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Quantum Fisher information of entangled coherent states in the presence of photon loss
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We investigate the performance of entangled coherent states for quantum-enhanced phase estimation. An exact
analytical expression of quantum Fisher information is derived to show the role of photon losses on the ultimate
phase sensitivity. We find a transition of the sensitivity from the Heisenberg scaling to the classical scaling due
to quantum decoherence of the photon state. This quantum-classical transition is uniquely determined by the
number of photons being lost, instead of the number of incident photons or the photon loss rate alone. Our results
also reveal that a crossover of the sensitivity between the entangled coherent state and the NOON state can occur
even for very small photon loss rate.
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I. INTRODUCTION

The estimation of parameters characterizing dynamical
processes is essential to science and technology. A typical pa-
rameter estimation consists of three steps. First, the input state
|ψin〉 of the sensor is prepared. Second, the sensor undergoes
the φ-dependent dynamical process Û (φ) and evolves to the
output state |ψ〉. Finally, a measurement is made on the output
state, and the outcome x is used by suitable data processing
to produce an unbiased estimator φ̂(x) of the parameter φ.
The precision of the estimation is quantified by the standard
deviation δφ = 〈[φ̂(x) − φ]2〉, which is determined by the
input state |ψin〉 [1–7], the nature of the dynamical process
Û (φ) [8–13], the observable being measured [14–18], and
the specific data-processing technique. The precision of the
estimator φ̂opt(x) from optimal data processing is limited by the
Cramér-Rao inequality [19,20] as δφopt � 1/

√
F (φ), where

F (φ) is the classical Fisher information, determined by |ψin〉,
Û (φ), and the measurement scheme. Given |ψin〉 and Û (φ),
maximizing F (φ) over all possible measurements gives the
quantum Fisher information (QFI) FQ and hence the quantum
Cramér-Rao bound δφmin = 1/

√
FQ [21–25] on the attainable

precision to estimate the phase φ.
In general, the best precision δφmin improves with an in-

creasing number of resources N employed in the measurement,
e.g., the number of photons in optical phase estimation or the
total duration of measurements in high-precision magnetic-
field or electric-field sensing. For separable input states, the
QFI FQ ∼ N gives the classical limit δφmin ∼ 1/

√
N , in

agreement with the classical central limit theorem. To obtain
an enhanced precision, it is necessary to utilize quantum
resources such as coherence, entanglement, and squeezing in
the input state for maximizing the QFI and hence the precision.
This is a central issue in quantum metrology [26–31]. In
the absence of noise, it has been well established that by
utilizing quantum entanglement, the QFI can be enhanced up
to FQ ∼ N2 and hence the precision δφmin ∼ 1/N , reaching
the Heisenberg limit [4–7,32–35]. This limit is the ultimate
estimation precision allowed by a quantum resource with a
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definite particle number. In the presence of noise, however, it
is not clear whether the Heisenberg limit can still be achieved
[36–38] and whether entanglement is still a useful resource for
quantum metrology.

A paradigmatic example is the estimation of the relative
phase shift between the two modes propagating on different
arms of the Mach-Zehnder interferometer (MZI). Precise
phase estimation is important for multiple areas of scientific
research [17], such as imaging, sensing, and information
processing. In the absence of noise, the classical limit δφmin ∼
1/

√
n̄ (n̄ is the average number of photons) for a classical

coherent state can be dramatically improved by using non-
classical states of the light. The maximally entangled NOON
states ∼|N,0〉1,2 + |0,N〉1,2 [also called the Greenberger-
Horne-Zeilinger (GHZ) state in atomic spectroscopy] have
been prepared in experiments for pursuing the Heisenberg-
limited phase estimation [4–6]. However, the NOON states
are extremely sensitive to photon losses [36–45]. In a lossy
interferometer, it has been shown that a transition of the
precision from the Heisenberg limit to the shot-noise limit
can occur with the increase of particle number N [37,38].

Recently, a specific coherent superposition of the NOON
states, the entangled coherent state (ECS) ∼|α,0〉1,2 +
|0,α〉1,2, was proposed as the input state for enhanced precision
[43]. In the absence of photon losses, the precision of the ECS
can surpass that of the NOON state (i.e., the Heisenberg limit,
δφmin = 1/n̄). In the presence of photon losses, numerical
simulation suggests that the ECS outperforms the NOON
state for photon numbers n̄ � 5. For a small photon number
n̄ ∼ 5, the precision is better than the classical limit by a
factor

√
n̄ ∼ 2. To achieve more significant enhancement

for practical applications, much larger photon numbers are
required. The performance with a large number of resources
is an important benchmark for a realistic quantum-enhanced
estimation scheme. Therefore, a careful analysis of the QFI
and the ultimate precision for the input ECS with large n̄ is
necessary.

