
PHYSICAL REVIEW A 88, 043840 (2013)

Polarization radiation of vortex electrons with large orbital angular momentum
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Vortex electrons—freely propagating electrons whose wave functions have helical wave fronts—could become
a novel tool in the physics of electromagnetic radiation. They carry a nonzero intrinsic orbital angular momentum
(OAM) � with respect to the propagation axis and, for � � 1, a large OAM-induced magnetic moment μ ≈ �μB

(μB is the Bohr magneton), which influences the radiation of electromagnetic waves. Here, we consider in detail
the OAM-induced effects caused by such electrons in two forms of polarization radiation, namely, in Cherenkov
radiation and transition radiation. Thanks to the large �, we can neglect quantum or spin-induced effects, which
are of the order of h̄ω/Ee � 1, but retain the magnetic moment contribution �h̄ω/Ee � 1, which makes the
quasiclassical approach to polarization radiation applicable. We discuss the magnetic moment contribution to
polarization radiation, which has never been experimentally observed, and study how its visibility depends
on the kinematical parameters and the medium permittivity. In particular, it is shown that this contribution
can, in principle, be detected in azimuthally nonsymmetrical problems, for example when vortex electrons
obliquely cross a metallic screen (transition radiation) or move near it (diffraction radiation). We predict a
left-right angular asymmetry of the transition radiation (in the plane where the charge radiation distributions
would stay symmetric), which appears due to an effective interference between the charge radiation field and the
magnetic moment contribution. Numerical values of this asymmetry for vortex electrons with Ee = 300 keV and
� = 100–1000 are 0.1%–1%, and we argue that this effect could be detected with existing technology. The finite
conductivity of the target and frequency dispersion play crucial roles in these predictions.
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I. INTRODUCTION

Radiation of electromagnetic (EM) waves is an inherent
property of charges. In electrodynamics, there exist two
general classes of radiation: bremsstrahlung and polarization
radiation (PR). Bremsstrahlung is produced by a charge
accelerated in some external EM field, and it comprises
such processes as synchrotron radiation, undulator radiation,
bremsstrahlung in a Coulomb field, etc. In contrast, there are
various forms of PR, such as Cherenkov radiation, transi-
tion radiation, diffraction radiation, Smith-Purcell radiation,
parametric x-ray radiation, etc., which can be emitted by a
uniformly moving charge but only in the presence of a medium.
In this case, at each point of the medium the time-varying EM
field of the moving particle induces time-varying currents,
which are sometimes called polarization currents and may
be considered as a radiation source (see, e.g., [1–4]). In a
microscopic treatment, PR arises as a result of the so-called
distant collisions of a particle with an atom or molecule. In
this case, the effective (mainly) dipole moments induced by
the projectile’s field inside the target emit only soft photons,
and the particle trajectory stays undisturbed; see, e.g., [1–3].

It is clear that EM radiation can be produced not only
by charges but also by neutral particles carrying higher
multipoles: electric or magnetic dipoles, quadrupoles, etc.
For example, there is a vast literature on the problem of
the spin magnetic moment radiation in external fields and in
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matter (the so-called “spin light”) for electrons, neutrinos, etc.
(see, e.g., [5–8] and the references therein). Then, Cherenkov
radiation by a neutron treated as a pointlike particle with
a zero charge but with a magnetic dipole moment is a
well-known problem (see, e.g., [9,10]). Transition radiation
by the magnetic moments as well as the electric dipoles and
quadrupoles also has been analyzed in detail in [10].

It is therefore remarkable that despite the big theoretical
interest, experimental observations of the magnetic moment
(or any higher multipole) influence on the EM radiation are
very scarce. Putting aside various spin-dependent radiative
processes in high-energy particle collisions, they are, in fact,
limited to only very few cases of the bremsstrahlung of ul-
trarelativistic electrons. For example, in [11], the synchrotron
radiation intensity in the 100–400 keV range at the VEPP-4
storage ring for 5 GeV electrons was found to depend on
the electron spin orientation. The effect’s magnitude was
small, of the order of 10−4–10−3, but due to the high photon-
counting statistics it was easily measurable. This effect was
even proposed as a tool for measuring the beam’s transverse
polarization at storage rings. Further development of this idea
led to a proposal of a “spin-light polarimeter” for the future
12 GeV JLab storage ring [12]. Spin effects in bremsstrahlung
were also observed at CERN by detecting the GeV-range
photons emitted by the 35–243 GeV electrons passing through
a tungsten single crystal (out of the channeling regime) [13].
The effect was detectable due to the very strong EM field in
the crystal, comparable to the Sauter-Schwinger limit in the
electron rest frame.

In contrast to these results for bremsstrahlung, the magnetic
moment (or any higher multipole) contribution to any form
of polarization radiation has never been detected. There
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are several obstacles to this measurement. On the purely
experimental side, a “no-win” situation: The PR intensity
is, roughly speaking, larger for soft photons, especially in
the coherent regime of emission (see, e.g., [8]), but the
relative contribution of the spin-induced magnetic moment is
attenuated by h̄ω/Ee, where h̄ω and Ee are the photon energy
and the electron energy, respectively. However, even putting
aside this experimental difficulty, there is a deeper problem of
separating the spin-induced magnetic moment contribution to
PR from the quantum recoil effects, which are of the same
order (this fact was ignored in the analysis of Ref. [8]).
Indeed, in the macroscopic quasiclassical treatment of PR,
one assumes that the particle trajectory remains unperturbed
by the radiation. In other words, one neglects effects of the
order of h̄ω/Ee from the very beginning, and the spin-induced
magnetic moment contribution to PR lies beyond the standard
calculation scheme. As for the quantum theory of PR, which
is far from being completed as yet (see, e.g., [14,15]), the
spin magnetic moment contribution, again, has quantum recoil
effects as a natural competitor, which makes an experimental
separation of the two contributions a rather delicate task.

The theoretical prediction [16] and the recent experimental
demonstration of vortex electron beams [17–20] put a dramatic
twist on this problem. Vortex electrons carry an intrinsic
orbital angular momentum (OAM) L = h̄� with respect to
their average propagation direction, and the values of � can
be rather large (up to 100 in [19] and up to 90 in [20]). The
magnetic moment associated with the OAM is correspondingly
large [21], μ ≈ �μB , where μB = eh̄/2mec is the Bohr mag-
neton. It strongly enhances all the magnetic moment effects
compared to the usual spin contribution 2μB . Using vortex
electrons with � � 1, one can enter the regime in which the
magnetic moment contribution is only moderately suppressed,
proportionally to �h̄ω/Ee � 1, and it remains much larger
than the quantum effects. This improves the visibility of the
magnetic moment contribution to PR and, at the same time,
makes its quasiclassical calculation a self-consistent problem.
An observation of this contribution would be the first clear
evidence of PR by a multipole.

As a particular example, we considered in [22] transition
radiation of vortex electrons with � � 1 obliquely incident on
a metallic foil and predicted that the OAM-induced magnetic
moment contribution could manifest itself via a left-right
asymmetry of the radiation. For electrons with Ee = 300 keV,
which is a typical energy of the vortex electrons in electron
microscopes, and � ∼ O(1000), the asymmetry magnitude can
be of the order of 1%, which must be readily detectable.
In this paper, we present a fuller discussion of this process,
including its dependence on the kinematical parameters and
on the medium permittivity ε(ω), as well as a comparison with
Cherenkov radiation by vortex electrons.

The structure of the paper is as follows. In Sec. II we
remind the reader of the qualitative features of transition
radiation from a charge and a magnetic moment. We then
pass to an accurate description of the transition radiation from
a system “charge + magnetic moment” and present in Sec. III
the formulas for two quasiclassical ways of modeling the
magnetic moment. The numerical results are given in Sec. IV.
In Sec. V we discuss the results and outline the requirements
and a strategy to detect the proposed effect in an experiment.

