spectral envelope of dispersed modes is proportional to the
highest transverse mode order being excited. For an injection
close to the optical axis, thus involving low-order transverse
modes, the quasiresonance envelope width collapses, and in
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FIG. 4. (Color online) Modeling of the cavity transmission as a function of the phase shift. In (a) the cavity is perfectly spherical with
a mirror-to-mirror separation that satisfies the reentrant condition Lr = R [1–cos(πK/N )] in the case of a (N ,K) = (4,1) reentrant cavity;
whereas a small astigmatism (Rx = 1002 mm and Ry = 998 mm) has been introduced in (b) and (c). All three examples involve identical beam
injection parameters and cavity finesse (same as in Figs. 2 and 3). Case (b) corresponds to L−

sym, which is a cavity length that leads to the sharp
X-O Lissajous profiles as already plotted in Figs. 2(b), 2(c), and 3(b) using geometrical and wave optics theories, respectively. On the other
hand, case (c) corresponds to an irregular and vague profile.

the case of degenerate subgroups only one of these may remain
(and will present the same width as a single, isolated, cavity
mode). Conversely, the more off axis is the injection the wider
becomes the spectral envelope of the quasiresonances.

To better understand this behavior, we should consider the
frequency evolution of the transverse modes with L. At first
sight one would expect different slopes for modes with the
same transverse order m + n, since ∂ν(q,m,n)/∂L = (m +
1/2)∂θx/∂L + (n + 1/2)∂θy/∂L. In practice, this difference
in slope is negligible (it is 0.26% for the mirror curvatures
given above) and the mode splitting by the different values
of θx and θy is the dominant effect [as of Eq. (4)]. Figure 5
presents the normalized (with respect to cavity FSR) frequency
separation [�ν(q,m,n)/�νL] of transverse modes with respect
to the TEM00 mode, plotted as a function of the cavity detuning
in the vicinity of L−

sym. The [ ] indicate that we are taking
the fractional difference with respect to the nearest integer
(for example, [1.2] = 0.2 and [0.9] = –0.1· · ·), which avoids
having to choose the right value of the longitudinal order q

that makes a resonance of a transverse mode comb with given
m,n to fall into the chosen FSR interval. [�ν(q,m,n)/�νL] can
then be calculated for q = 0 and gives the position of the cavity
transmission peaks for the transverse modes with considered
m,n values, on the vertical axis of Fig. 5, as a function of
the cavity length, on the horizontal axis. Each set of parallel
lines of the same color and style corresponds to modes with
m + n equal to a multiple of N ( = 4 as before). The vertical
axis is zoomed on a small spectral region around 0, where are

visible only modes m + n = Ni with i = 0, 1, 2, 3,. . . which
lie close to the TEM00 mode. Indeed, modes with m + n = N

(i + 1), N (i + 2), N (i + 3), form groups which are located
at 1/4, 1/2, and 3/4 of the FSR, respectively. For clarity, only
the first five transverse families, i.e., with i = 0, 1, 2, 3, 4,
have been represented. While in the straightforward spherical
cavity case the modes sharing an identical m + n transverse
order are degenerate and shift together at the same rate with L,
here these modes are nondegenerate but still evolve at a very
similar rate, as visible in Fig. 5 where lines of the same color
and style for modes of the same order are parallel.

The most interesting feature revealed by Fig. 5 is that, as L

is finely tuned around L−
sym, there are cavity lengths for which

different transverse modes cross simultaneously. In the same
way as the reentrant cavity length Lr allows for the degeneracy
and the superposition of the transverse modes necessary to
produce a N -fold reentrant trajectory inside the cavity, these
astigmatic cavity configurations for which transverse modes
become degenerate in finely spaced subgroups allow for the
existence of more complex Lissajous patterns. Indeed, wave
optics simulations in Fig. 3 are obtained at these special cavity
lengths where mode crossings occur, which correspond to the
finely spaced resonance peaks exemplified in Fig. 4(b).

In contrast to this behavior, for a spherical cavity a unique
crossing occurs at Lr giving a single peak as visible in Fig. 4(a).
Then, as L is changed from Lr , transverse modes with
different m + n order fan out with different slopes (remaining
degenerate for constant m + n) given by [(m + n)∂θ/∂L]/2π ,
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FIG. 5. (Color online) A portion of the “spectrum” of cavity
resonances around the TEM00 mode, given by �ν(q,m,n)/�νL as
a function of the cavity detuning around L−

sym for the first modes
lying close to the TEM00 mode and having m + n � 16. �ν(q,m,n)
represents the frequency difference of the mode ν(q − i,iN) as a
function of L–L−

sym for 0 � i � 4, with respect to the fundamental
mode ν(q,0,0) evaluated at L= L−

sym. Simulations still involve
(N ,K) = (4,1).

and cannot cross again in the neighborhood of Lr . While the
previously degenerate groups of modes are breaking apart, the
well-defined N -spots-on-an-ellipse Herriott pattern associated
with the well-defined fractionally degenerate resonances dis-
appear and, hence, a more and more irregular and dimmer
“doughnut” shape is obtained.