In this paper, we present an exact analytical result of the
QFI for the entangled coherent state with arbitrary n̄, which
provides counterintuitive physics that is inaccessible from
previous numerical simulations. To understand why the ECS
is better than the NOON state, we first consider an arbitrary
superposition of the NOON states and find the QFI FQ � n̄2,
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leading to a sub-Heisenberg-limited sensitivity δφmin � 1/n̄.
Next, we investigate the role of photon losses on the QFI and
hence the ultimate precision of the ECS. An exact result of
the QFI is derived, which is the sum of the classical term ∝n̄

and the Heisenberg term ∝n̄2. We show that the photon losses
suppress exponentially the off-diagonal (coherence) part of the
reduced density matrix ρ̂ and hence the Heisenberg term, while
leaving the classical term largely unchanged. The loss-induced
quantum decoherence leads to a transition of the estimation
precision from the Heisenberg scaling to the classical scaling
as the number of lost photons Rn̄ increases, where R is the
photon loss rate and n̄ is the mean photon number of the initial
ECS. This behavior is in sharp contrast to the NOON state,
for which the photon losses eliminate completely the phase
information stored in the coherence part of ρ̂. The ultimate
precision of the NOON state gets even worse than the classical
limit when Rn̄ � 1. Surprisingly, we find that the precision
of the NOON state may be better than that of the ECS within
the crossover region at Rn̄ ∼ 1. This is because although the
classical term of the ECS is robust against the photon losses,
the Heisenberg term decays about twice as quickly as that of
the NOON state.

II. SUB-HEISENBERG-LIMITED PHASE SENSITIVITY
WITH A SUPERPOSITION OF NOON STATES

First, let us consider an arbitrary coherent superposition of
the NOON states as the input state after the first beam splitter
of a two-mode MZI,

|ψin〉 =
∞∑

n=0

cn

|n〉1 + |n〉2√
2

, (1)

where, for brevity, we introduce the notation |n〉1 ≡ |n〉1|0〉2

and |n〉2 ≡ |0〉1|n〉2, representing n photons in mode 1 (or 2)
and the other mode in vacuum. To analyze possible achievable
phase sensitivity with |ψin〉, we directly evaluate the QFI
of the outcome state after phase accumulation |ψ(φ)〉 =
Û (φ)|ψin〉 = eiφĜ|ψin〉, where Ĝ is the generator of phase
shift. For a lossless MZI, |ψ〉 is a pure state, and the QFI is
given by the well-known formula [21–25] FQ = 4(〈ψ ′|ψ ′〉 −
|〈ψ ′|ψ〉|2) = 4(〈Ĝ2〉 − 〈Ĝ〉2), where |ψ ′〉 ≡ ∂|ψ〉/∂φ and the
expectation values are taken with respect to |ψin〉. Considering
a linear phase-shift generator Ĝ = n̂2 [36,43], with the photon
number operators n̂2 = â

†
2â2 and n̂1 = â

†
1â1, we obtain the QFI

FQ = 4(〈n̂2
2〉 − 〈n̂2〉2) = 2〈n̂2〉 − 〈n̂〉2, (2)

where we have used the relation 〈n̂l
1〉 = 〈n̂l

2〉 = 〈n̂l〉/2 (for
l = 1,2, . . . ), which, together with 〈n̂1n̂2〉 = 0, is valid for
Eq. (1). Since 〈n̂2〉 � 〈n̂〉2, we have FQ � n̄2, where n̄ = 〈n̂〉 is
the mean photon number of |ψin〉. This inequality also applies
to another kind of phase-shift generator Ĝ = (n̂2 − n̂1)/2,
for which FQ = 〈n̂2〉. They suggest that a sub-Heisenberg-
limited phase sensitivity δφmin < 1/n̄ can be achieved with
an arbitrary coherent superposition of the NOON states, likes
Eq. (1). The equality δφmin = 1/n̄, known as the Heisenberg
limit, is attainable for the NOON state [4–7,32–35]: (|N〉1 +
|N〉2)/

√
2 with n̄ = N .