II. TRANSITION RADIATION FROM CHARGE +
MAGNETIC DIPOLE: QUALITATIVE FEATURES

A. General properties of PR

Polarization radiation occurs when a particle moves uni-
formly near or inside a medium with the complex permittivity
ε(ω) = ε′ + iε′′ [23]. Depending on the medium or target
shape, one usually distinguishes different particular types of
PR: Cherenkov radiation (ChR), transition radiation (TR),
diffraction radiation (DR), Smith-Purcell radiation (SPR),
parametric x-ray radiation, etc. (see, e.g., [2–4]). Along
with the energy losses to excitation and ionization of the
atomic shells, which result in a discrete spectrum radiation
of the relatively hard photons (bremsstrahlung), there are
also the so-called polarization losses related to the dipole
moments induced inside the medium and leading to a
continuous spectrum radiation of the relatively soft photons
(see, e.g., [3] and the references therein). Although many
macroscopic manifestations of PR have been known since the
1930s–1950s (ChR, TR, DR, and SPR), the microscopic
quantum theory of PR explicitly demonstrating their common
physical origin was developed only in the 1970s–1980s by
Amusia with co-workers (see, e.g., [3,25] and the references
therein; qualitative explanations of the microscopic nature
of, say, ChR were of course given before). The macroscopic
approaches, in which such a unified nature of various radiation
processes was explicitly demonstrated, have been developed
only in recent years [2,4,26,27].

As a matter of fact, radiation of soft photons (the ones
for which ω � Ee) represents a somewhat complementary
process to the usual bremsstrahlung of an accelerated charge,
since, as we know, only the sum of probabilities of these
two processes is measured in experiment. One of the most
remarkable differences between the ordinary bremsstrahlung
and PR is that whereas the intensity of the former is inversely
proportional to the projectile (say, electron) mass squared,
dW ∝ m−2

e , the intensity of the latter has no dependence
on this mass at all. As a result, PR can even dominate over
bremsstrahlung, especially in the ultrarelativistic case [2,3].

Due to the different kinematic conditions, various types
of PR have different spectra, but the shape of the latter,
nevertheless, is mostly defined by the permittivity dispersion.
In particular, in the ultrarelativistic case the spectrum (say,
of TR [10,15]) can span up to the frequencies ωc ∼ γωp

(γ = Ee/mec
2 = 1/

√
1 − β2 is the Lorentz factor), which

can lie in the x-ray region for very energetic electrons, since
the plasma frequency ωp is around 10–30 eV for many
materials.

B. General properties of charge TR

One of the simplest and most widely known types of
PR is transition radiation, which occurs when a uniformly
moving charge crosses an interface separating two media
with different permittivities. Put simply, although the charge
motion is uniform, the accompanying EM field reorganizes
itself when crossing the interface, and it is partly “shaken off”
in the form of EM radiation. The simplest example of TR
at normal incidence was considered in the seminal paper by
Ginzburg and Frank [28]. In the following decades, a theory
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FIG. 1. Left: A schematic view of the forward and backward TR
lobes projected onto the incidence plane. Right: Angle conventions
for oblique incidence with the example of backward TR. The specular
reflection direction is shown by the gray dashed line.

treating the physics of transition radiation in ever increasing
details and in more general setups has gradually emerged (see,
e.g., Ref. [29] and also the monograph [10]) and has even
become standard textbook material [24]. There are several
aspects which enrich the phenomenon of TR and complicate its
theoretical investigation: normal vs oblique incidence, an ideal
conductor vs a medium with an arbitrary complex permittivity
ε, one interface vs multiple interfaces (see, e.g., [29]),
etc.

One of the specific features of TR is the radiation generation
to both semispaces: the one the particle is coming from
(backward TR) and the one the particle enters after crossing
the interface (forward TR); see Fig. 1, left. For the case of
a vacuum–ideal-conductor interface, this can illustratively be
explained as radiation from two charges which annihilate at the
interface (in order to comply with the boundary conditions)—
from the original charge and from its image.

In order to illustrate some of these features, let us consider
a pointlike charge (an electron) approaching from a vacuum
the flat boundary of a medium with a general ε(ω); Fig. 1,
right. We assume oblique incidence with an angle α between
the particle trajectory and the interface normal. We then define
the incidence plane and the direction of the specular reflection.
Any direction of the emitted photon can be characterized by
the two “flat” angles θ1 and θ2 describing the out-of-the-plane
deviation angle (θ2) and the in-the-plane projection measured
from the specular reflection direction (θ1).

The classical result of Ginzburg and Frank concerns normal
incidence, for which only one polar angle θ is needed, which
is measured from −z for the backward TR geometry shown in
our picture. When solving the TR problem for an oblique
incidence, it is easier to work with the usual polar and
azimuthal angles θ,φ, but the final result is more illustrative
when expressed via the flat angles θ1,2. Below we shall use
both pairs of variables which are related as follows:

cos θ = cos θ2 cos(α + θ1),

sin φ = sin θ2√
1 − cos2 θ2 cos2(α + θ1)

. (1)

These two angles can also be given another interpretation.
Consider the spherical coordinate system with respect to the
axes (x ′,y ′,z′) = (−z,x,y). Then, the spherical angles θ ′ and
φ′ are nothing else but π/2 − θ2 and α + θ1, respectively.
Therefore, the measure for the angular integration is simply

d� = sin θ dθ dφ = cos θ2 dθ2 dθ1. (2)

The general formula for the charge TR spectral-angular
distribution of the emitted energy for oblique incidence on
an ideally conducting (ε′′ → ∞) target is [30]

d2W

dω d�
= e2

π2c
β2 cos2 α

(sin θ − β sin α cos φ)2 + β2 sin2 α cos2 θ sin2 φ

[(1 − β sin α sin θ cos φ)2 − β2 cos2 θ cos2 α]2
, (3)

both for the forward TR and for the backward TR.
In the nonrelativistic approximation and at normal inci-

dence, it has the typical form for any dipole radiation:

d2W

dω d�
≈ e2

π2c
β2 sin2 θ. (4)

As the electron becomes relativistic, the angular dependence
develops two prominent lobes near the forward and backward
directions with the maxima at θ = γ −1 � 1:

d2W

dω d�
≈ e2

π2c

θ2

(γ −2 + θ2)2
. (5)

At an oblique incidence, the two lobes shift. The forward TR
is located near the particle trajectory, while the backward lobe
stays close to the specular reflection direction. In the relativistic
case, θ1,θ2,γ

−1 � 1, the angular distributions become slightly
asymmetrical in the incidence plane (direction quantified by
θ1), but stay symmetric (in the absence of a magnetic moment)

in the orthogonal plane:

d2W

dω d�
≈ e2

π2c

θ2
1 + θ2

2(
γ −2 + θ2

1 + θ2
2

)2

1

(1 − θ1 tan α)2
. (6)

The typical width of the lobes in the wave zone is ∼γ −1. Note
that for moderately relativistic electrons, for example those
produced in electron microscopes (Ee = 300 keV, β ≈ 0.8),
the lobes are rather wide and are sizably shifted with respect
to the reference directions.

In the general case of a finite ε(ω), the radiation lobes
in the backward and forward directions stay asymmetric in
θ1 but do not coincide. It happens, in particular, for almost
transparent media due to a possible contribution of Cherenkov
radiation in the forward direction (we remind the reader that
Cherenkov radiation and TR are two faces of fundamentally
the same process of polarization radiation). If the target is
a good conductor, the energies emitted in the forward and
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backward directions coincide. However, for a medium with
weak absorption (ε′′ � ε′), the interface reflectivity is small,
so the forward TR dominates.

The TR photon spectrum is mostly shaped by the medium
dispersion ε(ω). For the forward TR (the energetic photons go
in the forward direction only, just due to the Doppler effect),
the spectrum stays roughly flat below the critical frequency
ωc ∼ γωp. Above the plasma frequency, ω � ωp, the medium
becomes increasingly transparent with a typical dependence
ε − 1 ∝ 1/ω2, which leads to a rather sharp cutoff in the
spectrum when ω � ωc. This implies that for moderately
relativistic electrons, TR detection beyond the optical or UV
spectral region is difficult.

Finally, the target can also be a highly conducting film,
sufficiently thin to let the incident charge cross both boundaries
without significantly changing its velocity, but at the same time
thick enough (much thicker than the skin depth in the medium)
to absorb any in-medium radiation. In this case, both forward
and backward TR will be observed, but they are emitted at
different stages of the process: the detectable backward TR is
emitted in a vacuum when the charge enters the medium, while
the detectable forward TR, again in a vacuum, is emitted when
it exits the medium. Although Fig. 1 and the above discussion
refer only to the former case, our detailed calculations below
will include both cases.

