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A promising platform for the emerging field of x-ray quantum optics consists of Mössbauer nuclei embedded in
thin-film cavities probed by near-resonant x-ray light, as used in a number of recent experiments. Here we develop
a quantum optical framework for the description of experimentally relevant settings involving nuclei embedded in
x-ray waveguides. We apply our formalism to two settings of current experimental interest based on the archetype
Mössbauer isotope 57Fe. For the present experimental conditions, we derive compact analytical expressions and
show that the alignment of medium magnetization, as well as incident and detection polarization, enable the
engineering of advanced quantum optical level schemes. The model encompasses nonlinear and quantum effects
which could become accessible in future experiments.
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I. INTRODUCTION

X-ray quantum optics is a promising emerging field at
the boundary of visible quantum optics and x-ray science
[1]. A particularly interesting platform for the exploration
of x-ray quantum optics are Mössbauer nuclei, which offer
a number of unique features. Among them are their narrow
resonances, which, on the one hand, enable the manipulation
and observation of nuclei in the time domain and, on the other
hand, offer interesting perspectives for precision spectroscopy.
Another feature is the abundance of cooperative effects, as
nuclei are commonly probed in large ensembles embedded in
solid-state targets. A recent experiment could also demonstrate
that nuclei can be operated essentially decoherence free [2].

Recently, a number of prominent quantum optical effects
could be observed with nuclei, such as the cooperative Lamb
shift [3], electromagnetically induced transparency [4], and
spontaneously generated coherences [2]. Similarly, control
of single x-ray photon wave forms and the generation of
short x-ray pulse trains could be demonstrated [5]. Also the
possibility to dynamically control the light-matter interaction
has already been achieved, e.g., by rapid switching of applied
magnetic fields [6] or by dynamic modifications of the sample
geometry [7]. Quantum mechanical aspects have been touched,
e.g., in first experiments on x-ray photon down-conversion
[8–10] and also in proposals to generate x-ray entanglement
[11]. Further, methods have been suggested to realize a nuclear
exciton laser [12], store and phase modulate photons [13], and
exploit cooperative nuclear dynamics to enhance detection of
narrow nuclear clock transitions [14].

These examples illustrate that Mössbauer and thus x-ray
science can profit from well-established ideas developed in
the visible frequency range. However, it is important to realize
that quantum optics as a whole can profit from the progress in
x-ray science equally well. None of the above recent examples
relied on a simple transfer of setups from the optical to the
x-ray frequency range. Instead, new ideas and techniques had
to be developed, which potentially could be ported back to the
optical frequency range.

While nuclei can, in principle, be driven directly with x-ray
light sources [15,16], a significant part of recent progress
in x-ray quantum optics with Mössbauer nuclei has been
enabled using nuclei embedded in thin-film cavities probed

in grazing incidence by hard x rays. The cavity is formed by
a stack of thin layers made from different materials, such that
differences in the refractive index lead to the formation of the
waveguide structure. Similar waveguides have been studied in
the context of light propagation and focusing of x rays [17,18],
and recently also x-ray waveguides based on photonic crystals
have been suggested [19]. For the theoretical description of
the optical properties of such cavities including Mössbauer
nuclei, a matrix formalism has been developed, which self-
consistently treats the scattering between the different layers
[20,21]. A numerical variant of this formalism is implemented
in the software package CONUSS [22] and is considered as a
benchmark for other theories, as it has proven to agree very
well with experimental data. In the particular case of thin
resonant layers of nuclei embedded in the waveguide, analytic
expressions for the cavity properties can be obtained. This
approach formed the basis for the interpretation of recently
observed quantum optical effects [2–4]. This invites further
study of more complex nuclear waveguide systems, which
prompts for more powerful theoretical descriptions.

Motivated by this, here we ab initio develop a quantum
optical framework for the modeling of large ensembles of
nuclei embedded in thin-film cavities and probed in grazing
incidence by hard x rays. We start with the derivation of a
master equation for the full ensemble of nuclei coupled to the
quantized cavity modes. We include all magnetic sublevels,
such that arbitrary alignments of the magnetization, as well
as the input and output polarization, can be analyzed. The
model includes nonlinear and quantum effects, which could
become accessible in future experiments. Motivated by the
present experimental state of the art, we then specialize to
the case of lossy cavities and linear response. This allows
us to derive analytic solutions by adiabatically eliminating
the cavity modes and by characterizing the large ensemble
of nuclei using few many-body quantum states. As a main
result, we find that the considered setup enables us to engineer
a wide range of few-level quantum optical systems in the
x-ray regime, with level structure tunable via the applied
magnetization and the light polarizations. The corresponding
master equation makes it possible to fully identify and interpret
all physical mechanisms contributing to the obtained results.
Finally, we focus on the most relevant case of 57Fe, and
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illustrate our framework by analyzing two settings of current
experimental interest. The first one is the simplest setting of a
single unmagnetized layer of nuclei placed in the center of an
x-ray cavity. Consistent with recent experimental results, our
analysis predicts cooperative Lamb shifts and superradiance.
Second, we consider a single layer including a magnetic
hyperfine splitting, such that the spectrum in general consists
of six transition lines. We find that our approach is analytically
equivalent to existing approaches in the respective limits.
However, it goes beyond the existing approaches by opening
perspectives for the engineering of advanced quantum optical
schemes in the hard x-ray regime. It enables the generalization
to cases in which the quantum nature of the x-ray light is of
relevance as, e.g., in quantum information theory. Moreover,
it can cover situations in which the light source delivers many
resonant photons per shot, such that nonlinear effects become
crucial, and offers full interpretation in terms of the involved
physical processes.

II. SETUP

A. Cavity

The system we investigate in this work is a thin-film cavity
probed by hard x rays as shown in Fig. 1 [21]. The thin
film typically consists of layers of different materials with
thicknesses of the order of a few nanometers. On one hand,
the probing incident light indicated by the field ain in Fig. 1
can be reflected from the layer structure, with outgoing light
indicated by photon operator aout. On the other hand, the
layer structure can be chosen in such a way that a cavity or
waveguide is formed for the probing light. This is achieved by
combining materials with low electron density (e.g., carbon)
in the center of the structure and materials with high electron
density (e.g., platinum or palladium) at outer layers which act
as mirrors. The electron density translates into the index of
refraction experienced by the probing x-ray light. The spatial
modulation of the index of refraction leads to reflection of

FIG. 1. (Color online) Schematic of the considered setup. The
cavity contains a layer of resonant nuclei, as indicated in the inset. It
is probed by hard x rays (red lines, ain) with propagation direction k̂.
The angle of incidence ϕ is of the order of a few mrad. The incident
polarization in the (â1,â2) plane (blue) together with the alignment of
the magnetization Bhf of the nuclei (green) sensitively determine the
properties of the scattered light. Both light reflected from the cavity
(aout) at output angle ϕ and light exiting the cavity on the front side
(bout) are considered.