Another interesting information provided by Fig. 5 is that
the width of the degenerate region, where the effect of modes
crossing can be observed, depends on the number of excited
transverse modes: The higher the number of injected transverse
modes (i.e., the more off axis the injection), the higher the
number of successive Lissajous patterns obtained. Actually,
only five crossings involve all the modes including the (0,0)
(unique thick gray line in the figure), but more crossings occur
among higher-order modes for other cavity lengths.

Figure 5 helps to accurately determine the positions of
the mode crossings, i.e., the cavity length detunings which
allow to observe the successive sharp Lissajous patterns.
Indeed, one can easily consider which transverse modes
are involved in each of the crossings and write down the
corresponding equations, which can be readily numerically
solved with respect to the cavity length. Also, if one writes
the equations for different pairs of transverse modes involved
in a given multiple crossing, one finds that these simplify
to the same equation. For example, to find all crossings of
the (0,0) mode with the m + n = N modes, one has to impose
[�ν(0,0,0)/�νL] = [�ν(0, N/2–k, N/2 + k)/�νL] with k =
−N/2, − N/2 + 1 · · · N/2 (for even N ). This simplifies to
(N/2–k)θx(L,Rx) + (N/2–k)θy(L,Ry) = 0, for which solu-
tions in the variable L are easily obtained numerically for
each k. This same expression is found when considering the
crossings of the (0,0) mode with one-every-two modes of the
family m + n = 2N (and in general, with one-every-i modes
having m + n = iN ). Again, the same expression results when

considering, for example, the crossings of the n = m = N/2
mode (the central of the yellow “dash dot” lines in Fig. 5)
with the m + n = 2N modes, which actually confirms that the
crossings in the figure “are” and do not just “appear” to be
vertically aligned. From such calculations, in our case, we find
that displacements d1 = −0.2932 mm and d2 = 0.2927 mm
involve the crossing of the TEM00 mode with the modes (3,1)
and (1,3), respectively, at closely symmetrical positions around
L−

sym, which above were considered to be equal and opposite
cavity length changes by ± 2�L. We see therefore that in this
respect Fig. 5 may be misleading, since the dependence of
the Gouy phases on L is actually not perfectly linear so that
the modes crossings and the Lissajous figures do not occur at
perfectly equidistant �L values. This was previously assumed
from empirical observation and from first modeling results,
where the Lissajous patterns were found by manually varying
the cavity length in the model and looking at the produced
cavity output pattern. As we underlined earlier, the evolution
of different modes with the same m + n transverse order only
appears to be given by parallel lines, but the slopes of these
lines are actually slightly different, and a slight curvature is
also present.

Together Figs. 4 and 5, and related discussions, lead to a
generalization of the theory of reentrant spherical cavities to
the astigmatic case. In the reentrant case, N -spot patterns are
produced by the superposition of cavity transverse modes that
are degenerate in N groups dividing the cavity FSR at equal
frequency intervals [see Fig. 3(a)]. Indeed, running simulations
as those giving the field patterns of Fig. 3 correctly reproduces,
for each of the N degenerate groups of modes, the same pattern
with N peaks on both mirrors [4]. Likewise in the astigmatic
case, it is the formation of groups of degenerate cavity modes
which allows the existence of the observed Lissajous field
patterns. Again, scanning the frequency over the closely spaced
degenerate groups of modes [see Fig. 4(b)], also produces
always the same Lissajous figure at cavity output.

With respect to the values that the Gouy phases assume
when the mode crossings occur, it turns out that these satisfy
the relations Nθx/2π–1 = Kx and Nθy/2π–1 = Ky , where
Kx and Ky are positive (small) integers. In other words, the
Gouy phases are close to 2π/N and their defects with respect
to 2π/N are in a ratio of small integers. In addition, these
integers correspond to the number of oscillations in the x and
y transverse directions which characterize the generated closed
Lissajous pattern.