To avoid any confusion, let us explicitly state list the
kinematical conventions we use. When presenting the results
for the TR, we will always assume that it refers to TR in
vacuum, and in these circumstances, the distinction “backward
or forward TR” should be understood as the backward TR
upon entering the medium and the forward TR upon exiting
the medium. This convention is natural as it matches the
forward and backward radiation a photon detector in a typical
experiment would observe. In both cases, the normal n points
to the hemisphere which the particle moves into, so that
(un) > 0, where u is the particle velocity. That is, at the first
crossing, n points inside the medium, while at the second
crossing it points outside, into the vacuum. The coordinates
(x,y,z) are always the same as shown in Fig. 1, right; in
particular, n = (0,0,1). On the other hand, the angles θ and θ1

change in a correlated manner. The angle θ is always measured
with respect to the normal pointing into the vacuum, that is,
from −z in the former case and from z in the latter case. The
angle θ1 is measured from the direction of specular reflection
in the former case, and from the actual trajectory of the charge
upon its exit in the latter case. The angle θ2 is the same in both
cases.

C. TR from a magnetic moment

TR from a pointlike neutral particle carrying a nonzero
magnetic moment was considered, for instance, in [10]. A

theoretical description of this process must address several
delicate aspects. The first subtlety is that the magnetic moment
can be modeled, classically, either as a close pair of magnetic
monopoles or as a current loop of a small size. It is remarkable
that in a generic situation (arbitrary orientation of the magnetic
moment and arbitrary permeability of the medium) these two
approaches lead to distinct results, both for the TR energy and
for the polarization of the emitted radiation [10]. A similar
ambiguity appears for Cherenkov radiation; see, e.g., [9].
Therefore, it should be stressed that, in the absence of magnetic
monopoles in Nature, we should always model the magnetic
moment by a current loop.

The second subtlety is that the electric and magnetic
dipole moments are not invariant upon Lorentz boosts. In
general, the electric and magnetic dipole moments transform
as the components of an antisymmetric tensor Mμν . If μ is
the magnetic moment in the particle rest frame (here and
everywhere below, the bold face indicates three-dimensional
vectors), then upon a boost with the velocity u it generates an
electric dipole moment d ‖ [u × μ]. Fortunately, in the case of
vortex electron beams the magnetic moment is parallel to the
average propagation direction, which eliminates the electric
dipole moment contribution. The only effect then is the Lorentz
contraction of the magnetic moment value from μ in the rest
frame to μ/γ in the laboratory frame. Since, as explained
in the Introduction, we shall neglect all quantum effects, the
magnetic moment is not flipped during the emission.

The main changes of the TR from a longitudinal pointlike
magnetic dipole μ = �μB with respect to the charge TR can
be anticipated already from comparison between the respective
currents: jμ = crot[μδ(r − ut)]/γ vs j e = euδ(r − ut). The
curl leads to an extra factor iω/c in the Fourier components
of the radiation field. As a result, the relative strength of
the magnetic moment TR always bears the following small
factor (note that ω here is the frequency of the emitted
radiation):

x� = �
h̄ω

Ee

. (7)

The radiation energy contains this factor squared. For optical
or UV photons and for the typical electron energies achievable
in an electron microscope, we get

x� ∼ 10−5�.

Therefore, radiation of the pure magnetic moments is sup-
pressed by several orders of magnitude. Increase of � partially
compensates this suppression, but it still remains prohibitively
difficult to detect.

As we shall demonstrate below, the general formula for
“pure” magnetic moment TR for an oblique incidence on an
ideally conducting target (again, identical for the backward TR
and the forward TR) is

d2W

dω d�

∣∣∣∣
μ

= γ −2 μ2

π2c

(
ω

c

)2 sin2 α sin2 φ(1 − β sin α sin θ cos φ)2 + cos2 θ [β sin θ (1 − sin2 α sin2 φ) − sin α cos φ]2

[(1 − β sin α sin θ cos φ)2 − β2 cos2 θ cos2 α]2
. (8)
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Taken at face value, this expression does not vanish when
β → 0. However, as will become clear below, it does so
for any finite ε(ω), which simply means that an ideal con-
ductor as a model has limited applicability. When μ ≈ �μB ,
we have

γ −1 μω

c
= 1

2
ex�.

At normal incidence and in the ultrarelativistic case, we
have a formula which is very similar to (5):

d2W

dω d�

∣∣∣∣
μ

≈ γ −2 μ2

π2c

(
ω

c

)2
θ2

(γ −2 + θ2)2
. (9)

Finally, the relative intensity of the magnetic moment radia-
tion, again at normal incidence, is

d2W

dωd�

∣∣∣∣
μ

/
d2W

dωd�

∣∣∣∣
e

=
(
γ −1μω cos θ

ec

)2

≈ 1

4
x2

� cos2 θ � 1.

(10)

For an oblique incidence, the angular distributions of the mag-
netic moment TR are also asymmetric in the incidence plane
(with respect to θ1), but stay symmetric in the perpendicular
plane (in θ2).

D. TR from charge + magnetic moment

Of course, in the case of an electron, we deal with both
charge and magnetic moment contributions to TR. The fields
of both sources add up, and the radiated energy can contain
three terms

dW = dWe + dWeμ + dWμ (11)

describing the radiation energy of the charge dWe and of the
magnetic moment dWμ as well as their interference dWeμ. The
explicit equations for dW will be given in the next section.

If we want to detect TR from the magnetic moment in a
situation with an extremely small dWμ, we should focus on
extracting the interference term dWeμ. This task turns out to
be tricky for a number of reasons. An analysis of the situations
when this interference is present was performed in [31].

First, the emitted energy is a three-scalar while μ is a
pseudovector. Therefore, the interference term must contain a
triple product ek · [μn], where ek is the direction of the emitted
photon, and n is the boundary normal. This triple product
vanishes for normal incidence, while for oblique incidence it
changes sign upon θ2 → −θ2 (i.e., by flipping the sign of the
out-of-the-plane component of ek). Therefore, the interference
can be observed only at an oblique incidence and only in the
differential distribution, not in the total energy.

Since the interference term is small compared to the pure
charge radiation, the angular distribution will also contain two
lobes in the forward and backward directions, but they will be
slightly nonsymmetric under θ2 → −θ2. A convenient way to
quantify this distortion is to calculate the asymmetry

A(α,ω,�) =

∫
d�f (θ2)

d2W

dω d�∫
d� |f (θ2)| d2W

dω d�

, (12)

where f (θ2) is some function, odd in θ2 → −θ2. The simplest
choice f (θ2) = sgn(θ2) yields the widely used expression

A =

∫
d�L

d2W

dωd�
−

∫
d�R

d2W

dωd�∫
d�L

d2W

dωd�
+

∫
d�R

d2W

dωd�

. (13)

Here, d�L and d�R indicate two hemispheres lying to the
left and to the right of the incidence plane (see Fig. 1).
In fact, these integration domains do not have to cover the
entire hemispheres, but in any case they must be symmetric
under θ2 → −θ2. Alternative definitions of the asymmetry,
in which one weights the angular distribution, say, with
the function f (θ2) = sin θ2, can also be employed. Below
we shall use the definition (13) unless explicitly mentioned
otherwise.

There is yet another factor that can suppress interference.
Note that the curl, which is present in the definition of jμ,
produces an extra i factor in the Fourier components. As a
result, the (magnetic) field of the radiation will contain the
magnetic moment contribution with a relative phase:

HR = HR
e + HR

μ = a + ix�b, (14)

with some quantities a and b. These two quantities are,
generally speaking, complex due to the complex ε (or, to
be more accurate, due to the complex

√
ε). However, if they

have equal phases, the interference term dWeμ vanishes. This
happens, in particular, in the two limiting cases: (a) Im ε = 0,
a transparent medium; and (b) Im ε = ∞, an ideal conductor.
Therefore, in order to get a nonzero asymmetry, we must
consider a real medium with a sizable (but not asymptotically
large) Im ε.