FIG. 2. (Color online) (a) Electronic reflectivity curve of a
thin-film cavity, showing the reflectance as a function of the x-ray
incidence angle ϕ. The dips correspond to resonant excitations of
guided modes of the waveguide. The cavity consists of a 2.6-nm
Pt top layer, followed by 7.9 nm C, 1.5 nm 57Fe, 9.3 nm C, and
a thick bottom layer of Pt. (b) Field intensity distributions inside
the waveguide (without Fe layer for simplicity) for probing fields
resonant to the first three guided modes, respectively. The three panels
differ only in the incidence angle of the field and show a range of
1 mm in horizontal direction and of 50 nm in vertical direction. The
white horizontal lines indicate the layer boundaries, and above the
layer system, the standing wave formed by incident and reflected field
is visible.

the light at the boundaries, resulting in a waveguide. In this
case, the probing light in addition can evanescently couple into
waveguide modes and eventually exit the layer structure to the
side, as indicated by photon operator bout in Fig. 1. Note that
in contrast to the optical regime, in the x-ray regime the real
parts of the index of refraction are typically below one [21],
such that a low electron density in the center leads to guiding
of the light, together with total external reflection.

Because of the small index of refraction variations at
x-ray energies, the cavity is typically probed at grazing
incidence, with small incident angle ϕ with respect to the
cavity surface, as shown in Fig. 1. The reflectance and the
coupling into waveguide modes depend sensitively on this
angle, as illustrated in Fig. 2(a). The dips in this electronic
reflectivity curve arise if the angle ϕ leads to resonant coupling
of the probing light into a particular waveguide mode. The field
intensity distribution in the waveguide is illustrated in Fig. 2(b)
for the first three guided modes.

In an experiment, the light and its properties reflected from
the cavity (aout) or transmitted through the cavity (bout) can be
recorded. In general, both the energy and the time spectrum of
the outgoing light will strongly be modified by the interaction
with the cavity.

B. Nuclei

So far we have discussed only the properties of the
waveguide in terms of electronic scattering of the x rays from
the materials of the layer system. For the purpose of x-ray
quantum optics, in addition, layers of nuclei can be embedded
into the waveguide [2–4]. Such layers contain a large ensemble
of nuclei, which can coherently interact with the probing
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FIG. 3. The Mössbauer transition in 57Fe. In the presence of a
magnetic hyperfine field the two levels split up and six M1 transitions
can be driven.

x-ray light entering the waveguide. By carefully choosing the
position of the nuclei inside the layer structure, as well as
the resonantly driven mode of the waveguide [see Fig. 2(b)],
the interaction between nuclei and the light inside the cavity
can be controlled. In particular, different layers of nuclei can
interact in a different way with the same cavity mode [4].

In this work, we focus on the most frequently used
archetype Mössbauer isotope 57Fe illustrated in Fig. 3. This
isotope features a transition from the ground state to the first
excited state at ω0 = 14.4 keV with single-nucleus linewidth
γ = 4.7 neV (h̄ = 1 used here and in the following). In the
absence of magnetic fields, it acts as a two-level system. In the
presence of magnetic fields, the ground and excited states with
Ig = 1/2 and Ie = 3/2 split into multiplets shown in Fig. 3. In
general, six different transitions between ground and excited
states are possible. Note that the considered transition is a
magnetic dipole (M1) transition, such that the polarization
vectors to be defined later have to be identified with the
magnetic polarizations of the incoming and outgoing radiation,
respectively. We furthermore specialize to the case of a single
layer of nuclei, which we place at a maximum of the field
intensity distribution of the cavity, in order to maximize the
nucleus-field interaction.

It is the inclusion of resonant nuclei which qualifies the
considered system for applications in x-ray quantum optics.
Close to nuclear resonances, the properties of the combined
system of waveguide and nuclei lead to a strong polarization
and energy dependence of the scattered light.

III. THEORETICAL MODEL

A. Cavity

As pointed out in the previous part, the incident x-ray
beam can resonantly couple to waveguide modes inside the
cavity at particular values for the angle of incidence ϕ. It is
instructive to characterize the modes in terms of the resonant
cavity wave vector kC . First we note that the external x-ray
field with frequency ω and wave vector k can be divided into
components kz = |k| sin(ϕ) perpendicular and kx = |k| cos(ϕ)
parallel to the surface. In order to satisfy the continuity

relations of Maxwell’s equations at boundaries, the parallel
components kCx inside and kx outside the cavity must be
identical. In contrast, the perpendicular component kCz of
the mode is determined by parameters of the cavity such
as the thickness of the layers and the refractive indices and
the order of the guided mode [23,24]. This means the cavity
possesses resonances only in the direction perpendicular to
the surface, while the parallel components of total resonance
wave vector can be chosen freely. In this work we restrict the
discussion to only one guided mode and assume, without loss
of generality, that its resonance condition for kCz is fulfilled
if an x-ray beam with the resonance frequency of the 57Fe
transition ω0 = ck0 impinges on the layer surface under an
angle of incidence ϕ0. In this case, kCz = k0

z = k0 sin(ϕ0) and
kCx = k0

x , and we find that the cavity mode is resonantly driven.
If the angle of incidence is varied from ϕ0 to a general angle
ϕ, the perpendicular mode component kCz is still fixed by the
same resonance condition kCz = k0 sin(ϕ0) of the waveguide
mode, while kCx = |k| cos(ϕ) can vary freely with ϕ. In other
words, the mode of interest is not only characterized by cavity
parameters, but also by the incident beam. For the total wave
vector of the resonant cavity mode, this yields

|kC | =
√

|k|2 cos (ϕ)2 + k2
0 sin (ϕ0)2. (1)

We now continue with the derivation of the Hamiltonian for
this mode in the cavity and its driving due to the external field.
In a first step, we do not yet take into account any polarization
dependence. In the Schrödinger picture the Hamiltonian reads
[25]

H
(S)
M = ωCa†a + i

√
2κR(aine

−iωta† − a∗
ine

iωta). (2)

Here a (a†) is the photon annihilation (creation) operator for
the field in the cavity, ain characterizes the driving of the cavity
mode by the external classical x-ray field with frequency ω,
and ωC = c · |kC | is the mode resonance frequency. In a next
step we transform the system into an interaction picture to
eliminate the explicit time dependence in the Hamiltonian. We
apply the unitary transformation

|�(I )〉 = U †|�(S)〉, (3)

given by

U = exp(−iHT t), (4a)

HT = ω a†a, (4b)

and obtain the perturbation Hamiltonian in the interaction
picture,

H
(I )
M = U †H (S)

M U − HT = �Ca†a + i
√

2κR(aina
† − a∗

ina).

