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We present results on the dynamics of split-ring dimers having both gain and loss in one-dimensional nonlinear
parity-time- (PT -)symmetric magnetic metamaterials. For the long-wave (continuum) limit approximation and
in the weakly nonlinear limit, we show analytic results on the existence of gap soliton solutions and on symmetry-
breaking phenomenon at a critical value of the gain or loss term.
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I. INTRODUCTION

The study ofPT -symmetric systems has received consider-
able attention as it may provide a new framework for a number
of applications. In the simplest possible optical coupled
systems, the experimental observation of PT symmetry [1]
builds on managing the balance of gain and loss in an otherwise
conservative nonlinear system. Such symmetry breaking can
have new all optical applications such as a unidirectional
optical valve [2]. Perhaps because controlling gain or loss
is less difficult in discrete photonic systems than in bulk, much
work on PT -symmetric systems considers optical lattices
[3], or for example binary arrays of optical waveguides [4].
From the theoretical point of view, for finite lattice systems
(dimers, trimer, oligomers) a classical dynamical systems
approach can be used to search for solutions, their stability,
and bifurcation properties [5,6]. For extended (ideally infinite)
systems, the building blocks are discrete solitons of a modified
discrete nonlinear Schrödinger equation (d-NLSE), found for
example as a bifurcation from the anticontinuum limit [5]
whose persistence and eventual symmetry breaking behavior
in terms of the gain-loss parameter reveals the PT -symmetry
breaking behavior. In most instances, assuming the scaling
validates the assumption, a continuum approximation is used
leading to the nonlinear Schrödinger equation with a linear
complex potential whose real part is even and imaginary
part is odd. In such case questions of existence [7,8] and
stability [9] can be performed as more analytical tools are
available. When the basic element of an array is a coupled
waveguide element with one guide having linear gain and the
other one linear loss of equal strength, and if one applies a
continuum approximation one arrives at a coupled nonlinear
Schrödinger equation (c-NLSE) [10] where existence and sta-
bility analysis is the same as classical work on similar c-NLSE
systems.

With the development of novel engineered metamaterials,
it is now conceivable to tailor dielectric properties to achieve
PT symmetry and control its symmetry breaking in ways
described by models based on the d-NLSE, it is also the
case that these ideas have been exploited in electronic circuits
where experimental conditions are more accessible. Take, for
example, recent work on LRC circuits with PT symmetry
[11]. Another possibility is by use of split-ring resonators
(SRRs) and SRRs arrays [12,13].

As stated before, in the simplest form, proof of principle
of symmetry-breaking dynamics in any of these optically

or electronically based models is present as a universal
bifurcation past a threshold of the symmetric nonconservative
(gain-loss) perturbation of an otherwise conservative system.
Here, we pay attention to recent work on a PT -dimer chain
[12] shown schematically in Fig. 1. In this work, the authors
demonstrate numerically that discrete breathers in such a
dimer chain are generic though their long term stability is
compromised when the balance between gain and loss is not
exact. It is not clear though if a symmetry breaking bifurcation
exists. Noticing that most relevant parameters in the array are
small, in our work we benefit from it to develop a weakly
nonlinear theory and derive amplitude equations in both the
discrete and the continuum approximation. The results we
present here correspond to the case where the continuum
limit applies. In doing so, the sections that follow show, in
particular, that we can analytically predict the existence of gap
solitonlike solutions in the absence of gain or loss. Similarly,
we are able to predict the bifurcation value of the loss-
gain parameter about which localized modes cease to exist.
The conclusions summarize our results and suggest possible
extensions.

II. DISCRETE MODEL

In the equivalent circuit model picture, extended for thePT
dimer chain, the dynamics of the charge qn in the capacitor of
the nth SRR is governed by [12]

λ′
Mq̈2n + q̈2n+1 + λMq̈2n+2 + λ′

Eq2n + q2n+1 + λEq2n+2

= ε0 sin(�t) − αq2
2n+1 − βq3

2n+1 − γ q̇2n+1,

λMq̈2n−1 + q̈2n + λ′
Mq̈2n+1 + λEq2n−1 + q2n + λ′

Eq2n+1

= ε0 sin(�t) − αq2
2n − βq3

2n + γ q̇2n, (1)

where λM , λ′
M and λE , λ′

E are the magnetic and electric
interaction coefficients, respectively, between nearest neigh-
bors, α and β are nonlinear coefficients, γ is the gain or
loss coefficient (γ > 0), ε0 is the amplitude of the external
driving voltage, while � and t are the driving frequency and
temporal variable, respectively, normalized to ω0 = 1/

√
LC0

and ω−1
0 , respectively, with C0 being the linear capacitance.