Next, we review the recently proposed ECS state [46,47]:
Nα(|α〉1 + |α〉2) as a special case of the superposition of

NOON states, where Nα = [2(1 + e−|α|2 )]−1/2 is the normal-
ization constant and |α〉1 ≡ |α〉1|0〉2 denotes a coherent state
in sensor mode 1 and vacuum in sensor mode 2 and similarly
for |α〉2 ≡ |α〉2|0〉1. The input ECS is now experimentally
feasible for the coherent amplitude α ∼ 1.5 [43,48]. In
addition, using the ECS as the input state and considering the
phase accumulation dynamics Û (φ) = eiφn̂2 [36,43], we obtain
n̄ = 〈n̂〉 = 2N 2

α |α|2, 〈n̂2〉 = 2N 2
α |α|2(|α|2 + 1), and hence the

quantum Fisher information

FQ = 2n̄[1 + w(n̄e−n̄)] + n̄2, (3)

where we have used n̄ = |α|2/(1 + e−|α|2 ) and thereby |α|2 =
n̄ + w(n̄e−n̄). Here, w(z) denotes the Lambert W function
(also called the product logarithm), which gives the principal
solution for w in z = wew. For mean photon number n̄ ≈
|α|2 � 1, we have w(n̄e−n̄) ≈ 0 and FQ ≈ n̄(n̄ + 2). From
Fig. 1(a), one can find that δφmin of the ECS [the blue (dark
gray) solid line] is better than that of the NOON [the blue (dark
gray) dashed line], especially for a modest photon number.
A recent numerical simulation shows that this improved
sensitivity of the ECS can be maintained in the presence of
the photon losses for n̄ � 5 [43]. However, the performance
of the ECS with larger n̄ remains unclear.

III. QUANTUM FISHER INFORMATION AND ULTIMATE
PRECISION OF THE ENTANGLED COHERENT STATE

WITH PHOTON LOSSES

In this section, we present an exact analytical expression of
the QFI FQ and hence the ultimate precision δφmin = 1/

√
FQ

for the ECS in the presence of photon losses. This provides
detailed information for the performance of the ECS in the
quantum phase estimation, especially those states at relatively
large photon numbers, that is inaccessible from the previous
numerical simulation. First, we derive an exact analytical
expression of the quantum Fisher information for the input
ECS based upon a general formula of the QFI. This formula
decomposes the total QFI into three physically intuitive
contributions. Next, we present the QFI of the NOON state.
Finally, by comparing with the NOON state, we discuss the
key features of the ECS and provide a simple physics picture.

The photon losses can be modeled by inserting two iden-
tical beam splitters B̂k,k′(θ ) = exp[i(θ/2)(â†

k′ âk + H.c.)] that
couple two sensor modes k = 1, 2 and two environment modes
k′ = 1′, 2′ that are initially in the vacuum [36–45]. The action
of the beam splitters transforms the sensor mode â

†
k into a linear

combination of â
†
k and â

†
k′ : B̂k,k′ â

†
kB̂

−1
k,k′ = √

T â
†
k + i

√
Râ

†
k′ ,

where T = cos2(θ/2) and R = 1 − T are transmission and
absorption (loss) rates of the photons, respectively. More
specifically, T = 1 (i.e., R = 0) means no photon loss, and
T = 0 (R = 1) corresponds to complete photon loss. For the
input ECS state, using Û (φ)|α〉2 = |αeiφ〉2 and B̂k,k′ |α〉k =
|√T α〉k|i

√
Rα〉k′ , we obtain the outcome state

|ψ(φ)〉 = NαB̂1,1′B̂2,2′Û (φ)(|α〉1 + |α〉2)|0〉1′ |0〉2′

= Nα(|
√

T α〉1|E(1)〉 + |
√

T αeiφ〉2|E(2)〉),
where the environment states are given by |E(1)〉 ≡
|i√Rα〉1′ |0〉2′ and |E(2)〉 ≡ |0〉1′ |i√Rαeiφ〉2′ . Tracing over
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them, we obtain the reduced density matrix of the sensor modes

ρ̂ = N 2
α {|

√
T α〉11〈

√
T α| + |

√
T αeiφ〉22〈

√
T αeiφ |

+ 〈E(2)|E(1)〉(|
√

T α〉12〈
√

T αeiφ | + H.c.)}, (4)

where 〈E(2)|E(1)〉 = 〈E(1)|E(2)〉 = e−R|α|2 . Compared with the
lossless case (i.e., T = 1), the amplitudes in the sensor modes
are reduced from |α| to

√
T |α|. More importantly, the photon

losses suppress the off-diagonal coherence between the two
sensor states by a factor of 〈E(2)|E(1)〉. We will show below that
this decoherence effect significantly degrades the estimation
precision of the ECS.