(5)

Here we introduced the cavity detuning �C = ωC − ω. For
a small angular deviation �ϕ = ϕ − ϕ0 from the resonant
incident angle ϕ0 and ω ≈ ω0 we find from Eq. (1)

�C =
√

ω2 cos (ϕ0 + �ϕ)2 + ω2
0 sin (ϕ0)2 − ω

≈ −ωϕ0�ϕ, (6)

such that the detuning is proportional to the incidence angle
and the frequency of the incident light.

Now we generalize this Hamiltonian to the case including
polarization. We denote the beam propagation direction as k̂,
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where the “hat” indicates a normalized unit vector. Since ϕ0 �
1, the direction of the incident, reflected, and transmitted beam
can be considered as equal, parallel to k̂. As a consequence,
their respective polarizations âin, âout, and b̂out are located in
the plane defined by the layer surface normal â1 and â2 =
â1 × k̂. Including both these polarizations as different modes
a1 and a2 in our calculation, the Hamiltonian in the interaction
picture becomes

HM = �Ca1
†a1 + �Ca2

†a2

+ i
√

2κR[(â∗
1 · âin) aina

†
1 − (â∗

in · â1) a∗
ina1]

+ i
√

2κR[(â∗
2 · âin) aina

†
2 − (â∗

in · â2) a∗
ina2]. (7)

Here, (â∗
i · âj ) are scalar products between two different

polarization unit vectors.
Next to the coherent dynamics described by Eq. (7),

also incoherent processes need to be considered. This is
particularly important as in typical experiments the cavity
has a relatively low Q factor [3]. It is important to note that
incoherent processes such as spontaneous emission evolve a
pure quantum mechanical state into an incoherent mixture
of states, which cannot be described using a wave function.
Therefore, we include incoherent processes using the master
equation approach [25,26] for the system’s density matrix ρ.
In this framework, the governing equation replacing the usual
Schrödinger equation is

d

dt
ρ = −i[H,ρ] + L[ρ], (8)

where the commutator part [·,·] characterizes the coherent
evolution by the Hamiltonian H , and the Lindblad operator
L[ρ] models incoherent processes. For arbitrary operators O+
and O−, a contribution to the latter can be defined as

L[ρ,O+,O−] = (O+O−ρ + ρO+O− − 2O−ρO+). (9)

With this definition, the photon loss out of modes a1 and a2

can be written as [27]

LM [ρ] = −κ L[ρ,a
†
1,a1] − κ L[ρ,a

†
2,a2]. (10)

Note that cavity loss in the present framework not only arises
due to incoherent scattering or absorption in the layer structure,
but also by outcoupling of the cavity field into the modes
characterizing reflectance and transmittance. The total rate κ

contains all of these loss processes. In the absence of nuclei,
L[ρ] = LM [ρ]. With nuclei embedded in the cavity, further
incoherent processes associated with the nuclei arise, which
we discuss in Sec. III D.

B. Input-output relations

In an experiment not the internal modes in the cavity, but
the reflected (aout) or transmitted beams (bout) are observed.
These output field operators can be calculated using the
input-output formalism [28]. Assuming polarization-sensitive
detection with detector polarization âout, they read

aout = −ain (â∗
out · âin) +

√
2κR[(â∗

out · â1) a1

+ (â∗
out · â2) a2], (11)

bout =
√

2κT[(â∗
out · â1) a1 + (â∗

out · â2) a2]. (12)

Note that the transmission bout only receives contributions
originating from the modes a1 and a2 inside the cavity, while
aout also contains the part of the incident light ain directly
reflected from the cavity. The coupling constant κR in Eq. (12)
is equal to the corresponding one in Eq. (7), as both describe the
coupling between the same internal and external modes. This
parameter can be controlled by changing, e.g., the thickness of
the topmost layer. Further, we note that κ � κR + κT, because
the cavity is not only damped by coupling into the outgoing
modes, but also by internal loss, as discussed below Eq. (10).
This condition is crucial for fulfilling the energy conservation.

C. Observables

To guide the further analysis, it is useful to consider possible
observables accessible in a typical experiment. These are
primarily the reflectance (scattering into aout in Fig. 1) and the
transmittance (scattering into bout in Fig. 1). With the output
field operators introduced in Sec. III B at hand, one can readily
calculate these observables as

R = 〈aout〉
ain

, (13)

T = 〈bout〉
ain

. (14)

Note that in current experiments, the reflected (transmitted)
intensity |R|2 (|T |2) is measured, since phase information
is often not accessible. By making use of an interferometric
setup, also phase information could be retrieved.

Another observable of interest which can easily be accessed
with the formalism developed here is the photon correlation
function

g(2)(τ ) = 〈a†
out(0)a†

out(τ )aout(τ )aout(0)〉
〈a†

outaout〉2
. (15)

It can be used to determine the photon statistics (at τ = 0) as
a function of any parameter or, if the operators are evaluated
at different times (τ �= 0), photon (anti-)bunching [25]. This
way, quantum properties of the scattered light can be accessed.
It should be noted that Eq. (15) characterizes temporal
correlations between individual photons along the propagation
direction of the scattered light, rather than spatial correlations
in a transverse cross section through the propagating beam.

In this work we focus on the reflectance |R|2 calculated
with Eq. (13) since it is of interest in current experiments.