In the following, we only consider that the relative orientation
of the SRRs in the chain is such that the magnetic coupling
dominates, while the electric coupling can be neglected, i.e.,
λE = λ′

E = 0.
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Substituting Am = q2n+1 and Bm = q2n into Eqs. (1), we obtain

Äm + Am = −λ′
MB̈m − λMB̈m+1 + ε0 sin(�t) − αA2

m − βA3
m − γ Ȧm,

(2)
B̈m + Bm = −λMÄm−1 − λ′

MÄm + ε0 sin(�t) − αB2
m − βB3

m + γ Ḃm.

By assuming the parameter values in [12], all the terms in the right-hand side are small since |λ′
M |, |λM |, |ε0|, |α|, |β|, |γ | � 1.

If we first start by studying the dispersion properties in the linear regime, with no forcing for which we assume plane-wave
solutions, (Am(t),Bm(t)) ∝ ei(mkx+kt t), we obtain the linear dispersion relation

k2
t =

2 − γ 2 ±
√

γ 4 − 4γ 2 + 4(λM − λ′
M )2 + 16 cos2 kx

2 λMλ′
M

2
[
1 − (λM − λ′

M )2 − 4 cos2 kx

2 λMλ′
M

] ,

which is consistent with �2
κ in [12] where kx = 2κ is the wave vector. Observe that to first approximation kt ≈ ±1 corresponding

to ignoring the right-hand side of Eq. (2). This serves as the basis to develop the weakly nonlinear modulation theory which
assumes Am = um(τ )eit+kmx + u∗

m(τ )e−(it+kmx) + εu(2)
m , Bm = vm(τ )eit+kmx + v∗

m(τ )e−(it+kmx) + εv(2)
m , where τ = εt, 0 < ε � 1

is a slow time scale. Then the slowly varying amplitude equations, in the absence of forcing, satisfy the equations

2i
dum

dτ
= ¯λ′

Mvm + ¯λMvm+1e
ikx − 3β̄|um|2um − iγ̄ um, 2i

dvm

dτ
= ¯λ′

Mum + ¯λMum−1e
−ikx − 3β̄|vm|2vm + iγ̄ vm (3)

and

u
(2)
M = −2ᾱ|um|2 + ᾱ

3
um

2e2i(t+kxm) + ᾱ

3
u∗

m
2
e−2i(t+kxm), v

(2)
M = −2ᾱ|vm|2 + ᾱ

3
vm

2e2i(t+kxm) + ᾱ

3
v∗

m
2
e−2i(t+kxm).

Here all parameters are rescaled as μ → εμ̄.
Rather than analyzing the modulations equations just derived, the rest of the paper deals with the long-wave continuum

approximation limit.

III. CONTINUUM APPROXIMATION

The long-wave limit (kx ≈ 0) can be better analyzed if we use the continuum approximation given by the expansions

Am±1(z) = u(x,t) ± ux(x,t) + 1
2uxx(x,t) + · · · , Bm±1(t) = w(x,t) ± wx(x,t) + 1

2wxx(x,t) + · · · ,

obtaining (as a first-order approximation)

utt + u = ε0 sin(�t) − aMwtt − λMwttx − αu2 − βu3 − γ ut ,
(4)

wtt + w = ε0 sin(�t) − aMutt + λMuttx − αw2 − βw3 + γwt ,

where aM = λ′
M + λM . Observe that in the linear case if we set ε0 = 0, α = 0, and β = 0 the dispersion relation of Eqs. (4) reads

k2
t =

2 − γ 2 ±
√

γ 4 − 4γ 2 + 4a2
M + 4k2

xλ
2
M

2
[
1 − a2

M − k2
xλ

2
M

] =
2 − γ 2 ±

√
γ 4 − 4γ 2 + 4(λM − λ′

M )2 + 4k2
xλ

2
M + 16λMλ′

M

2
[
1 − (λM − λ′

M )2 − k2
xλ

2
M − 4λMλ′

M

] ,

which corresponds to the first approximation to the longwave
limit kx ≈ 0 of the discrete model, thus validating the contin-
uum model. Next we want to find regions in terms of kx and
γ where kt is real. We should point out that while we present
a detailed picture of the linear dispersion relation, only those
regions where kx is close to zero [case (iii) and Fig. 3] are
consistent with the approximation.