If all these conditions are satisfied, we can expect, very
roughly, the asymmetry (13) to be of the order of A ∼ x�.
For typical experiments with vortex electrons in microscopes,
this amounts to A ∼ O(1%) for the optical or UV TR
from electrons with � ∼ O(1000), and proportionally weaker
asymmetries for smaller �.

This makes detection of the asymmetry a rather delicate
experimental undertaking. It necessitates a careful numerical
analysis of the effect, which we perform below. It will allow
us to obtain reliable numerical results for realistic setups and
to check how this asymmetry can be enhanced.

We end this section by mentioning that there exists an
alternative suggestion to detect the large OAM effect in
transition radiation [32], which relies on recent calculations
[31]. In this method, the quantity of interest is not the angular
distribution of the emitted photons but their polarization. With-
out the magnetic moment contribution, the emitted photons
are linearly polarized. The presence of the magnetic moment
leads to a slightly elliptical polarization for the off-plane
photons. If one manages to measure the photon polarization
very close to the direction of the minimum intensity, the
degree of circular polarization can be sizable, of the level of a
few percent or higher for � = 100. Whether such an accurate
angular selection is feasible in realistic devices remains to be
studied.

043840-5



IGOR P. IVANOV AND DMITRY V. KARLOVETS PHYSICAL REVIEW A 88, 043840 (2013)

III. TR FROM VORTEX ELECTRONS:
QUANTITATIVE DESCRIPTION

A. Vortex electrons

A vortex electron state is a freely propagating electron
whose wave function contains phase singularities with a
nonzero winding number �. Such an electron state is charac-
terized, simultaneously, by an average propagation direction
and an intrinsic orbital angular momentum with the projection
L = h̄� on this direction. Following the suggestion of
Ref. [16], vortex electrons were recently created in exper-
iments by several groups [17–20]. They are produced in
electron microscopes with the typical energy of Ee = 200–
300 keV with the aid of computer-generated diffraction
gratings, which induce � as large as 25 in the first diffraction
peak and proportionally larger � in faint higher diffraction
peaks. These vortex electrons can be accurately manipulated
and, in particular, can be focused to a spot of 1 Å size [33].

The simplest example of a vortex state for a spinless particle
is given by the Bessel beam state [34,35] whose coordinate
wave function is

ψ(r⊥,φr ,z) ∝ eikzzei�φr J�(k⊥r⊥). (15)

At large �, the properties of the Bessel functions lead to a
narrow radial distribution located around r⊥ ≈ �/k⊥ (see, e.g.,
[35]), in good analogy with the quasiclassical picture of such an
electron as a rotating ring of electronic density (see, e.g., [19]).

The spin degree of freedom of the vortex electron can
also be included [21,35]. Spin and OAM degrees of freedom
interact [21], and both of them induce a magnetic moment of
the vortex electron (in the laboratory frame)

μ

γ
= (� + 2s − �s)

μB

γ
≈ �

μB

γ
, (16)

which was confirmed by the observation of OAM-dependent
Larmor precession in the longitudinal magnetic field [36]. Here
�s is the effective shift in the magnetic moment due to spin-
orbital interaction. In the case of large �, which concerns us
in this paper, we can neglect the spin contribution, which is
indicated in the last expression in (16). The OAM-induced
magnetic moment in this approximation is aligned with the
average propagation direction of the vortex electron regardless
of the spin state.

B. Modeling a large OAM-induced magnetic moment

An electron vortex state is characterized by a nontrivial
spatial structure of the wave function. In this sense, it is
an inherently quantum state. However, as we explained in
the Introduction, the large value of � allows one to treat PR
from the OAM-induced magnetic moment quasiclassically,
neglecting quantum effects during radiation, because the
latter is of order h̄ω/Ee, which is much less than the OAM
contribution �h̄ω/Ee.

Not only does the magnetic moment (16) describe how
vortex electrons couple to an external magnetic field, but
it is also a source of its own EM field. Therefore, if the
vortex electron wave packet is sufficiently compact, it can
be modeled as a classical pointlike source with a charge e and
an intrinsic magnetic moment μ given by (16); Fig. 1. This
picture is behind our first method of calculating TR from the

ξ

FIG. 2. Modeling the magnetic moment of a vortex electron via
a flat thin rotating ring of point charges.

vortex electrons passing from one medium into another. In this
purely phenomenological model, we do not discern the internal
microscopic structure of the vortex electron, nor do we specify
the origin of the large magnetic moment. The only assumption
we make is that, in the absence of magnetic monopoles, the
magnetic moment arises only from closed charge current loops.

To control the validity of this approach, we devised
our second model, which also treats the vortex electron
quasiclassically but in which the OAM-induced magnetic
moment becomes an emergent quantity. In this model, we
calculate coherent transition radiation from a charged rotating
ring consisting of a large number of electrons, N � 1, which
carry no intrinsic magnetic moment and whose trajectories are
straight rays passing at fixed skew angles through a ring of a
microscopic size, R � λ; see Fig. 2. Individual charges move
at constant and equal longitudinal velocities, so that at any
given moment of time they form an infinitely thin annular
slab in the transverse plane. It then becomes the standard
calculation of TR with the only exception that the total charge
of the ring is just e (in other words, we calculate the coherent
radiation energy of a ring and divide it by the factor N2). Note
that this thin-ring model is qualitatively similar to the true
transverse wave function profile of a large-� vortex electron
mentioned above. This model is certainly well known and
it has been discussed both for vortex electrons [19] and for
photons [37] carrying large �.

In order to compare the two models, we need to determine
the effective � within the second approach. This can be done
quasiclassically as follows:

�eff = Rp sin ξ

h̄
, (17)

where p is the electron momentum and ξ is the skew angle, so
that p sin ξ is the absolute value of the transverse momentum
of each electron in the ring. The same expression can also
be obtained from the definition of the magnetic moment of a
current loop with area S and current I ,

�eff = μ

μB

= 2mec

eh̄
γ πR2 ev sin ξ

2πRc
= Rp sin ξ

h̄
. (18)

As usual, μ refers to the magnetic moment in the rest frame,
while the expression SI/c gives the magnetic moment in the
laboratory frame.

These models can be applicable to a realistic experimental
setup with vortex electrons, if certain coherence conditions are
satisfied. First, the quasiclassical treatment of the electrons as
pointlike particles in the transverse space is valid only if the
vortex electrons are focused in a spot with a size much smaller
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than the emitted light wavelength λ. Within the second model,
we also assume that the size of the ring is smaller than λ

in order to avoid destructive interference between different
parts of the electron wave function. The same applicability
condition requires also that the longitudinal extent of the
individual electron wave function is much shorter than λ. This
extent can be quantified by the longitudinal self-correlation
length of the electron beam. This length is related to the
monochromaticity of the electron beam and it can be found
experimentally by counting the number of fringes in an
electron diffraction experiment. The longitudinal compactness
condition implies that the monochromaticity should not be
too good.

Finally, the calculations of TR presented below are per-
formed for individual electrons, not electron bunches, because
we assume that successive electrons pass through the foil one
at a time. This condition is, in fact, an important part of the
whole idea of making use of vortex electrons. A vortex electron
state refers to a state of a single sufficiently isolated electron,
whose wave function remains stable over long distances due
to the absence of disturbance of copropagating electrons.
It is hard to imagine that a compact dense electron bunch
would be able to keep each electron in a definite vortex
state. This condition implies that electrons must be separated
by distances much larger than λ, which in turn restricts
the current to values below ∼10μA. This is satisfied by a
large margin in the experiments with vortex beams realized
so far.

If the above coherence requirements are all fulfilled, the
two models are expected to yield qualitatively similar and
numerically close results, because the second model proposes
a microscopic origin of the large magnetic moment introduced
“by hand” in the first model. We notice that for the simple case
of normal incidence and a pure magnetic moment (no charge),
a similar expectation was explicitly mentioned and verified in
Chap. 3.7 of [10].