D. Inclusion of the resonant nuclei

So far, we formulated the equations for an empty cavity.
Next, we include the resonant nuclei. In general, the nuclei
have a multilevel structure, as discussed in Sec. II B. However,
before we consider the general case with a magnetic hyperfine
splitting, let us first consider the simplest case of a single
two-level nucleus with ground state |g〉, excited state |e〉, and
transition energy ω0 = ωe − ωg and only one cavity mode a.
This amounts to omitting the polarization dependence in this
first step. In the Schrödinger picture the free time evolution
of the nucleus and its coupling to the cavity mode in rotating
wave approximation can be written as [25]

H
(S)
N = ωg|g〉〈g| + ωe|e〉〈e| + gS+a + g∗a†S−. (16)
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Here S+ = |e〉〈g| and S− = |g〉〈e| denote the nuclear raising
and lowering operators, respectively, and g is the coupling
constant between the mode a and the nucleus. Note that effects
beyond the rotating-wave-approximation could be included in
Eq. (16) by means of a unitary transformation as discussed
in [29,30], which would lead to corrections to the coupling
constant g and to the transition energy ωe − ωg . Since these
parameters are typically obtained by fitting the quantum optical
model to experimental or numerical data, these corrections are
assumed to be already included in the respective quantities. In
order to transform the Hamiltonian for both the nuclei and the
cavity modes into a time-independent interaction picture we
alter the transformation from Eq. (4b) to

HT = ω a†a + ωg |g〉〈g| + (ωg + ω)|e〉〈e|. (17)

This yields

H
(I )
N = −�|e〉〈e| + gS+a + g∗a†S−. (18)

Here we defined the detuning � = ω − ω0 as the energy
difference between the external x-ray field and the bare
transition energy of the nucleus.

Now we continue with the general case including a possible
magnetic hyperfine splitting caused by a field Bhf . When a
ferromagnetically ordered layer of α iron is placed in the
cavity, already a relatively weak external field can align a
strong internal magnetization of ≈33 T, resulting in a level
splitting of several linewidths γ . The energy differences
between two adjacent ground (excited) substates are denoted
by δg (δe) in the following. For B ≈ 33 T the values of δg and
δe are 39.7γ and 22.4γ , respectively [31].

Using a similar transformation as above, the free evolution
of N nuclei and their coupling to the cavity modes a1 and a2

is given by the Hamiltonian

HN =
N∑

n=1

H
(n)
0 + H

(n)
C1

+ H
(n)
C2

, (19)

with the diagonal part

H
(n)
0 =

2∑
j=1

δg

(
j − 3

2

) ∣∣g(n)
j

〉〈
g

(n)
j

∣∣

+
4∑

j=1

[
δe

(
j − 5

2

)
− �

] ∣∣e(n)
j

〉〈
e

(n)
j

∣∣. (20)

The coupling between the nth atom and the mode aj reads

H
(n)
Cj

=
6∑

μ=1

[
(d̂

∗
μ · âj ) g(n)

μ S
(n)
μ+aj + (â∗

j · d̂μ) g(n)
μ

∗
a
†
j S

(n)
μ−

]
,

(21)

where the sums run over the six possible transitions (see
Table I). The operator S

(n)
μ+ (S(n)

μ−) acts only on atom n and is
the raising (lowering) operator on transition μ. The normalized
dipole moment d̂μ of transition μ is defined with respect to
the quantization axis of the nuclei, i.e., the orientation of the
magnetic hyperfine field B̂. The coupling constant

g(n)
μ = g cμ ei kC·R(n)

(22)

TABLE I. Overview of the M1 allowed transitions in the 57Fe
nucleus with transition index μ. Shown are the involved states, the
transition energy �E relative to the energy at vanishing magnetization
ω0, the Clebsch-Gordan coefficient (CG) cμ, and the polarization type.
Linear polarization is denoted by π 0; right (left) circular polarization
is denoted by σ+ (σ−).

μ Transition �E CG Polarization

1 |g1〉 ↔ |e1〉 −δg/2 − 3/2δe 1 σ−

2 |g1〉 ↔ |e2〉 −δg/2 − 1/2δe

√
2/3 π 0

3 |g1〉 ↔ |e3〉 −δg/2 + 1/2δe

√
1/3 σ+

4 |g2〉 ↔ |e2〉 δg/2 − 1/2δe

√
1/3 σ−

5 |g2〉 ↔ |e3〉 δg/2 + 1/2δe

√
2/3 π 0

6 |g2〉 ↔ |e4〉 δg/2 + 3/2δe 1 σ+

consists of the coupling constant g, the Clebsch-Gordan
coefficient cμ of the transition, and a phase factor depending
on the position R(n) of the nucleus.

Another contribution which has to be included in the
description of the nuclei is spontaneous emission. It can
take place on each of the six transitions μ, weighted with
their respective Clebsch-Gordan coefficients c2

μ. Spontaneous
emission is described with the Lindblad operator [25,26],

LSE[ρ] =
N∑

n=1

L(n)
SE[ρ], (23a)

L(n)
SE[ρ] = −γ

2

6∑
μ=1

c2
μ L

[
ρ,S

(n)
μ+,S

(n)
μ−

]
, (23b)

where L[ρ, · ,·] is defined in Eq. (9). Note that the expressions
in Eqs. (23) characterize the total linewidth of single nuclei.
Therefore, the rate of spontaneous emission γ is taken as the
natural linewidth of the 57Fe nucleus, even though part of
this linewidth arises from internal conversion rather than from
radiative decay.

E. The full model

The full master equation including the equations of motion
of the nuclei as well as for the photonic modes is

d

dt
ρ = −i[HM + HN,ρ] + LM [ρ] + LSE[ρ]. (24)

With this equation it is, in principle, possible to perform
calculations for arbitrary settings. However, the size of
the system’s Hilbert space a priori is infinite, because in
general arbitrary occupation numbers of the photon modes
are possible. Restricting the maximum number of photons
per mode considered in the calculation to nph, the Hilbert
space still scales as 6N (nph + 1)2, with N being the number
of nuclei in the cavity, which is impractically large to be
solved efficiently even for relatively small nph. Here we
therefore use a different ansatz to overcome the obstacle of
the fast-growing Hilbert space, which in addition provides
more insight in the underlying physics as even analytic
predictions can be made. To this end we apply two physically
motivated approximations. First, we make use of the fact that
for typical parameters, the dissipative dynamics dominates the
cavity evolution, such that the occupation number of the photon
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modes in the cavity remains small. Then, these photonic
modes can be adiabatically eliminated to obtain effective
equations of motion for the nuclei only, as explained in detail in
Sec. IV A. Second, in the case of a weak probe field, i.e., in
linear response, the system of N nuclei can be transformed into
a new basis where only few excited states are coupled to the
ground state. As shown in Secs. V A and V B, relatively simple
analytic expressions can be found for the reflection coefficient
in this case.