Since ρ̂ is a mixed state, to obtain the QFI one has to
diagonalize it as ρ̂ = ∑

m λm|λm〉〈λm|, where {|λm〉} forms an
orthonormalized and complete basis, with λm being the weight
of |λm〉. According to the well-known formula [21,22,26,27],
the QFI is given by

FQ =
∑
m,n

2

λm + λn

|〈λm|ρ̂ ′|λn〉|2, (5)

where the prime denotes the derivation about φ, such as ρ̂ ′ =
∂ρ̂/∂φ, λ′

m = ∂λm/∂φ, and |λ′
m〉 = ∂|λm〉/∂φ. Typically, the

dimension of the entire Hilbert space and hence the basis
{|λm〉} is huge, but only a small subset has nonzero weights.
Therefore, using the completeness and the orthonormalization
of {|λm〉}, we can express the QFI in terms of the subset {|λi〉}
with λi �= 0 (see Appendix):

FQ =
∑

i

(λ′
i)

2

λi

+
∑

i

λiFQ,i −
∑
i �=j

8λiλj

λi + λj

|〈λ′
i |λj 〉|2, (6)

which contains three kinds of contributions. The first term is
the classical Fisher information for the probability distribution
P (i|φ) ≡ λi(φ). The second term is a weighted average over
the quantum Fisher information FQ,i = 4(〈λ′

i |λ′
i〉 − |〈λ′

i |λi〉|2)
for each pure state in the subset {|λi(φ)〉}, with λi �= 0. The
last term reduces the QFI and hence the estimation precision
below the pure-state case. If the phase shift φ comes into the
reduced density matrix ρ̂ through the weights λi(φ) only, then
the last two terms of Eq. (6) give a vanishing contribution to
the QFI. For φ-independent weights, however, the first term
vanishes, in agreement with the previous result [42].

Compared with Eq. (5), which relies on the complete basis,
our formula (6), defined within a truncated Hilbert space, has
the advantages of faster convergence and numerical stability,
especially when the reduced density matrix ρ̂ has some
eigenvectors with extremely small but nonvanishing weights.

For the input ECS, we note that the reduced density matrix
ρ̂ only contains two sensor states, |√T α〉1 and |√T αeiφ〉2 [see
Eq. (4)]. This feature enables us to expand ρ̂ in terms of two
eigenvectors with nonzero eigenvalues (see Appendix A),

ρ̂ = λ+ |λ+(φ)〉 〈λ+(φ)| + λ− |λ−(φ)〉 〈λ−(φ)|, (7)

where the eigenvalues λ± = N 2
α (1 ± e−R|α|2 )(1 ± e−T |α|2 ) are

φ independent and obey λ− + λ+ = 1. The phase-dependent
eigenvectors are given by

|λ±(φ)〉 = η±[±|
√

T α〉1 + |
√

T αeiφ〉2], (8)

with the normalization factors η± = 1/
√

2(1 ± e−T |α|2 ). It is
easy to prove that 〈λ±|λ±〉= 1 and 〈λ+|λ−〉= 〈λ+|ρ̂|λ−〉= 0.

Using Eq. (6), we obtain an exact analytical expression of the
QFI (see Appendix B):

FQ = F cl
Q + F HL

Q , (9)

where the classical term F cl
Q = 2n̄T [1 + T w(n̄e−n̄)] and the

Heisenberg term

F HL
Q = (n̄T )2

(
e−2R|α|2 − e−2T |α|2

1 − e−2T |α|2

)
. (10)

In the absence of photon losses (i.e., R = 0 and T = 1), our
result reduces to the lossless case, i.e., Eq. (3). Compared with
it, we find that the photon losses lead to two effects on the QFI
(and hence the estimation precision). First, it trivially reduces
the photon number from n̄ in the input state to n̄T in the
output state. Second, it exponentially suppresses the QFI from
F HL

Q ∼ (n̄T )2 to the classical scaling ∼2n̄T (see below).
For a comparison, we also employ Eq. (6) to derive the

QFI for the NOON state (|N〉1 + |N〉2)/
√

2. It is easy to write
down the reduced density matrix in a diagonal form:

ρ̂ =
N−1∑
n=0

λn(|n〉11 〈n| + |n〉22 〈n|) + T N |ψNOON〉 〈ψNOON| ,

(11)

where the first part is an incoherent mixture of Fock states |n〉1

and |n〉2 with φ-independent weights λn = (
N

n

)
T nRN−n/2.

The phase information is stored in the second part, |ψNOON〉 =
(|N〉1 + eiNφ|N〉2)/

√
2, which, for the lossless case, gives the

QFI N2. Therefore, according to Eq. (6), the total QFI is equal
to the QFI of |ψNOON〉 times its weight T N , namely,

FQ,NOON = N2T N, (12)

in agreement with Ref. [36]. With increasing photon number
N , the ultimate precision δφmin = T −N/2/N shows a global
minimum at Nopt = −2/ ln T ≈ 2/R (as T = 1 − R ≈ e−R

for small R), indicated by the arrows in Fig. 1(a).
In Fig. 1(a), we plot δφmin of the ECS (the NOON) state as

a function of the number of photons n̄ (N ) for the transmission
rates T = 0.8, 0.9, and 1 (from top to bottom). Regardless
of T , one can find that δφmin of the input ECS decreases
monotonically with the increase of n̄. For the NOON state,
however, δφmin reaches its minimum at Nopt and then grows
rapidly. In Fig. 1(b), we show δφmin against T for n̄ (N ) = 4
and 20. It is interesting to note that a crossover of δφmin between
the ECS and the NOON states occurs for large n̄ and T (say,
T > 0.85).