(i) If k2
x > 1

λ2
M

[1 − a2
M ], then

k2
t =

2 − γ 2 −
√

γ 4 − 4γ 2 + 4a2
M + 4k2

xλ
2
M

2
[
1 − a2

M − k2
xλ

2
M

] > 0 (5)

are real for γ > 0 (see Fig. 2 top).

FIG. 1. (Color online) Schematic of a PT metamaterial (as in
Fig. 1 in [12]). Upper panel: all the SRRs are equidistant. Lower
panel: the separation between SRRs is modulated according to a
binary pattern (PT dimer chain).
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FIG. 2. (Color online) If λM = −0.17 and λ′
M = −0.10. (a)

Linear dispersion relation for regime (i) (5); (b) linear dispersion
relation for fixed kx = 1

‖λM |
√

1 − a2
M (6).

(ii) If k2
x = 1

λ2
M

[1 − a2
M ], then

k2
t = 1

2 − γ 2
> 0 (6)

are real for 0 < γ <
√

2 (see Fig. 2 bottom).
(iii) If 1

λ2
M

[− γ 4

4 + γ 2 − a2
M ] � k2

x < 1
λ2

M

[1 − a2
M ], then

k2
t =

2 − γ 2 ±
√

γ 4 − 4γ 2 + 4a2
M + 4k2

xλ
2
M

2
[
1 − a2

M − k2
xλ

2
M

] > 0 (7)

are real for
√

2 − 2
√

1 − a2
M < γ <

√
2 (see Fig. 3).

As we can see from Fig. 3, the the presence of the loss-gain
parameter opens the gap in around kx = 0 up to where γ = √

2
where there is a full gap.

IV. WEAKLY NONLINEAR THEORY

Recognizing that most parameters are small, we apply
regular perturbation theory on Eqs. (1) and (4) to derive a
weakly nonlinear model.

For the sake of simplicity, we rescale all small parameters
λ′

M , λM , ε0, α, β, γ in Eqs. (1) and (4) as μ → εμ, where
μ represents any of these parameters and where ε is small.
We describe in some detail the weakly nonlinear theory for
the continuum model and for the discrete model we simply
present the equivalent outcome.

Let

u = u0 + εu1 + ε2u2 + · · · , w = w0 + εw1 + ε2w2 + · · · ,
We have

u0t t + u0 = 0, w0t t + w0 = 0.

FIG. 3. (Color online) If λM = −0.17 and λ′
M = −0.10. Linear

dispersion relation (7) (sign ±).

u0(x,t), w0(x,t) would be the known solution to
the uncoupled harmonic-oscillator equation and
u1(x,t),u2(x,t), . . . ,w1(x,t),w2(x,t), . . . represent the
higher-order terms which are found iteratively. One obtains
the solutions to leading order as

u0(x,t) = A(x,τ )eit + A∗(x,τ )e−it ,

w0(x,t) = B(x,τ )eit + B∗(x,τ )e−it ,

where ∗ is the operator of complex conjugate and τ = 1
2ε|λM |t .

Substituting in Eqs. (4) and applying the solvability conditions
at order O(ε) to remove secular terms in

u1t t + u1 =
[

− i
∂A

∂τ
eit + i

∂A∗

∂τ
e−it + ε0 sin(�t) − aMw0t t

− λMw0t tx − αu2
0 − βu3

0 − γ u0t

]
,

w1t t + w1 =
[

− i
∂B

∂τ
eit + i

∂B∗

∂τ
e−it + ε0 sin(�t) − aMu0t t

+ λMu0t tx − αw2
0 − βw3

0 + γw0t

]
(8)

gives the slowly varying equations for A,B.
(i) No resonant forcing (� 
= 1),

−i
∂B

∂τ
+ ∂A

∂x
= 1

λM

[aMA − 3β|B|2B + iγB] ,

(9)

i
∂A

∂τ
+ ∂B

∂x
= 1

λM

[−aMB + 3β|A|2A + iγA] .
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FIG. 4. (Color online) Phase plane of the real ODE system (17)
for aM = −0.27, λM = −0.17, and β = 0.002.