IV. EFFECTIVE MASTER EQUATION

A. Adiabatic elimination of the cavity modes

The thin-film cavities which are used in typical experiments
have a low quality factor Q [3], which corresponds to a large
decay constant κ [see Eq. (10)] in our model. As κ is much
larger than the atom-field coupling strength g, the dynamics
of the modes a1 and a2 is mainly governed by fast dissipation,
which is known as bad cavity regime [32]. This allows us to
adiabatically eliminate the modes. For this, we approximate
d
dt

aj = 0. Starting with the Heisenberg equation of motion for
the operator aj ,

d

dt
aj = i[HM + HN,aj ] − κaj , (25)

we arrive at

aj =
√

2κRain(â∗
j · âin) − i

∑
n,μ(â∗

j · d̂μ)g(n)
μ

∗
S

(n)
μ−

κ + i�C
. (26)

Before we continue with the effective equations for the nuclei,
let us consider the reflection coefficient as defined in Eq. (13).
Inserting the expressions Eq. (26) for aj yields

R = 〈aout〉
ain

=
(

2κR

κ + i�C
− 1

)
â∗

out · âin

− i

ain

√
2κR

κ + i�C

∑
n,μ

(â∗
out ·1⊥· d̂μ)g(n)

μ

∗〈
S

(n)
μ−

〉
. (27)

Here, we defined 1⊥ = â1 â∗
1 + â2 â∗

2 = 1 − k̂k̂
∗
. Note that this

expression contains outer products rather than inner (scalar)
products. We see that the reflection coefficient consists of two
contributions. Consistent with the matrix formalism [21] we
can identify the first term in Eq. (27) with the electronic
scattering contribution, which is isotropic. A particularly
interesting case arises if the cavity is operated exactly in
resonance with the guided mode, i.e., �C = 0. If in addition
κ = 2κR is fulfilled, then the reflection originating from the
cavity vanishes completely. The latter condition is known as
the critical coupling condition [27]. If the total cavity decay
rate is not matched to the in- and outcoupling of light from
the cavity, then the over- or undercritically coupled regime
is realized, in which the reflected light is not completely
canceled on resonance. Experimentally, the coupling regime
can be controlled, e.g., via the thickness of the topmost layer
of the waveguide. The second term in Eq. (27) describes
the contribution to the reflection which is due to the nuclei.
This contribution is not isotropic or polarization-preserving
in general, and can contribute even if the polarizations of the
incident beam and the detected radiation are orthogonal to
each other.

We now continue with the adiabatic elimination of the
cavity modes. Having established expressions for the field
operators aj and a

†
j , they can be inserted into the master

equation (24) to obtain the effective equations of motion for the
nuclei. For the coherent dynamics, we obtain the Hamiltonian

Heff =
N∑

n=1

(
H

(n)
0 + H

(n)
�

) +
N∑

n,m=1

H
(n,m)
LS , (28)

with free evolution H
(n)
0 as defined in Eq. (20) and the new

terms

H
(n)
� = �

∑
μ

(d̂
∗
μ ·1⊥· âin)g(n)

μ S
(n)
μ+

+�∗ ∑
μ

(â∗
in ·1⊥· d̂μ)g(n)

μ

∗
S

(n)
μ−, (29)

H
(n,m)
LS = δLS

∑
μ,ν

(d̂
∗
μ ·1⊥· d̂ν)g(n)

μ g(m)
ν

∗
S

(n)
μ+S

(m)
ν− , (30)

arising from the adiabatic elimination procedure with
parameters

� =
√

2κRain

κ + i�C
, (31)

δLS = − �C

κ2 + �2
C

. (32)

The Hamiltonian H
(n)
� describes an effective coupling between

ground and excited states for each atom n. As expected, the
transition dipole moments are not coupled to the polarization of
the external beam by a direct product, but the direction vectors
are mediated via the tensor 1⊥ which reflects the intermediate
light propagation in the two eliminated modes. To analyze the
effect of H

(n,m)
LS we first consider the special case n = m and

μ = ν, i.e., operators for the same transition in the same atom.
It can be seen that in this case, the product S

(n)
μ+S

(m)
ν− reduces

to an operator of the form |e〉〈e| for atom n = m. Therefore,
this term in the Hamiltonian is an energy shift, which can be
interpreted as an additional ac-Stark or Lamb shift emerging
from the coupling of the atom to the two modes in the
cavity. The terms with n �= m involving the same transition
in different atoms are known as dipole-dipole interactions
[26,33] and lead to a collective Lamb shift [34]. In the cases
μ �= ν, a coherent coupling between two different transitions
emerges [26,33,35].

Apart from these Hamiltonian contributions, the adiabatic
elimination also gives rise to incoherent dynamics beyond
spontaneous emission as characterized by Eqs. (23). The total
Lindblad operator is found as

Leff[ρ] = LSE[ρ] + Lcav[ρ], (33)

with the new term

Lcav[ρ] = −ζS

N∑
n,m=1

6∑
μ,ν=1

(d̂
∗
μ ·1⊥· d̂ν) g(n)

μ g(m)
ν

∗

×L
[
ρ,S

(n)
μ+,S

(m)
ν−

]
, (34)

and

ζS = κ

κ2 + �2
C

. (35)
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The contributions with n = m and μ = ν in Eq. (33) have
the same form as those characterizing spontaneous emission.
As we find in Sec. V A, they lead to superradiance, i.e., an
acceleration of the incoherent decay [3]. The terms with n =
m and μ �= ν are so-called cross-decay terms [33] and give
rise to an incoherent coupling between different transitions.
Interestingly, these terms can lead to coherences [26]. This is
discussed in more detail in Sec. V B.

In both the coherent and the incoherent additions arising
from the adiabatic elimination, the dipole moments are not
coupled via the usual free space scalar product d̂

∗
μ · d̂ν , but

by the form d̂
∗
μ · 1⊥ · d̂ν . We emphasize that this generally

permits nonvanishing couplings between orthogonal states,
which is fundamentally different from the situation in free
space [36,37]. This fact can be exploited to engineer a variety of
different quantum optical level schemes as shown in Sec. V B.

B. Linear response

Current experiments employing the 14.4-keV resonance
line in 57Fe in thin-film cavities are mostly performed
at modern synchrotron light sources. However, the photon
occupation of the modes resonant with the narrow linewidth of
57Fe usually is low, such that each synchrotron pulse typically
provides, on average, less than one resonant photon. Thus, the
driving field ain can be considered weak, which together with
the moderate nucleus-cavity coupling justifies a calculation
of the reflectance in linear response. Of course, this ansatz
has to be revisited if future experiments are performed at a
seeded x-ray free electron laser or x-ray free electron laser
oscillator [38,39] with thousands of resonant photons per
pulse, or if better cavities could be designed.