We now analyze the QFI under practical conditions: T ∼
1 (R ∼ 0) and |α|2 � 1, for which w(n̄e−n̄) ≈ 0 and hence
|α|2 ≈ n̄. In addition, the exponential term e−2T |α|2 of Eq. (10)
is negligible. As a result, the QFI reduces to

FQ = F cl
Q + F HL

Q ≈ 2n̄T + (n̄T )2e−2Rn̄, (13)

where the exponential term e−2Rn̄ = |〈E(2)|E(1)〉|2 quantifies
the off-diagonal coherence between the two sensor states [see
Eq. (4)]. When the number of photons being lost Rn̄ = (1 −
T )n̄  1, the Heisenberg term F HL

Q ≈ (n̄T )2e−2Rn̄ dominates,
and the ultimate precision obeys δφHL

min ≈ eRn̄/(n̄T ). With
the increase of Rn̄, the classical term F cl

Q ≈ 2n̄T becomes
important. As Rn̄ � 1, a complete decoherence of the two
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sensor states occurs due to |〈E(2)|E(1)〉|2 → 0, leading to the
completely mixed state

ρ̂ ≈ 1

2
(|
√

T α〉11〈
√

T α| + |
√

T αeiφ〉22〈
√

T αeiφ|), (14)

where the first term |√T α〉11〈
√

T α| carries no phase informa-
tion and hence FQ,1 = 0 and the φ-dependent second term
|√T αeiφ〉22〈

√
T αeiφ | produces the pure-state QFI FQ,2 ≈

4n̄T . Therefore, according to Eq. (6), the total QFI of ρ̂ reads
FQ ≈ ∑

i λiFQ,i ≈ 2n̄T , which in turn gives the classical
scaling of the sensitivity δφmin ≈ δφcl

min ≈ 1/
√

2n̄T . In Fig. 2,
we present the log-log plot of δφmin for the loss rate R = 0.1
and 0.01. As shown by the red solid lines, the simple formula
of Eq. (13) agrees quite well with the exact result (the
solid circles). They both show a turning point at n̄ ∼ 1/R.
Indeed, the quantum-classical crossover takes place when the
Heisenberg term F HL

Q is comparable to the classical term F cl
Q ,

i.e., Rn̄ ∼ 1.
For the ECS with large photon losses, i.e., Rn̄ � 1, the

ultimate precision δφmin obeys the classical scaling 1/
√

2n̄T ,
which is confirmed by Fig. 2. The precision of the NOON
state is optimal at n̄ = −2/ ln T ≈ 2/R and then rapidly
degrades below the classical limit [see the dashed lines, and
also Fig. 1(a)]. This is in sharp contrast to the ECS state.
Qualitatively, different behaviors of the two states arise from
the different influences of photon losses.

(1) For the ECS ∼|α〉1 + |α〉2, the off-diagonal coherence
between the two sensor states |√T α〉1 and |√T αeiφ〉2 is
exponentially suppressed by the photon losses, but the diagonal
components of ρ̂ still carry the phase information [see
Eq. (14)], which contributes the QFI FQ ≈ 2n̄T .

(2) For the NOON state ∼|N〉1 + |N〉2, the phase informa-
tion is stored only in the coherence part of ρ̂ [see Eq. (11)],
which decays with the photon losses as T N ≈ e−RN for small
R. When the lost photon number RN � 1, the information
about the phase shift φ is completely eliminated.
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FIG. 1. (Color online) The ultimate precision δφmin against (a)
the number of photons n̄ or N and (b) the transmission rate T for the
NOON (dashed lines) and the ECS (solid lines) states. In (a), T = 1
[blue (dark gray) lines], 0.9 [red (light gray) lines], and 0.8 (black
lines). Two arrows indicate Nopt = −2/ ln T with T = 0.8 and 0.9.
In (b), n̄ = 4 [red (light gray) lines] and 20 [blue (dark gray) lines]. A
crossover of δφmin between the ECS and the NOON states occurs for
n̄ (or N ) = 20 and T ∈ (0.85,1). The shaded area in (a) is a region
where the sensitivity is worse than the shot-noise limit 1/

√
n̄.
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FIG. 2. (Color online) Log-log plot of δφmin for (a) T = 0.9 and
(b) T = 0.99. Black dotted lines: the classical limit 1/

√
2T n̄; blue

dashed lines: δφmin of the NOON state; red solid lines (solid circles):
approximated (exact) δφmin of the ECS; red dot-dashed lines: δφmin

of the ECS in the absence of photon losses (i.e., T = 1), given by
Eq. (3). The two vertical lines at n̄ = 6.4 and 23.5 in (a) and n̄ = 14.8
and 561 in (b) show the crossover of δφmin between the ECS and the
NOON states.