C. Methodical example: Cherenkov radiation
from charge + intrinsic magnetic moment

We start with the simpler case of Cherenkov radiation by
vortex electrons with large OAM-induced magnetic moments,
which is calculated according to the first model. We consider
a pointlike particle with a charge e and an intrinsic magnetic
moment, which in the particle rest frame is equal to μ and
directed along the velocity. The charge and current densities
in the rest frame in vacuum are

ρe = eδ(r), jμ = c rot[μδ(r)]. (19)

Note that this expression is valid for the case when the
magnetic moment originates from current loops.

In the laboratory frame, the currents are

j e = euδ(r − ut), jμ = cμ

γ

⎛
⎜⎝

∂y

−∂x

0

⎞
⎟⎠ δ(r − ut) . (20)

(Note that the Lorentz transformation induced a decrease of
the magnetic moment in the laboratory frame.) Their Fourier

transforms [38] are

j e(q,ω) = e

(2π )3
u δ(ω − q · u),

jμ(q,ω) = ic

(2π )3
eμ δ(ω − q · u), (21)

where

eμ = μ

γ

⎛
⎜⎝

qy

−qx

0

⎞
⎟⎠ . (22)

Note the all-important i factor in the magnetic moment
contribution.

These currents generate electric fields which are determined
by the Maxwell equations. Generally, their Fourier compo-
nents are

E(q,ω) = 4πi

ω

1

q2 − ω2/c2

×
[(

ω

c

)2

j (q,ω) − q(q · j (q,ω))
]
.

(23)

According to the polarization-current approach developed in
Ref. [4], the magnetic field of the radiation in the wave zone
is found as

HR(r,ω) = (2π )3
(ω

c

)2 ε − 1

4π

ei
√

εrω/c

r
ek

× [Ee(k,ω) + Eμ(k,ω)] (24)

= i
ω2

c3
(ε − 1)

ei
√

εrω/c

r

δ(ω − k · u)

k2 − ω2/c2
ek

×
[
eu + ic

μ

γ
k × eu

]
, (25)

and the argument of the δ function turns into zero
under the Cherenkov condition 1 = β

√
ε cos θm. Here,

eu = u/u = (0,0,1) and k = ωek/c = ω
√

ε(sin θm cos φ,

sin θm sin φ, cos θm)/c is the wave vector. Calculating the
radiated energy as

d2W

dω d�
= cr2

√
ε
|HR|2, (26)

we evaluate the squared δ function in the usual way,

δ2(ω − k · u) → δ(ω − k · u)δ(0) → T

2π
δ(ω − k · u),

where T is a large (T � ω−1) period of time. Integrating the
resultant expression over the angles we note that the δ-function
zero lies on the integration path only if the permittivity ε is
real (ε′′ = 0). In that case we come finally to

1

uT

dW

dω
= e2

c2
ω

(
1 − 1

β2ε

)[
1 +

(
μω

√
ε

euγ

)2
]

. (27)

This is the Tamm-Frank formula for Cherenkov radiation with
a contribution of the magnetic moment. As predicted, there
is no interference term dWeμ, due to the transparence of the
medium being considered.
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It should be noted, however, that this term is absent even
in an absorbing medium. Indeed, for a medium with weak
absorption (otherwise, the Cherenkov radiation problem itself
has no sense whatsoever in a boundless medium), the radiation
field squared is proportional to (here κ ≡ Im

√
ε)

|ek × [eu + icγ −1μ k × eu]|2
∝ (eu sin φ − κγ −1μω cos θ cos φ)2

+ (eu cos φ + κγ −1μω cos θ sin φ)2 (28)

and the terms linear in μ cancel each other. This remarkable
feature is obviously due to the azimuthal symmetry of the
problem. This is not the case for transition radiation in the
oblique-incidence geometry, which we are now going to
demonstrate.

D. Radiation field for TR from
charge + intrinsic magnetic moment

Now we consider TR generated by an oblique passage of
a particle with a charge and a magnetic moment through a
flat interface between a vacuum and a nonmagnetic medium
with a (complex) permittivity ε(ω). The axis z is chosen as the
normal to the interface, and the axis x defines the particle’s
incidence plane. The particle approaches the boundary in the
(x,z) plane at the angle α to the normal, and its velocity is
u = u(sin α,0, cos α).

In the laboratory frame, the currents are

j e = euδ(r − ut),

jμ = cμ

γ

⎛
⎝ cos α ∂y

sin α ∂z − cos α ∂x

−sin α ∂y

⎞
⎠ δ(r − ut). (29)

Their Fourier transforms stay the same, (21), with

eμ = μ

γ

⎛
⎝ cos α qy

sin α qz − cos α qx

−sin α qy

⎞
⎠ . (30)

In the problem of calculating TR, we deal with a situation
which is homogeneous along the coordinates x and y, but
not along z due to the presence of a boundary. Therefore,
it is convenient to work with the partial Fourier transforms
E(q⊥,z,ω) with q⊥ = (qx,qy,0) in which the dependence on
z is kept. Due to linearity, the electric field (23) is the sum of
the contributions from both currents (21), which can be written
as follows:

Ee(q⊥,z,ω) = i
2e

(2π )2ω uz

eiz(ω−q⊥·u)/uz

q2
⊥ + (ω − q⊥ · u)2/u2

z − ω2/c2

×
[(

ω

c

)2

u − ω

(
q⊥ + n

ω − q⊥· u
uz

)]
, (31)

Eμ(q⊥,z,ω) = − 2e

(2π )2ω uz

eiz(ω−q⊥·u)/uz

q2
⊥ + (ω − q⊥ · u)2/u2

z − ω2/c2

×
[(

ω

c

)2

eμ −
(

q⊥ + n
ω − q⊥· u

uz

)

×
(

q⊥· eμ + ω − q⊥· u
uz

eμ,z

)]
, (32)

where eμ is given by (30).

In order to calculate the TR field in the wave zone, we use
the same polarization-current technique. The radiation field
can be written as

HR(r,ω) =
(

2πω

c

)2
ε − 1

4π

ei
√

εrω/c

r
[ek × J ] , (33)

where

J =
∫

dz′e−iz′kz [Ee(k⊥,z′,ω) + Eμ(k⊥,z′,ω)] (34)

is a quantity proportional to the polarization current [4]. We
introduced here the “on-shell” wave vector in the medium,
k = ekω/c, where

ek = √
ε

⎛
⎝ sin θm cos φ

sin θm sin φ

cos θm

⎞
⎠ =

⎛
⎝ sin θ cos φ

sin θ sin φ

±√
ε − sin2 θ

⎞
⎠ . (35)

The two expressions in (35) relate the emission angle in
the medium θm with the emission angle θ in a vacuum:√

ε sin θm = sin θ . The integration in (34) is carried out from
0 to ∞ for the backward TR when the electron enters the
medium and from −∞ to 0 for the forward TR when it exist
the medium.

It is instructive to stop for a moment and discuss the physical
meaning of the quantities we manipulate. We work out the
TR problem by applying the polarization-current approach
developed in detail in [4]. In this approach we take the current
itself as if the medium were boundaryless,

j = σ (Ee + Eμ),

with σ being a complex conductivity. Besides, the Green
function pole is shifted, ω/c → √

εω/c, because of the
effective “dressing” of the particle field in the medium (see,
e.g., [39]). The effects of the interface (or the interfaces) are
taken into account when we find how this (bare) current field,
which is calculated by integrating the current over the target
volume, changes due to reflections and refractions at them.
By applying the reciprocity theorem, we reduce the initial
(rather complicated) problem to the complementary problem
of refraction, which is much easier to solve using the usual
Fresnel laws and summing up all the secondary rereflected
fields inside the target. The necessity of using the reciprocity
theorem may be argued, in fact, from causality considerations,
which require the permittivity ε(ω) to be always a complex
quantity; see also [40].

It is therefore not surprising that quantities like the emitted
photon “direction” ek and its “polar angle” θm are complex.
They correspond to a wave which is exponentially attenuated
with propagation distance due to absorption by the medium,
as is explicitly indicated by exp(i

√
εrω/c) in (33); note that

this defines the sign choice for
√

ε: Im
√

ε > 0. Thus, we can
formally manipulate these quantities in the same way as we
did for transparent media, where they have a clear physical
meaning. In this way, we can obtain expressions for the energy
of the emitted radiation and its angular distribution, which are
initially expressed in terms of complex ek and θm. However,
we can then use the relation between θm and the true polar
angle for the radiation emitted in a vacuum θ , and focusing
on this case express the results in terms of θ . In this way,
the complexity will be transferred from θm to

√
ε or to the
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combination
√

εθ ≡
√

ε − sin2 θ,

and the results will directly correspond to radiation in a
vacuum.