Another point to note is that also configurations close to
d1/2 and d2/2 (i.e., close to our initial ±�L defined from
observation) give multiple crossings in Fig. 5, but in this case
each crossing does not involve all families of modes but just
some of the families (every two families). As it can be seen
in Fig. 2(d) from the patterns obtained by geometrical optics,
these cases correspond to the appearance of less contrasted
Lissajous profiles or, correspondingly, to the appearance of less
contrasted peak structures in the cavity transmission spectrum
as in Fig. 4(c).

This can be pushed further since we can see that there are
also multiple mode crossings close to d1/3 and d2/3, but with
each crossing involving modes from every three families and
so on and so forth. At the end, however, intermediate cavity
lengths in between the lower-order crossings give basically
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no crossings or only involve modes of higher transverse
order which at some point cannot even be excited given
the finite transverse cavity size. The transmission function in
frequency corresponds then to the case depicted in Fig. 4(c) for
which the astigmatic cavity yields a disorganized transverse
mode structure. Modeling with wave optics also consistently
yields irregular, vague, and dimmer cavity output patterns at
intermediate cavity lengths.

Additionally, it can be deduced from Fig. 5 that a central
symmetrical pattern arises when the fundamental TEM00 mode
is degenerate with symmetrical TEMmn modes satisfying
m = n. For example, the off-axis circulating intracavity field
that causes the “X-O profiles” to be observed on the input
and the output mirror at L−

sym is found to result from the
superposition of modes with m = n = 2i where i = 0, 1, 2,
. . ., ∞. Solving the corresponding equations yields the values
L±

sym also expressed by Eq. (5).
With respect to mode crossings occurring at symmetrical

positions with respect to L−
sym, for example, at the displace-

ments d1 and d2 as considered before, we should remark that
these are symmetric under the exchange of mode numbers
m,n. We can finally understand the origin of the observed
Lissajous patterns that appear basically rotated by 90◦, even
though the injection conditions are not generally subject to
the same symmetry (except for some special choices of the
incident off-axis beam). This also explains the differences
that are visible when comparing such corresponding patterns
generated at symmetric mode crossing positions around L−

sym.
Finally, we underline that this analysis applies to any astig-

matic cavity close to any N -fold reentrant configuration of the
corresponding spherical cavity, with some slight differences.
Thus, the central X-O pattern will not be of the same shape as
here, and in the case of odd values of N the central crossing
will not be a “complete” crossing involving all mode families,
but a higher-order crossing of the type considered above for
d1/2 or d2/2, which will appear not as sharp.

IV. CONCLUSION

In summary, we presented a complete description ac-
counting for the observation of a succession of transverse
Lissajous patterns at the output of an optical cavity with
off-axis injection, over a small region of cavity lengths close
to a N -fold reentrant configuration.

By first using geometrical optics, an intuitive understanding
of the mechanism was provided: Because of a weak mirror

astigmatism and given a high-enough cavity finesse, Lissajous
profiles are observed when the cavity length allows for
oscillations of the impact coordinates on the two mirrors in the
transverse directions (x,y). For sufficiently high cavity finesse,
the ray path may be able to complete a full Lissajous cycle,
thus close onto itself, before complete extinction of the light
intensity by cavity losses. In this case the beam impact points
on the mirrors are able to draw a complete Lissajous pattern.
This also explains why for a low-finesse cavity the small acci-
dental mirror astigmatism is not sufficient to produce such kind
of patterns, so that simple N -spots Herriott patterns are com-
monly observed in the reentrant case. Quantitative agreement
with observation was found: Not only the modeled patterns
match those observed as the cavity length is varied, but the
positions where they occur are close to those experimentally
determined, after the model is fed with a mirror astigmatism
which is obtained from an independent measurement.

Excellent agreement with observation was then obtained
by applying the wave optics approach developed in Ref. [4],
which allowed further insight. With the help of this more
complete and realistic representation based on transverse
modes and the superposition principle [3], we have shown that
Lissajous figures arise as soon as the transverse modes split
by astigmatism become reorganized in frequency-degenerate
subgroups clustered around the N resonant frequencies of
the corresponding N -fold reentrant spherical cavity. Finally, a
closer look at the specific modal dispersions associated with
an astigmatic cavity allowed to explain the existence of a
central profile around which is organized an intriguing spatial
symmetry of the Lissajous profiles within the degenerate
region.

This work represents a generalization of the theory of
reentrant cavities to the astigmatic case and represents an
application of the modeling framework based on transverse
cavity modes proposed in [4]. It also illustrates the much
deeper insight that wave optics modeling may provide with
respect to a basic and more widely used geometrical optics
approach.
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