From Fig. 1, we have observed the crossover of δφmin

between the ECS and the NOON states, which can be
understood by simply comparing the QFIs for the two states.
Without the photon losses, the ultimate precision of the
ECS always surpasses those of the NOON states because
FQ = F cl

Q + F HL
Q > FQ,NOON (as F HL

Q = FQ,NOON = n̄2). In
the presence of moderate photon losses, the Heisenberg term
F HL

Q ≈ (n̄T )2e−2Rn̄ decays more quickly than that of the
NOON state FQ,NOON ≈ n̄2e−Rn̄. This makes it possible for
the NOON state to outperform the ECS when the quantum
contribution F HL

Q dominates the classical contribution F cl
Q .

From Fig. 2, one can find that the NOON states with n̄ ∈ (6.4,
23.5) for R = 0.1 and n̄ ∈ (14.8, 561) for R = 0.01 are
preferable, within the vertical lines of Fig. 2.

In general, the crossover condition can be obtained by
equating Eqs. (13) and (12). This gives a transcendental
equation: n̄T n̄−1 ≈ 2 + n̄T e−2Rn̄, whose solution is illumi-
nated by the red solid curve in Fig. 3. It shows that the
NOON states outperform the ECS inside the crossover region,
while the ECS prevails outside. The upper and the lower
boundaries of the region are well fitted by n̄u ≈ 3.2T 6/R1.15

(the black dashed line) and n̄l ≈ 1.4T −3/R1/2 (the blue dash-
dotted line), respectively. The upper boundary corresponds
to FQ,NOON ≈ F cl

Q . As shown in Fig. 3, we find that the
crossover of δφmin between the ECS and the NOON states
takes place for T ∈ (0.854,1). For such a relatively low loss
rate (0 < R < 0.15), the precision of the NOON state could
surpass that of the ECS over a wider range of n̄ until the
classical term F cl

Q begins to dominate. Actually, the NOON
states with n̄ > n̄u cease to be optimal, and their precision
becomes even worse than the classical limit [36]. From Fig. 3,
we also note that no crossover occurs for T � 0.854 and the
ultimate precision of the ECS is always better than that of the
NOON state [see also the black lines in Fig. 1(a)].

IV. DISCUSSIONS AND CONCLUSION

Before closing, we discuss how to prepare the ECS and how
to saturate the ultimate phase sensitivity in real experiment.
As suggested in Ref. [43], the input ECS can be generated
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FIG. 3. (Color online) The crossover region in which δφmin of
the NOON state is preferable. Red solid line: n̄T n̄−1 = 2 + n̄T e−2Rn̄

for R = 1 − T and T ∈ (0.85,1); black dashed and blue dot-dashed
lines: n̄u � 3.2T 6/R1.15 and n̄l � 1.4T −3/R0.5, respectively, fitting
very well with the boundary of the crossover region (open circles). The
critical point of the crossover is (T ,n̄) = (0.854, 8.58), as indicated
by the arrow.

by passing a coherent state |α/
√

2〉1 and a coherent state
superposition ∼|α/

√
2〉2 + | − α/

√
2〉2 (experimentally avail-

able for α ≈ 1.5 [48]) through the first 50:50 beam splitter.
To achieve the ultimate phase sensitivity, we consider the
parity measurement with respect to the output state ρ̂out(φ) =
B̂1,2ρ̂(φ)B̂†

1,2 [14,17,34,43], where B̂1,2 is the second 50:50
beam splitter transformation and ρ̂(φ) is given by Eq. (7). The
output signal can be solved analytically as

〈�̂〉=Tr[ρ̂out�̂]

=2N 2
α

[
e−T |α|2 + e−|α|2(1−T sinφ) cos

(
T |α|2 cos φ

)]
, (15)

where �̂ = (−1)â
†
1 â1 is the parity operator. Due to 〈�̂2〉 = 1,

we have the phase sensitivity δφ� =
√

1 − 〈�̂〉2/|∂〈�̂〉/∂φ|,
which in general depends on the value of phase shift φ. Without
particle loss, i.e., T = 1 and R = 0, the sensitivity reaches the
minimum value δφ�, min = 1/

√
n̄[n̄ + 1 + w(n̄e−n̄)] (almost

saturating the quantum Cramér-Rao bound) when the phase
shift is equal to its optimal value φmin = π/2. Surprisingly,
in the presence of photon loss with arbitrary loss rate, δφ�

diverges at φ = π/2 due to the slope of the signal ∂〈�̂〉/∂φ ∝
cos(φ − T |α|2 cos φ) = 0. The best sensitivity δφ�, min can
be obtained for φmin symmetrically shifting from π/2. The
lower bound is almost saturated by δφ�, min as long as the
photon loss rate R � 0.01. For a larger loss rate, the parity
detection cannot saturate the quantum Cramér-Rao bound, and
the optimal measurement scheme remains unclear.