Continuing with the calculations, the radiation field can be
conveniently written in coordinates related not to the electron
incidence plane, but to the photon production plane (ek,z). The
radiation field (33) is orthogonal to ek and therefore has two
components which lie in the production plane, HR

in , and out of
that plane, HR

out. In the vacuum variables, they are expressed
as

HR
out = HR

y cos φ − HR
x sin φ,

(36)
HR

in = 1√
ε

[−HR
z sin θ ± (

HR
x cos φ + HR

y sin φ
)√

εθ

]
.

The final expressions for these two components are

HR
out = N

[
sin θ (1 − β2 cos2 α − β · ek)

±β2 sin α cos α cos φ
√

εθ

+ iμ
ω

eγ c
sin α sin φ(β cos α sin2 θ

∓β sin α sin θ cos φ
√

εθ ± √
εθ )

]
, (37)

HR
in = N

√
ε

[
β2 sin α cos α sin φ

+ iμ
ω

eγ c
[β sin θ (1 − sin2 α sin2 φ) − sin α cos φ]

]
,

(38)

where the overall factor in front of the square brackets is

N = ± e

2πc
(ε − 1)β cos α

ei
√

εrω/c

r

× [(1 − β sin α sin θ cos φ)2 − (β cos α cos θ )2]−1

× [1 − β sin α sin θ cos φ ∓ β cos α
√

εθ ]−1. (39)

As before, the upper and lower signs in these expressions
correspond to the forward radiation (upon exiting the medium)
and the backward radiation (upon entering the medium),
respectively. As can be seen from the last expression, the
radiation intensity vanishes in the limiting case β → 0,
both for the charge radiation and for the magnetic moment
contribution.

The spectral-angular distributions of the radiated energy
can be found from the reciprocity theorem as follows [4]:

d2W

dω d�
= 4cr2 cos2 θ

(∣∣∣∣ 1

ε cos θ + √
εθ

∣∣∣∣
2∣∣HR

out

∣∣2

+
∣∣∣∣ 1√

ε(cos θ + √
εθ )

∣∣∣∣
2∣∣HR

in

∣∣2
)

. (40)

Substituting here the explicit expressions for the radiation field
(37) and (38) and sorting out the charge and magnetic moment
contributions, one can break the energy into the pure charge
dWe and the pure magnetic moment dWμ contributions as well

as the interference term dWeμ (11). It can be easily checked
that for a neutral particle with a magnetic moment only and for
an ideally conducting surface, the resultant formula coincides
with Eq. (8).

We are interested in detecting the small contribution of
the magnetic moment to the radiation energy. There are a
number of features which are visible directly in the above
equations. First, with the value of the intrinsic magnetic
moment (16) and neglecting the spin contribution, one sees
that the interference term is indeed suppressed by the factor
x� � 1, while the pure magnetic moment contribution is
proportional to x2

� . For optical or UV photons and for the
typical electron energies achievable in an electron microscope,
we get x� ∼ 10−5�. This estimate makes it clear that one
can hope to detect only the interference term dWeμ. Second,
it is plain to see that this interference term can originate
only from |HR

out|2 and only with a nontrivially complex ε.
In particular, this interference term is absent for a transparent
medium, Im ε = 0 (similarly to the Cherenkov radiation case)
and for the ideal conductor, Im ε = ∞. Finally, this term also
vanishes for normal incidence (α = 0) at any emission angle
as well as at oblique incidence for emission in the incidence
plane, φ = 0.

It should be noted that when considering TR at a grazing
incidence of not very energetic electrons, the applicability
conditions of macroscopic electrodynamics may be violated
[41]. So, the region where the models being used work well is
determined by the following inequality:

uz

ω − (k⊥u)
= λ

2π

β cos α

1 − β sin α cos θ2 sin(α + θ1)
� b,

where b is the interatomic distance (∼1 Å). For the optical
and near-UV region and the parameters considered below,
the left-hand side of this inequality is on the order of
0.1λ ∼ 10 nm. However, this condition may be violated for
nonrelativistic electrons (Ee lower than 100 keV) and/or for
angles of incidence α → 90◦.

E. Radiation field from a charged ring with azimuthal current

Consider a particle moving at the angle ξ to the z axis.
If its position in the plane z = 0 is given by the vector ρ =
ρ(sin ϕ, cos ϕ,0), then its velocity is

u = u(− sin ξ cos ϕ, sin ξ sin ϕ, cos ξ ).

Note that ϕ characterizes the particle position, while φ is still
used to denote the azimuthal angle of the emitted photon. The
current thus acquires an azimuthal component; see Fig. 2.

For oblique incidence on a screen, these expressions turn
into

ρ → ρ eρ = ρ

⎛
⎝ sin ϕ cos α

cos ϕ

−sin ϕ sin α

⎞
⎠ ,

(41)

u → u

⎛
⎝ cos ξ sin α − sin ξ cos ϕ cos α

sin ξ sin ϕ

cos ξ cos α + sin ξ cos ϕ sin α

⎞
⎠ .

Here α is the angle between the symmetry axis of the helical
motion and the normal to the interface.
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Since we assume that the charged particles following
these trajectories have no intrinsic magnetic moment, TR is
calculated in the standard way. We note only that the Fourier
transform of the current density for a trajectory with a given ρ

acquires a phase factor

j e(q,ω) = e

(2π )3
u δ(ω − q · u) e−iq·ρ . (42)

We then find the radiation field for each ρ and integrate it
over all polar angles ϕ as well as with respect to ρ within
certain limits. This effectively corresponds to summing over
a large number of particles distributed homogeneously over a
certain annular region. One can then recycle the formulas from
the previous section by setting μ = 0 there, and represent the
out-of-the-plane and in-the-plane components for the radiation
field as follows:

HR
out =

∫ 2π

0

dϕ

π

∫ Rmax

Rmin

ρ dρ

R2
max − R2

min

N
[
− sin θ

ω

uz

[
k · u − ω

(
1 − β2

z

)] ± √
εθ

(
ω

c

)2

(uy sin φ + ux cos φ)

]
, (43)

HR
in =

∫ 2π

0

dϕ

π

∫ Rmax

Rmin

ρ dρ

R2
max − R2

min

N
√

ε

(
ω

c

)2

(ux sin φ − uy cos φ), (44)

where

N = ± eω

2πc2
(ε − 1)

ei
√

εrω/c

r

e−iρ[k⊥·eρ+eρ,z(ω−k⊥·u)/uzı]

(ω − k · u)
[
k2

⊥ + (ω − k⊥· u)2/u2
z − ω2/c2

] . (45)

Integration over ρ is trivial here, while integration over ϕ may
be performed numerically. The radiated energy is also found
as in the previous case.

IV. NUMERICAL RESULTS

A. Benchmark case

We start by presenting numerical results with the following
choice of parameters, which we call the benchmark case. The
medium is chosen to be aluminum (the permittivity data were
taken from [42]), the incidence angle is α = 70◦, and the
electron energy is Ee = 300 keV. The TR lobes are broad
functions of θ1 and θ2, and are shown in Fig. 3, where we plot

FIG. 3. (Color online) Distribution of the emitted TR energy over
the angles θ1 and θ2 in the benchmark case (α = 70◦, γ = 1.59, h̄ω =
5 eV) at � = 0. The first model (see Sec. III D) is used.

the spectral-angular distribution at � = 0 as a function of θ1

and θ2.
If we are aiming at detection of an asymmetry in θ2, we

should focus on a θ1 region in which the θ2 dependence
has a two-bump structure. For this purpose, we consider
below θ2 distributions integrated over a θ1 region centered at
some value θ̄1; specifically, we choose the integration region
[θ̄1 − 10◦,θ̄1 + 10◦]. Then, at a nonzero and large �, we expect
these two maxima to differ from each other. In Fig. 4 we
show the spectral-angular distribution of the emitted energy
for the forward and backward TR as a function of θ2 for the
fixed θ̄1 = −40◦ and h̄ω = 5 eV. These choices constitute our
benchmark case.