(ii) At resonance � = 1,

−i
∂B

∂τ
+ ∂A

∂x
= 1

λM

[
aMA − 3β|B|2B + iγB − i

2
ε0

]
,

i
∂A

∂τ
+ ∂B

∂x
= 1

λM

[
− aMB + 3β|A|2A + iγA + i

2
ε0

]
.

(10)

(iii) Near resonance � = 1 + εω,

−i
∂B

∂τ
+ ∂A

∂x
= 1

λM

[
aMA − 3β|B|2B + iγB − i

2
ε0e

iωτ

]
,

i
∂A

∂τ
+ ∂B

∂x
= 1

λM

[
− aMB + 3β|A|2A+ iγA+ i

2
ε0e

iωτ

]
.

(11)

and the O(ε) corrections for the nonresonant [ ε0
1−�2 = O(1)]

case being,

u1(x,t) = ε0

2(1 − �2)i
(ei�t − e−i�t ) − 2α|A(x)|2

+ α

3
[A(x)2e2it + A∗(x)2e−2it ]

+ β

8
[A(x)3e3it + A∗(x)3e−3it ],

w1(x,t) = ε0

2(1 − �2)i
(ei�t − e−i�t ) − 2α|B(x)|2

+ α

3
[B(x)2e2it + B∗(x)2e−2it ]

+ β

8
[B(x)3e3it + B∗(x)3e−3it ]. (12)

A. Gap soliton solutions

Equations (9), (10), and (11) above belong to the family of
systems of strongly coupled modes with a gap in the dispersion
relation, with numerous examples emerging the past 25 years.
In [14,15], in their study of Bragg grating solitons, it was first
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FIG. 5. (Color online) Numerical solutions |A(x)| (red) and
|B(x)| (blue) of (10) for ε0 = 0.1, aM = −0.27, λM = −0.17, and
β = 0.002. Top: γ = 0.2; middle: γ = 0.27; bottom: γ = 0.4.

noticed that solutions of the integrable Thirring model could
be extended to similar nonintegrable systems. This approach
has been recently applied in a model of a delay line in a
dual core photonic crystal fiber [16] and in binary arrays [17].
Similarly here, fully time-dependent gap solitonlike solutions
can be obtained in the nonresonant case [Eqs. (9)] for γ = 0.
Following the set of transformations in [17], and for γ = 0,
one can find exact solitary wave solutions. Namely, if we write
solutions of Eqs. (9) in the form

B(x,τ ) = 1

2i
[K1g1(ξ ) − iK2g2(ξ )] exp(iψ cos Q), (13)

A(x,τ ) = 1

2
[K1g1(ξ ) + iK2g2(ξ )] exp(iψ cos Q), (14)

ξ = x + vτ√
1 − v2

, ψ = vx + τ√
1 − v2

,

K1 =
(

1 + v

1 − v

) 1
4

, K2 =
(

1 − v

1 + v

) 1
4

,
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with g1,2 two arbitrary complex functions, −1 � v � 1
and 0 � Q � π . Substituting (13) and (14) into Eqs. (9)
gives

−ġ1 + ig1 cos Q − iaM

λM

g2 + 3β

4iλM

× (
K4

1 |g1|2g1 + 2|g2|2g1 − g2
2g

∗
1

) = 0,

ġ2 + ig2 cos Q − iaM

λM

g1 + 3β

4iλM

× (
K4

2 |g2|2g2 + 2|g1|2g2 − g2
1g

∗
2

) = 0.