In summary, by considering a superposition of NOON
states as the “input” of a lossless optical interferometer, we
have shown that the quantum Fisher information FQ � n̄2

and therefore the ultimate precision of the phase sensitivity
can be better than the Heisenberg limit. As a special case of

the superposed state, an entangled coherent state ∝|α,0〉1,2 +
|0,α〉1,2 has been investigated. The exact result of the quantum
Fisher information is obtained to investigate the role of photon
losses on the lower bound of phase sensitivity δφmin. Without
the photon losses, i.e., the absorption rate R = 0 and the
transmission rate T = 1, we confirm that the input ECS always
outperforms the NOON state [43]. In the presence of photon
losses, the transition of δφmin from the Heisenberg scaling
to the classical limit occurs due to the loss-induced quantum
decoherence between the sensor states. The quantum-classical
transition depends upon the number of photons being lost
Rn̄, rather than the total photon number n̄ or the loss rate
R alone. For a given transmission rate T ∈ (0.85,1), we also
find that there exists a crossover of δφmin between the ECS
and the NOON states. The NOON state is preferable in the
crossover region, i.e., n̄T n̄−1 � 2 + n̄T e−2Rn̄. For Rn̄ � 1,
however, the precision of the NOON state degrades below
the classical limit, while for the ECS state, δφmin obeys the
classical limit 1/

√
2T n̄, better than that of the NOON state.

The ultimate sensitivity of the input ECS can be reached
by parity measurement for a small photon loss rate (e.g.,
R � 0.01).

Note added. Recently, we notice that the authors in Ref. [49]
studied relevant work about the quantum Fisher information
of an entangled coherent state with and without photon losses.
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APPENDIX A: EIGENVALUES AND EIGENVECTORS OF
THE REDUCED DENSITY MATRIX

We present a general method to diagonalize a reduced den-
sity matrix like Eq. (4). The eigenvector of ρ̂ can be spanned as
|λ(φ)〉 = ∑

j cj |j 〉, where the states |j 〉 are not necessarily
orthogonal. Using the eigenvalue equation ρ̂|λ(φ)〉 = λ|λ(φ)〉,
or, equivalently,

∑
j 〈i |ρ̂|j 〉cj = λ

∑
j 〈i |j 〉cj , we can

determine the eigenvalue λ and the amplitudes cj . It is conve-
nient to write down the eigenvalue equation in a matrix form:
ρc = λAc, where the elements of ρ and A are ρij = 〈i |ρ̂|j 〉
and Aij = 〈i |j 〉 and c = (c1,c2, . . . )T . Multiplying the
inverse matrix A−1 on the left, we can rewrite the eigenvalue
equation as

ρ̃c ≡ A−1ρc = λc, (A1)

where ρ̃ = A−1ρ.
Using the above formula, we now diagonalize the reduced

density operator of Eq. (4). First, we expand the eigenvec-
tors as |λ(φ)〉 = c1|1〉 + c2|2〉, where |1〉 = |√T α〉1 =
|√T α〉1|0〉2 and |2〉 = |√T αeiφ〉2 = |0〉1|

√
T αeiφ〉2. It is
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easy to obtain the matrix

ρ̃ = N 2
α

(
1 + e−|α|2 e−T |α|2 + e−R|α|2

e−T |α|2 + e−R|α|2 1 + e−|α|2
)

,

where T (R = 1 − T ) is the transmission (absorption) rate
of the photons and N 2

α = 1/[2(1 + e−|α|2 )]. Next, from the
equation |λI − ρ̃| = 0, we obtain the eigenvalues

λ± = N 2
α

[(
1 + e−|α|2

)
±

(
e−T |α|2 + e−R|α|2

)]
, (A2)

which obey λ− + λ+ = 1. Substituting λ± into Eq. (A1), or
(λI − ρ̃)c = 0, we further obtain the amplitudes c1 = ±c2,
i.e., the eigenvectors |λ±(φ)〉 ∝ (±|√T α〉1 + |√T αeiφ〉2), as
in Eq. (8).