Note that the θ2 distribution becomes strongly distorted at
� ∼ 104, which is consistent with the parameter x� ∼ 10−5�

governing the magnitude of the left-right asymmetry. For � <

103, the asymmetry is not easily discernible by eye, and it
should be extracted via (13). Its value is shown in Fig. 5. As
expected, it shows a nearly perfect proportionality to �.

A comparison of the two calculation methods being used
is presented in Fig. 6 for the benchmark case. The difference
between the predictions in the small-angle region does not
affect the asymmetry values.

Finally, using the absolute value of the emitted energy
distribution shown in Figs. 3 and 4, one can estimate that the
average number of emitted UV photons (say, in the range of
3–10 eV) per one incident electron is nγ /ne ∼ O(10−5–10−4).
For a current of 1 nA it converts to a value on the order of 105

to 106 TR photons per second.
We would like to emphasize that the energies of vortex

electrons achieved in electron microscopes so far do not
surpass 300 keV. Drawing an analogy with the “pure” charge
TR, one could expect that the effect of interest would be
detected much more easily in ultrarelativistic electrons. In fact,
this is not the case as the electron energy dependence of the
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FIG. 4. (Color online) Distribution in θ2 of the forward TR (left plot) and backward TR (right plot) for the benchmark case (α = 70◦, θ̄1 =
−40◦, γ = 1.59, h̄ω = 5 eV) at � = 0 (solid black curve), 1000 (dashed red curve), and 10 000 (blue dotted curve). The first model (see
Sec. III D) is used.

interference term dWeμ is governed by the factor μω/γ , as
is seen, e.g., from the Eq. (37). The characteristic frequency
of the forward TR depends linearly on the Lorentz factor for
ultrarelativistic electrons [10,15] ω ∼ γωp, so the ratio μω/γ

is almost independent of the electron energy when γ � 1.
Nevertheless, at the optical or UV frequencies which are the
most convenient in practice, the asymmetry is quickly damped
with increase in the electron energy, making electrons with
energies of 200–300 keV optimal for detecting the effect.
Note that the (charge) optical TR was successfully detected
from electrons with energies of 80 keV and even lower [43].

B. Dependences

Next, we show in Fig. 7 how the θ2 distribution changes
upon variation of the incidence angle α and the detection
angle θ1. One sees that the two-bump structure becomes more
pronounced for a grazing incidence (α close to 90◦) and for
larger negative values of θ1. This is convenient for detection of
the (backward) TR, as the photons are to be detected at large
angles ∼100◦ with respect to the electron beam.

The spectral dependence of the asymmetry is shown in
Figs. 8 and 9. Note that the initial rise |A| ∝ h̄ω is quickly
tamed in the near-UV region due to the permittivity frequency
dispersion, which makes this region best for detecting the
effect. Note that we employ the simplest definition of the
asymmetry (13), whereas an alternative definition, (12) with
f (θ2) = sin(θ2), yields even larger values of A (up to ∼1.2
times the benchmark case values).

To quantify the visibility of the asymmetry, we introduce
its statistical significance S. It shows how the “true” extracted
asymmetry compares to a typical “fake” asymmetry, which
might arise in a perfectly symmetric distribution due to a
statistical fluctuation in the photon-counting statistics. If the
asymmetry is calculated according to (12) with the weight
function f (θ2), and if the total number of incident electrons
integrated over a certain time is Ne, then we define the weighted
total photon count Nγ as follows:

Nγ (ω̄) = Ne

∫
dω

ω

∫
d� |f (θ2)| d2W

dω �
. (46)

The spectral integral here extends over a certain region
centered at ω̄ (for the estimates below, we use 1-eV-wide bins).
The left-right asymmetry of the counts is then

�Nγ (ω̄) = Ne

∫
dω

ω

∫
d�f (θ2)

d2W

dω d�
. (47)

The expected mean value of the statistical fluctuation of �Nγ

is
√

Nγ . Therefore, the statistical significance is defined by

S(ω̄) = �Nγ (ω̄)√
Nγ (ω̄)

. (48)

The true statistical significance of the count difference detected
in an experiment will certainly be smaller due to systematic
uncertainties. However S(ω̄) still gives a good idea of
the needed integration time and of the ω̄ region optimal for the
asymmetry detection. We plot this quantity in Fig. 10 for the
statistics of 5 × 1012 incident electrons, which corresponds

(%)

2 4 6 8 10 10 3 2 4 6 8 10 10 3

(%)

l ( )units of l ( )units of

FIG. 5. (Color online) The magnitude of the asymmetry A in the benchmark case (θ̄1 = −40◦) as a function of � for h̄ω = 5 eV (left) and
h̄ω = 10 eV (right). The blue solid and the red dashed lines correspond to the forward and backward TR, respectively.
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(arb. units)

(deg)

FIG. 6. Comparison of predictions for both models being used
for the forward TR in the benchmark case and for � = 10 000: the
solid line corresponds to the first model (Sec. III D), and the dashed
line to the second (Sec. III E). The values of the asymmetry agree
within an accuracy better than 10%.

to an integration time of ≈15 min at a current of 1 nA. The
quantum efficiency of the photon detector is assumed to be
10%. We see that at these parameters the asymmetry should
be very visible, and the optimal frequency range is the near UV.
The values shown in Fig. 10 correspond to f (θ2) = sgn(θ2).
The analogous choice f (θ2) = sin(θ2) yields slightly lower
values of S (∼0.8 of the values shown in Fig. 10).

As for the sensitivity of the results to the values of
permittivity, we mention here only that this dependence is
rather weak provided the substance under consideration has
prominent absorption ε′′. We obtain asymmetries of the same
order of magnitude by varying ε′ and ε′′; see Table I. Therefore,
we expect a similar visibility for other metals.

V. DISCUSSION

A. Experimental feasibility

In this section we provide some rough estimates which
show that the effect can in principle be observed with the
existing technology and requires only moderate adjustments
to the electronic microscopes currently used for vortex electron
generation. The key issue enabling the observations we suggest
is creation of vortex electrons with a large OAM. The figure of
merit here is not the largest OAM by itself, but the OAM value
at the first diffraction peak (the higher-order peaks are strongly

suppressed in intensity). The maximal value achieved so far at
the first diffraction peak is 25 [19]; a tenfold increase of this
value is highly desirable. This will certainly pose a challenge
in manufacturing the appropriate diffraction gratings, but these
values seem to be within technological limits. Indeed, a typical
aperture available at the position of the condenser lens is of
the order of 100 μm, while the smallest features which can
be accurately etched in a grating are of the order of tens of
nanometers.

It might also be possible to create very high-OAM vor-
tex electrons using the recently demonstrated technique of
electron scattering on an effective magnetic monopole [44].
In this experiment, a ring-shaped nonvortex electron wave
passes through the open end of a magnetic whisker or a
nanoscale solenoid, whose field is well approximated locally
by a magnetic monopole field, and it acquires vorticity. The
OAM value is determined by the effective magnetic charge
of the monopole, which can in principle be made very
large.

It must be stressed that our suggestion does not require
the vortex electrons to be in a state of a definite value of �.
Quite to the contrary, the OAM can be spread over a certain
rather broad range, and the effect will still be there. Even if
the transverse profile of the electron state becomes distorted,
this does not have any sizable effect on the asymmetry
because all transverse shifts remain much smaller than λ.
This makes our predictions robust against imperfections of
the experimental method of generating the high-OAM vortex
electrons.

A similar conclusion holds for another distortion effect. It
can be expected that higher-order phase vortices are inherently
unstable. Upon propagation in a magnetic lens system with
stray fields, they might split into a compact “cloud” of
vortices of topological order 1. This possibility however
does not affect the predicted asymmetry if the cloud stays
compact, � λ.

The second delicate issue is the alignment of the photon
detectors. We propose to place two identical large-aperture
detectors symmetrically on the two sides of the electron
incidence plane. They do not even have to be pixelated, because
the quantity to be measured is the asymmetry between the left
and right detectors. All instrumentation alignment should be
performed with a relative accuracy better than the estimated
asymmetry.