These equations imply the invariant P = |g1|2 − |g2|2. In
the case P = 0, we have |g1|2 = |g2|2 and g1,2(ξ ) =
f (ξ ) exp[iθ1,2(ξ )]. Therefore, by μ = f 2 and ν = θ1 − θ2, we
obtain

μ̇ = −∂H

∂ν
, ν̇ = ∂H

∂μ
,

H = 2μ

(
−aM

λM

cos ν + cos Q

)

− 3β

4λM

μ2

(
K4

1

2
+ K4

2

2
+ 2 − cos(2ν)

)
. (15)

Equations (15) represent a one-dimensional integrable Hamil-
tonian system from which solitary wave solutions are obtained
[17]. It would be of interest if by use of Hamiltonian
perturbative methods [18], such solutions are stable and persist
for small but nonzero γ and small nonzero γ,ε0 for the resonant
case. We leave this for future work.

B. Stationary solutions

In this section, we consider the existence of stationary
solutions of the amplitude equations and in particular we
show a bifurcation for the nonresonant case, which is the first
case we consider. To do so, letting y1 = |A|2,y2 = |B|2,y3 =
(AB∗ + A∗B),y4 = i(AB∗ − A∗B), we could rewrite (9) as a
real ODE system

dy1

dx
= 1

λM

(2aMy1 − 3βy2y3 − γy4),

dy2

dx
= 1

λM

(−2aMy2 + 3βy1y3 + γy4),

dy3

dx
= 6β

λM

(
y2

1 − y2
2

)
,

dy4

dx
= 2γ

λM

(y1 − y2). (16)

If γ = 0 in Eqs. (16), there is an invariant

y3 = 3β

2aM

(
y2

1 + y2
2

)
.

Then the real ODE system (16) becomes a 2D integrable
system:

dy1

dx
= 1

λM

[
2aMy1 − 9β2

2aM

y2
(
y2

1 + y2
2

)]
,

(17)
dy2

dx
= 1

λM

[
− 2aMy2 + 9β2

2aM

y1
(
y2

1 + y2
2

)]
.

The Jacobian matrix of (17) is(
1

λM

(
2aM − 9β2

aM
y1y2

) − 9β2

2λMaM

(
y2

1 + 3y2
2

)
9β2

2λMaM

(
3y2

1 + y2
2

) − 1
λM

(
2aM − 9β2

aM
y1y2

)
)

.

For Eqs. (17), there are two equilibrium points: one is a
saddle (0,0) at which the eigenvalues are λ1,2 = ±2| aM

λM
| and

the corresponding eigenvectors are (1,0)T ,(0,1)T . And another
one is a center at (

√
2

3 | aM

β
|,

√
2

3 | aM

β
|) with eigenvalues λ1,2 =

±4| aM

λM
|i. The phase plane of this integrable case is shown as

in Fig. 4.
Interestingly, as it is the case of many PT systems, this

symmetry reflects in an invariance. Here, if γ > 0 in Eqs. (16),

y3 = 3β

2aM

(
y2

1 + y2
2 + 1

2
y2

4

)
in a constant. Then the real ODE system (16) can be reduced
into the three-dimensional system,

dy1

dx
= 1

λM

[
2aMy1 − 9β2

2aM

y2

(
y2

1 + y2
2 + 1

2
y2

4

)
− γy4

]
,

dy2

dx
= 1

λM

[
− 2aMy2 + 9β2

2aM

y1

(
y2

1 + y2
2 + 1

2
y2

4

)
+ γy4

]
,

dy4

dx
= 2γ

λM

(y1 − y2), (18)

for which the Jacobian matrix of the 0 solution is

⎛
⎜⎜⎝

1
λM

(
2aM − 9β2

aM
y1y2

) − 9β2

2λMaM

(
y2

1 + 3y2
2 + 1

2y2
4

) − 1
λM

( 9β2

2aM
y2y4 + γ

)
9β2

2λMaM

(
3y2

1 + y2
2 + 1

2y2
4

) − 1
λM

(
2aM − 9β2

aM
y1y2

)
1

λM

( 9β2

2aM
y1y4 + γ

)
2γ

λM
− 2γ

λM
0

⎞
⎟⎟⎠ .

The eigenvalues are λ1 = 0 and λ2,3 = ± 2
|λM |

√
a2

M − γ 2.
Then the equilibrium point is a saddle when 0 < γ < |aM |,
while it is a center when γ > |aM |. So we have proven there
is a bifurcation from saddle to center at γc = |aM |.