Let us assume that the nuclei are initially in the collective
ground state,

|G〉 = ∣∣g(1)
1

〉
. . .

∣∣g(N1)
1

〉
︸ ︷︷ ︸

N1

∣∣g(N1+1)
2

〉
. . .

∣∣g(N)
2

〉
︸ ︷︷ ︸

N2

, (36)

where |g1〉 and |g2〉 denote the two magnetic sublevels of the
ground state, and Ni is the number of nuclei in ground state |gi〉
(i ∈ {1,2}). Note that N1 + N2 = N , and at room temperature
and in thermal equilibrium also N1 = N2, since the Boltzmann
factor exp (−δg/kBT ) is approximately one. Nevertheless, for
now we consider the general case and keep N1 and N2 variable.
Further, we assume that, due to the weak probe beam, only one
atom can be excited at a time and omit higher excited states. In
addition, we neglect other collective ground states as the nuclei
will not be redistributed due to the application of a weak probe
field. We define the singly excited states∣∣E(n)

μe

〉 = S
(n)
μ+|G〉 = ∣∣g(1)

1

〉 · · · ∣∣e(n)
μe

〉 · · · ∣∣g(N)
2

〉
, (37)

in which the nth atom has been excited on transition μ. Further,
we define the timed Dicke state [31,34]

|E(+)
μ 〉 = 1√

Nμg

Nμg∑
n

ei kC ·R(n) ∣∣E(n)
μe

〉
, (38)

which characterizes the coherent superposition of all possible
excitations of the nuclei after absorption of a photon on
transition μ, where μg (μe) denote the state index of the ground

(excited) state of the transition. Note that atoms in ground state
|gn〉 can only be excited along the transition μ if their initial
ground-state match, i.e., |gn〉 = |gμg

〉; otherwise, S(n)
μ+|G〉 = 0.

With these definitions Eqs. (29), (30), (34) in the subspace of
�1 excitations, simplify to

H� = �g
∑

μ

(d̂
∗
μ ·1⊥· âin)cμ

√
Nμg

|E(+)
μ 〉〈G| + H.c., (39)

HLS = δLS|g|2
∑
μ,ν

(d̂
∗
μ ·1⊥· d̂ν)

× cμcν

√
Nμg

Nνg
|E(+)

μ 〉〈E(+)
ν |, (40)

Lcav[ρ] = −ζS|g|2
∑
μ,ν

(d̂
∗
μ ·1⊥· d̂ν)cμcν

√
Nμg

Nνg

×L[ρ,|E(+)
μ 〉〈G|,|G〉〈E(+)

ν |]. (41)

In this form only one ground and a maximum of six (collective)
excited states are present. This reduced basis allows for a
considerable simplification of the analytical calculations since
also the reflection coefficient can be written in the reduced
basis as

R =
(

2κR

κ + i�C
− 1

)
â∗

out · âin − i

ain

√
2κR

κ + i�C
g∗

×
∑

μ

(â∗
out ·1⊥· d̂μ)cμ

√
Nμg

〈E(+)
μ |ρ|G〉. (42)

This is a remarkable result, since the complicated system of
N interacting nuclei and two cavity modes is now reduced to
an effective single-particle problem without loss of generality
within the applied approximations well justified at current
experimental conditions.

At this point we can compare our results to the previously
introduced matrix formalism [21]. In the latter formalism,
scattering amplitudes for two transitions coupling to linearly
polarized light and four transitions coupling to circularly
polarized light enter. Also within our framework, we naturally
obtain these six transitions. This analogy is expected, since
both the matrix formalism and the special case constructed in
this section are linear in the probing field. Another analogy
exists in the couplings between the different transitions. As
they are mediated via the tensor 1⊥, it is easy to see that for
(anti-) parallel or orthogonal orientation of Bhf with respect to
k̂, the excited states split into distinct subsets which are not mu-
tually coupled. This corresponds to the situation in which the
scattering matrix in the matrix formalism decomposes as it can
be written as a direct product of two eigenpolarizations [2,21].

To calculate the reflection coefficient in linear response
we employ the following method. We set 〈G|ρ|G〉 = 1, as
population redistributions only occur in second order of the
probe field. Next, we consider the coherences 〈E(+)

μ |ρ|G〉
which are directly coupled to the ground state via H�. These
off-diagonal density matrix elements are the only ones which
are nonvanishing in first order in the probing x-ray field �.
Their steady state is obtained from the equations of motion
by the condition 〈E(+)

μ | d
dt

ρ|G〉 = 0. The corresponding set of
linear equations can be solved easily. Finally, the obtained
steady state is inserted into Eq. (42) to obtain the desired
reflectance in linear response.
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V. APPLICATION TO PARTICULAR EXPERIMENTAL
SETTINGS

In this section, we apply the general formalism to two
particular experimental setups studied recently in order to
demonstrate its capabilities and consistency with previous
formalisms.

A. Unmagnetized 57Fe layer

In a first step, we apply our formalism to the simplest case
without hyperfine splitting; i.e., Bhf = 0 and therefore δg =
δe = 0. In this case the result will be independent of the choice
of the quantization axis. For simplicity we set π̂0 ‖ âin such
that only the linear polarized transitions μ = 2 (|g1〉 ↔ |e2〉)
and μ = 5 (|g2〉 ↔ |e3〉) are driven; see Table I. We introduce
the state

|+〉 =
√

N1

N
|E(+)

2 〉 +
√

N2

N
|E(+)

5 〉, (43)

and obtain

H� =
√

2

3
N�g|+〉〈G| + H.c., (44a)

HLS = 2

3
NδLS|g|2|+〉〈+|, (44b)

Lcav[ρ] = −2

3
NζS|g|2 L[ρ,|+〉〈G|,|G〉〈+|]. (44c)

Thus, we have transformed our system to an effective two-level
system which consists only of one ground state |G〉 and one
excited state |+〉. In the same way, the sum in Eq. (42) reduces

to (â∗
out · âin)

√
2
3N〈+|ρ|G〉. Consequently, only the coherence

〈+|ρ|G〉 has to be calculated. The equation of motion is

〈+|ρ̇|G〉 = −i

√
2

3
N�g + i

[
� + i

γ

2
+ 2

3
N |g|2(iζS − δLS)

]