If achieving an accurate symmetric alignment proves
difficult, one can then fix the instrumentation and simply

410

(deg)

410

(deg)

410

(deg)

FIG. 7. (Color online) Forward TR θ2 distributions for three other choices of the angles: α = 70◦, θ̄1 = −20◦ (left), α = 80◦, θ̄1 = −40◦

(middle), α = 80◦, θ̄1 = −60◦ (right). In each case, � = 0 is shown by the solid black curve, � = 1000 is shown by the dashed red curve, and
� = 10 000 is shown by the blue dotted one. The first model (see Sec. III D) is used.
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FIG. 8. The magnitude of the left-right asymmetry for the forward TR (solid line) and the backward TR (dashed line) as a function of the
photon energy at the incidence angle α = 70◦ and � = 1000. The two plots correspond to θ̄1 = −40◦ (left plot) and θ̄1 = −20◦ (right plot).

change the sign of the OAM of the vortex electrons. This
can be done by tilting the grating without any mechanical
manipulation of the target or the detectors. One should then
observe a sign change in the asymmetry.

The third issue concerns the expected energy of TR. Using
our estimates of nγ ∼ O(10−4) photons per electron and taking
a current of 1 nA, which is easily achievable in microscopes
producing vortex electrons, one can expect about 105 photons
per second detected by photocathodes with quantum efficiency
10%. A sufficiently long integration time will lead to 108

photons, and with this statistics a left-right asymmetry of the
order A ∼ 0.1% can be reliably detected.

Finally, let us comment on coherence issues. The coherence
condition for radiation (focusing the electron beam to spots
much smaller than the wavelength of the emitted light) can be
easily achieved with existing devices. Focusing a vortex beam
with small � to angstrom-scale spots has been demonstrated
[33], and one can expect that focusing electrons with � = 1000
to submicron scales should also be feasible.

The longitudinal extent of the individual electron wave
function should also be below the optical wavelength, which
means that the longitudinal self-correlation length of the
electron beam should not be too good. This can be cast in
the form of a requirement that the monochromaticity of the
electrons should be worse than a few eV.

B. The effect in other forms of radiation

In this paper we have discussed possibilities for detecting
the interference term dWeμ in Cherenkov radiation and
transition radiation. These phenomena represent, in fact,
two particular cases of the general process of polarization

radiation. Rather simple considerations allow one to estimate
the magnitude of similar effects in other processes like, for
instance, diffraction radiation and Smith-Purcell radiation.
Indeed, for an observer located far enough from the target
(in the wave zone), the radiation arises as a result of a distant
collision of a (vortex) electron with a pointlike dipole moment
d(ω). Irrespectively of the target shape, the radiation field in
the wave zone is (integration is over the target volume)

HPR ∝ ek ×
∫

V

d3r d(r,ω)e−i(kr) ∝ ek × d(ω) (49)

since in the dipole approximation jpol = −iωd. Roughly
speaking, it is the explicit expression for the dipole moment
d only that makes a difference between different types of
polarization radiation. As a result, the product

ek · [μd]

or ek · [eud] (since μ ‖ u) will govern the effect (with d
instead of the normal n). From this, it is immediately clear
that the interference effect is absent for Cherenkov radiation,
even for arbitrary complex ε(ω), for transition radiation at
normal incidence, and also for diffraction radiation when
the particle moves near a metallic foil, perpendicular to the
surface, but does not intersect it (for a detailed description,
see, e.g., [2]). The effective dipole moment in most cases of
practical interest is perpendicular to the target surface [4], so in
all the geometries mentioned d ‖ u. On the contrary, the effect
will exist when a particle moves obliquely with respect to the
target surface in a diffraction radiation problem or even when
it moves near a metallic grating as in Smith-Purcell radiation.
In all these geometries one could expect the same angular
asymmetry, which should increase as the angle between d and

(%)

(eV)

(%)

(eV)

FIG. 9. The magnitude of the left-right asymmetry for the forward TR (solid line) and the backward TR (dashed line) as a function of the
photon energy at the incidence angle α = 80◦ and � = 1000. The two plots correspond to θ̄1 = −60◦ (left plot) and θ̄1 = −40◦ (right plot).
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(eV) (eV)

FIG. 10. Statistical significance of the backward TR left-right asymmetry for � = 1000, based on the statistics of 5 × 1012 electrons and
assuming 10% quantum efficiency for the photon detector (left panel: α = 70◦,θ̄1 = −40◦; right panel: α = 80◦,θ̄1 = −60◦). Integration in θ2

goes over ±(10◦,90◦).

u grows, and its numerical value will be of the same order as
in the TR case. Finally, one can note that when dealing with
other types of PR the actual dielectric properties of the target
materials and the frequency dispersion are highly important,
and they can be taken into account with the approach developed
in Ref. [4].

One could also mention that if vortex electrons with high
values of OAM were created, detection of the radiation
asymmetry could serve as a diagnostic tool allowing one
to obtain the value of � of the beam. Such a diagnostics
could be done noninvasively by using diffraction radiation
from a rectangular plate instead of transition radiation. The
former has the same angular distributions in the θ2 plane
as in the TR case considered here, but the beam charac-
teristics stay undisturbed during the emission process (see,
e.g., [2]).

Along with the OAM-induced effects in PR discussed
in the present paper, there is also the possibility of study-
ing similar effects in radiation processes in external high-
intensity electromagnetic fields. Indeed, the magnitude of
the spin effects in such a field is governed by the Lorentz-
invariant ratio E′/Ecr (see, e.g., [13]; here, E′ is the
electric field strength in the particle rest frame and Ecr =
1.3 × 1018 V m−1 is the “critical” Sauter-Schwinger value).
Its counterpart for the OAM-induced magnetic moment
effects is

(μH ′)
mc2

= �H ′
z

2Hcr

� H ′
z

Hcr
, Hcr = 4.4×1013 G, (50)

which is also a Lorentz-invariant expression (here H ′
z is the

magnetic field projection onto the propagation direction in
the electron rest frame). This means, roughly speaking, that
the requirements for the field strength to make the magnetic
moment effects in radiation observable become much more

TABLE I. The asymmetry values for the backward TR in the
benchmark case with � = 1000, ω = 5 eV as a function of permittiv-
ity with aluminum taken as the benchmark: εAl(ω) ≈ −8.38 + i 1.05
[42].

A (%) ε′′
Al 0.2ε′′

Al 5ε′′
Al

ε′
Al 1.0 (Al) 1.1 0.9

0.2ε′
Al 0.7 0.7 0.7

5ε′
Al 0.9 0.9 0.9

relaxed for vortex electrons with � � 1. Accordingly, if
such electrons with � ∼ 100–1000 were accelerated up to
energies of 100 MeV–1 GeV, this would allow one to study
effects analogous to the spin effects in radiation of nonvortex
electrons (see, e.g, [13]). Such an acceleration seems to
be feasible, at least in principle, with the novel technique
recently demonstrated in Ref. [44] (see also the discussion
in Ref. [35]).

VI. CONCLUSIONS

Recently created vortex electrons carrying large orbital
angular momentum � and, therefore, a large OAM-induced
magnetic moment are an ideal tool to investigate the influence
of the magnetic moment on various forms of polarization
radiation. This influence has been discussed theoretically since
long ago but up to now has never been studied experimen-
tally. As the magnetic moment contribution is parametrically
suppressed by the small parameter x� = �h̄ω/Ee, one can
hope to detect it only via its interference with the charge
contribution. This interference can be extracted via an angular
asymmetry, but even here one must strive for the largest
achievable �.

In this paper, we investigated this effect for different types
of polarization radiation. We showed the absence of the
interference term for Cherenkov radiation, studied in detail
the interference and the asymmetry for transition radiation, and
commented on the possibility of observing this effect for other
forms of PR. In particular, we argued that for � = 100–1000,
the asymmetry in TR can be of the order of 0.1%–1%, which
could be measurable with existing technology. Simultaneously,
it offers a method of measuring large OAM in electron vortex
beams.
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