APPENDIX B: DERIVATIONS OF THE QUANTUM
FISHER INFORMATION

First, we derive the general expression of the QFI [i.e.,
Eq. (6)]. For a mixed state ρ̂ = ∑

m λm|λm〉〈λm|, the QFI
is given by the well-known formula of Eq. (5), where the
eigenvectors of the reduced density matrix {|λm〉} span an
othonormalized and complete basis. In general, the dimension
of the entire Hilbert space is huge. However, there exists
a much smaller subset {|λi〉} with nonzero weights λi . It
is convenient to express the QFI in terms of this subset
only. For this purpose, we divide the complete basis {|λm〉}
into two subsets: {|λi〉} and {|λı̄〉}, with λi �= 0 and λı̄ = 0,
respectively. Using the completeness relation

∑
ı̄ |λı̄〉〈λı̄ | =

1 − ∑
i |λi〉〈λi |, Eq. (5) can be rewritten as

FQ =
∑

i

2〈λi |(ρ̂ ′)2|λi〉
λi

+
∑

j

2〈λj |(ρ̂ ′)2|λj 〉
λj

+
∑
i,j

2

(
1

λi + λj

− 1

λi

− 1

λj

) ∣∣〈λi | ρ̂ ′|λj 〉
∣∣2

, (B1)

where only the subset {|λi〉} with λi �= 0 is involved. Since
{|λi〉} are orthonormalized, i.e., 〈λi |λj 〉 = δi,j , we have
〈λi |λ′

j 〉 + 〈λ′
i |λj 〉 = 0, and hence

〈λi |(ρ̂ ′)2|λi〉 = (λ′
i)

2 + λ2
i 〈λ′

i |λ′
i〉

+
∑

l

(λ2
l − 2λiλl)|〈λ′

i |λl〉|2,

|〈λi |ρ̂ ′|λj 〉|2 = (λ′
i)

2δi,j + (λi − λj )2|〈λ′
i |λj 〉|2.

Substituting them into Eq. (B1) and using |〈λ′
j |λi〉|2 =

|〈λ′
i |λj 〉|2, we obtain the general formula of the QFI as in

Eq. (6).

Now, we apply the general formula to calculate the QFI of
the ECS state. Since the eigenvalues of the reduced density
matrix λ± are phase independent, the first term of Eq. (6)
vanishes. From Eq. (8), it is easy to obtain the derivation of
the eigenvectors,

|λ′
±〉 = η±

∂

∂φ
|
√

T αeiφ〉2 = η±
∞∑

n=0

indn(α
√

T eiφ) |n〉2 ,

(B2)

where the normalization factors η± = 1/
√

2(1 ± e−T |α|2 ) and
the probability amplitudes of the coherent state dn(α) ≡
〈n|α〉 = αne− 1

2 |α|2/
√

n!, which satisfy
∑

n |dn(α)|2 = 1 and

+∞∑
n=0

n |dn(α)|2 = |α|2,
+∞∑
n=0

n2 |dn(α)|2 = |α|2(1 + |α|2).

Therefore, combining Eqs. (8) and (B2), we obtain

〈λ±|λ′
±〉 = η2

±
∞∑

n=0

in

∣∣∣dn(αeiφ
√

T )
∣∣∣2

= iη2
±|α|2T (B3)

and, similarly, 〈λ∓|λ′
±〉 = iη+η−|α|2T , as well as 〈λ′

±|λ′
±〉 =

η2
±|α|2T (1 + |α|2T ). These results enable us to calculate the

remaining terms of Eq. (6):∑
i=±

λiFQ,i = 4λ+η2
+|α|2T (1 + |α|2T − η2

+|α|2T )

+ 4λ−η2
−|α|2T (1 + |α|2T − η2

−|α|2T ) (B4)

and ∑
i=±,j=∓

8λiλj

λi + λj

∣∣〈λ′
i

∣∣ λj 〉
∣∣2 = 16λ+λ−η2

+η2
−|α|4T 2 (B5)

due to λ+ + λ− = 1. Finally, we get the exact result of the QFI
for the input ECS:

FQ = 4N 2
α |α|2T

×
[

1 + |α|2T − N 2
α|α|2T

(
1 + 1 − e−2R|α|2

1 − e−2T |α|2

)]
,

where we have used the relations λ+η2
+ + λ−η2

− = N 2
α and

4λ+λ−η2
+η2

− = N 4
α [1 − e−2R|α|2 ], as well as

λ+η4
+ + λ−η4

− = N 2
α

2

1 − e−|α|2

1 − e−2T |α|2 .

Using n̄ = 2N 2
α |α|2 and hence |α|2 = n̄ + w(n̄e−n̄), the QFI

can be further simplified as Eq. (9).
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[24] L. Pezzé and A. Smerzi, Phys. Rev. Lett. 102, 100401 (2009).
[25] M. Kacprowicz, R. Demkowicz-Dobrzański, W. Wasilewski,
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