×〈+|ρ|G〉, (45)

where we used the populations in linear response 〈G|ρ|G〉 = 1
and 〈+|ρ|+〉 = 0. Since 〈+|ρ|G〉 is not coupled to any other
density matrix elements in Eq. (45), its steady state can be
readily obtained from solving the single equation 〈+|ρ̇|G〉 = 0
for the coherence 〈+|ρ|G〉. The reflection coefficient given by
Eq. (42) evaluates to

R =
(

2κR

κ + i�C
− 1

)
â∗

out · âin

− i

ain

√
2κR

κ + i�C

(â∗
out · âin) 2

3 |g|2N�

� + i
γ

2 + 2
3 |g|2N (iζS − δLS)

. (46)

As a cross-check we verified that this result is also obtained
when choosing a different quantization axis, such that other
transitions couple to the incident light. The result, however,
in general does depend on the condition N1 = N2 of equal
ground-state population, as otherwise the different transitions
have different probabilities according to the ratio of N1 and
N2. The polarization dependence â∗

out · âin is independent of
the layer system and solely determined by the incident and
the detection polarization. This is the expected result, as no

direction in space is distinguished in the layer system without
magnetic quantization axis.

In order to interpret the spectrum of the reflectance, we first
recall that the first addend obtained in Eq. (46) represents
the electronic scattering contribution from the waveguide,
while the second addend arises from the nuclei. Defining the
parameters

�LS = 2
3δLS|g|2N, (47a)

γS = 4
3ζS|g|2N, (47b)

the nuclear part of the reflection coefficient can be rewritten as

Rnuclei ∼ 1

� − �LS + i
2 (γ + γS)

. (48)

This shape is a Lorentzian which describes the response of
an effective two-level system with transition frequency shifted
by �LS and spontaneous emission enhanced by γS. Consistent
with our theoretical modeling, the two levels correspond to
the collective ground and the collective excited state of the
nuclear ensemble. Note that even though g is very small, the
parameters �LS and γS will generally be of importance due to
the large number of nuclei N � 1.

The adiabatic elimination of the cavity modes revealed
couplings between the nuclei mediated by the cavity, such
that collective effects emerge. The spontaneous emission
enhancement γS is the well-known superradiance, and the
energy shift �LS is a collective Lamb shift, both experimentally
observed in [3]. We see that both quantities contain contribu-
tions depending on cavity parameters (δLS, ζS). These can be
related to the Purcell effect [40], which is the enhancement of
spontaneous emission due to the cavity environment. The other
contributions describe the cooperative behavior, as evidenced
by the scaling with N .

At this point it is instructive to discuss the actual values of
the cavity parameters κ , κR, �C and the coupling coefficient g.
From the structure of Eq. (46) for the reflection coefficient, we
note that the final result will be invariant under a rescaling ξ

of the parameters κ , κR, �C, and N |g|2. Using numerical data
calculated by CONUSS [22] for the cavity considered in Fig. 2
as a reference, we find that, consistent with our expectations
from Eq. (6), �C depends on the actual angle of incidence
ϕ in the vicinity of the first-order guided mode fulfilling
the relation �C = δC�ϕ, while all other parameters remain
constant. In particular, we find the values (in units of γ ) κ =
45ξ , κR = 25ξ , δC = −0.5ξ/μrad, and

√
N |g| = √

1400ξ .
By comparison of �C = δC�ϕ with Eq. (6), the actual value
for the scaling factor can be determined as ξ ≈ 18 000. Note
that this also justifies the adiabatic elimination in Sec. IV A
since using the obtained parameters, we find κ � √

N |g|.
The reflectance |R|2 calculated from Eq. (46) is shown in

Fig. 4. Note that the data shown in Fig. 4 do not contain
any free scaling parameter, as the reflectance calculated from
Eq. (46) automatically yields the experimentally accessible
values in the range between 0 and 1. In the top panel
we qualitatively recover the shape of a typical electronic
reflectivity curve across a single cavity resonance. To this
end, we chose ϕ0 = 2.96 mrad, which is also the angle of
the first guided mode in Fig. 2. In addition, we set the
detuning � = 103γ such that the nuclear part of the reflection
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FIG. 4. Reflectance of the cavity containing an unmagnetized
57Fe layer. The top panel shows |R|2 as a function of the grazing
incidence angle ϕ. The nuclear part is strongly detuned such that
only the electronic reflectivity curve is visible. Parameters are as in
the main text and ϕ0 = 2.96 mrad. The dashed line corresponds to
the reflectivity curve from Fig. 2 calculated by CONUSS. The bottom
left panel shows the reflectance for fixed ϕ = ϕ0. The narrow nuclear
resonance is located in the center of the broad cavity resonance,
where it appears as a sharp spike. The bottom right panel shows a
magnification of the bottom left panel around the nuclear resonance.
The nuclear spectrum is a Lorentzian which is significantly broadened
due to superradiance.

is strongly suppressed and only the electronic part contributes.
As a reference, we also show corresponding numerical results
obtained with CONUSS. It is clearly visible that in the vicinity
of the first guided mode our theory matches the numerical
data calculated with CONUSS very well. Since we included
only one guided mode in our calculation, only one minimum
in the reflectivity curve is obtained instead of multiple dips in
the CONUSS data. Also, an overall envelope of the reflection,
which in reality drops to smaller values for angles larger
than the critical angle of total reflection, is not included in
the theory, but visible in the CONUSS data. We emphasize
that in our theory the width of the guided mode depends
on the order of the scaling parameter ξ . However, since ξ was
derived independently using Eq. (6), the proper width and the
agreement with the numerical data serves also as a consistency
check for our theory.

We now turn to the spectrum |R(�)|2 at the cavity
resonance, i.e., ϕ = ϕ0. We find that a variation of the detuning
� = ω − ω0 also affects the cavity detuning �C, since it
depends on both ω and ω0 explicitly [see Eq. (6)]. Therefore,
we rewrite �C as a function of � and other constant parameters
and show the results in the bottom panel of Fig. 4. In the
bottom left panel we observe that the guided mode formed
by the cavity affects the spectrum over a very large detuning
range. Only in the center we observe the effect of the embedded

nuclei, where the typical Lorentzian line shape of the nuclear
resonance is found. A magnification of this nuclear response is
shown in the bottom right panel. As expected from the theoret-
ical predictions, in contrast to the resonance curve of a single
57Fe nucleus in free space, it is significantly broadened due to
superradiance and the Purcell effect captured in γS. We con-
clude from our analysis that if one is only interested in spectral
ranges several 10γ around the nuclear resonance, it is safe to
assume that �C is independent of �. The reason is that for any
given angle ϕ, the cavity forms a nearly perfect flat background
over the range of the nuclear response, as seen from Fig. 4.