We confirm the previous result from the full system where
the Jacobian matrix of the real ODE system (16) for the

equilibrium solution at the origin is⎛
⎜⎜⎜⎝

2aM

λM
− 3βy3

λM
− 3βy2

λM
− γ

λM
3βy3

λM
− 2aM

λM

3βy1

λM

γ

λM
12βy1

λM
− 12βy2

λM
0 0

2γ

λM
− 2γ

λM
0 0

⎞
⎟⎟⎟⎠ . (19)
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FIG. 6. (Color online) Numerical solutions |A(x)|2 and |B(x)|2
of (10) for ε0 = 0.1, aM = −0.27, λM = −0.17, and β = 0.002. Top:
γ = 0.2; middle: γ = 0.27; bottom: γ = 0.4.

One finds that the eigenvalues of the Jacobian ma-
trix (19) at the equilibrium point (0,0,0,0) are λ1,2 = 0 and

λ3,4 = ± 2
|λM |

√
a2

M − γ 2, corroborating that there is a bifur-
cation at γc = |aM | since the equilibrium point is a saddle
when 0 < γ < |aM |, while it is a center when γ > |aM |. The
corresponding eigenvectors are ( γ

2aM
,

γ

2aM
,0,1)T , (0,0,1,0)T ,

and (
aM±

√
a2

M−γ 2

2γ
,

γ

2(aM±
√

a2
M−γ 2)

,0,1)T .

If we represent the homoclinic orbit as Ah(x),Bh(x),
then u(x,t) ≈ Ah(x)eit + A∗

h(x)e−it , v(x,t) ≈ Bh(x)eit +
B∗

h(x)e−it is an extended breather in the chain. Similar to the
discrete system, the O(ε) correction produces a small pedestal
and a second harmonic contribution. Clearly this pedestal will
also go to zero in the wings if, as in [12], we insert purely lossy
elements at both ends of the arrays.

We now turn our attention to the system at resonance (10). In
this case one can see that for γ = 0, |ε0| � 1, the saddle point
emanating from the origin (AE,BE) ≈ ( iε0

aM
, iε0
aM

) persists as the
eigenvalues are λ ≈ ± aM

λM
. This is not surprising since we know

saddle points are robust under perturbations. On the other hand,
if γ = O(1), the approximate critical point close to the origin
(A,B) ≈ (0,0) is a center with eigenvalues λ ≈ ±i

√
γ 2 − a2

M ;
thus a bifurcation must exist. For the more general case γ,ε0 
=
0, rather than explicitly finding the bifurcation point, we show
particular orbits at two different γ ’s. The numerical solutions
|A(x)| and |B(x)| are shown in Fig. 5, and the projection of the
phase portrait in the plane |A(x)|2 vs |B(x)|2 is shown in Fig. 6.
One can clearly observe the extended in x quasiperiodic modes
have a marked difference of reaching high maximum values
for small γ (top figures), while this is not the case for large γ

(bottom figures). Interestingly, the behavior at γ = |aM | shows
a distinctively unique behavior.

As expected, at resonance the profile shown below repre-
sents to first order a spatially extended time-periodic nonlinear
solution of the chain. This is so since forcing is extended
throughout the chain. As stated above, the wings of this
extended state can be made to go to zero if the elements of the
chain at both ends are purely lossy.

Finally, the near-resonant case which needs to be analyzed
as a full PDE problem with parametric forcing will not be
considered here, but we expect to find regimes of quasiperiodic
dynamics and chaotic regimes as well in similar dissipative
forced systems.

V. CONCLUSIONS

By developing a weakly nonlinear theory, restricting our
analysis to the continuum model, we derived a dynamical
system where, in the case of forcing away from resonance, we
demonstrate the persistence for small PT parameter values γ

of a homoclinic orbit emerging from the conservative (γ = 0)
case. This orbit represents a localized breather solution of the
dimer chain. Our theory also proves that there is a critical
value γc above which the homoclinic orbit no longer exists,
thus indicating a symmetry-breaking dynamics. We also show
that at resonance a transition in the form of the stationary
modes from large amplitude to small amplitude modes is also
present.

Future work will consider studying the equivalent weakly
nonlinear theory for discrete modes and a more detailed study
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of the time-dependent problem, including in particular the
persistence of gap solitons for small γ and small nonresonant,
resonant, and near-resonant forcing.
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