B. Magnetized 57Fe layer

Next, we include the magnetic hyperfine splitting in our
analysis. In contrast to the calculation in the last section,
then the six collective excited states |E(+)

μ 〉 are no longer
degenerate and thus multiple resonances in the spectrum of the
reflectance are expected. Furthermore, since the magnetization
distinguishes one direction in space, the rotational invariance
observed in the results for the unmagnetized layer will break
down. If the transitions were independent from each other,
the nuclear part of the reflection coefficient would be the
sum of the respective Lorentz curves. However, this is not
the case here as the transitions are mutually coupled via HLS

and Lcav[ρ]. These couplings depend on the orientation of
B̂hf . Moreover, the incidence and detection polarizations âin

and âout influence the obtained spectra in a nontrivial way.
Therefore, we expect significant deviations in the spectra from
a naive sum of Lorentzians and a strong dependence on the
relative orientation of the axes B̂hf , âin, and âout. Both of these
expectations were recently confirmed experimentally [2].

Effective level schemes for different choices of the po-
larization and magnetization alignment are shown in Fig. 5.
The number of excited states and, equally important, their
respective couplings induced by the cavity modes are modified
considerably. This indicates that a vast range of different quan-
tum optical level schemes can be engineered in a single sample,
only by suitably choosing the different polarization and mag-
netization axes. Accordingly, also the reflectances differ from
each other, as can be seen in the right panel of Fig. 5. The most
prominent features are the peaks at the respective resonance
energies of the different transitions, indicating the multilevel
structure of the level schemes. However, in addition, also
repeatedly occurring minima are found in all spectra. As shown
in [2], these minima are caused by the presence of so-called
spontaneously generated coherences [26,33,35], which lead to
vanishing spectral response due to destructive interference.

To understand the origin of the spectra in more detail,
we consider the simplest case of B̂hf ‖ âin ‖ âout shown
in Fig. 5(a). Here, only the linearly polarized transitions
are driven. For simplicity we use N1 = N2 = N/2 in the
following. Similar to the analysis in the last section we
introduce states

|+〉 = 1√
2

(|E(+)
5 〉 + |E(+)

2 〉), (49a)

|−〉 = 1√
2

(|E(+)
5 〉 − |E(+)

2 〉). (49b)
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FIG. 5. (Color online) Engineering of nuclear level schemes.
Depending on the choice of the input polarization and the nuclear
magnetization axes, different level schemes are obtained. The four
rows show the cases (a) âin ‖ âout ‖ B̂hf ; (b) âin ‖ âout ⊥ B̂hf ; (c) âin ‖
â1− â2, âout ‖ â1+ â2, B̂hf ‖ â2; and (d) âin ‖ â1, âout ‖ â2, B̂hf ‖ â2+ k̂.
The left column shows the obtained level scheme, and the right
column shows the corresponding reflectance. The excited states |E(+)

μ 〉
are mutually coupled due to HLS and Lcav (red wavy arrows) and
coherently probed by H� (blue). Spontaneous decay channels and
Lamb shifts are not shown in the level diagram for clarity. The
two geometries in (c),(d) correspond to situations considered in [2],
where only the nuclear part of R contributes. The vertical lines in
the reflectance plots indicate the resonance frequencies of the six
transitions. Other parameters are as in Fig. 4.

The Hamiltonian written in this basis is found from our
general theory as

H = −�(|+〉〈+| + |−〉〈−|) + 1

2
(δg + δe)(|+〉〈−| + |−〉〈+|)

+
(√

2

3
N�g|+〉〈G| + H.c.

)
+ 2

3
NδLS|g|2|+〉〈+|.

(50)

This form reveals that only the fully symmetric state |+〉
of all allowed singly excited states is driven by the applied
probe field. However, in contrast to the case without magnetic

FIG. 6. (Color online) The effective level system obtained if the
linearly polarized transitions are driven by the probing field in the
presence of a magnetic splitting. Collective Lamb shifts are not
considered in the figure for clarity. (a) The collective ground state
|G〉 is coherently coupled to the two possible excited states (solid
blue arrows). Both states decay superradiantly (singly headed red
wavy arrows) and are coupled via cross-decay terms (double-headed
wavy arrow). (b) After a basis transition, only the symmetric state |+〉
is probed by the incident field. It is coupled to the antisymmetric state
|−〉, which is metastable on the superradiantly accelerated decay time
scale of |+〉 since it decays at the single-nucleus incoherent decay
rate.

field, the symmetric state |+〉 is coupled to a different state
|−〉 in the presence of the magnetic field splitting, such that
now a system of two linear equations needs to be solved.
For the full treatment one has to consider the decay of the
two involved excited states in addition. It turns out that the
density matrix element 〈+|ρ|G〉 decays exponentially due to
spontaneous emission and enhanced by superradiance with
rate 1

2γ + 2
3NζS|g|2, while 〈−|ρ|G〉 decays only with γ /2.

Since the superradiant decay is much faster than intrinsic
spontaneous emission, |−〉 is metastable on the evolution time
scale of |+〉. The origin of the suppression of the decay lies in
the special form of the incoherent dynamics in Eq. (41). Due to
the presence of the cross-decay terms (the parts with μ �= ν),
not the bare excited states |E(+)

2 〉 and |E(+)
5 〉 but the (anti-)

symmetrized states |+〉 and |−〉 are the radiative eigenstates
with respect to the total decay. Hence, the cross-decay terms
naturally induce a coherence between the excited states which
is known as spontaneously generated coherence.

The full level scheme for this particular orientation of
polarizations and magnetization is shown in more detail in
Fig. 6. The complexity of the large ensemble of nuclei readily
visible in the single-nucleus basis |E(n)

μe
〉 is entirely hidden

in the description with |+〉 and |−〉. In the latter basis, the
nuclear ensemble can be identified with a typical V or �

level scheme, as required for electromagnetically induced
transparency (EIT) [4,41,42]. Therefore, it is clear that we
rediscover the well-known transparency dip from EIT also in
the reflectance of our system.

The deep interference minima in other geometric real-
izations can be understood in a similar way. The resulting
analytic expressions for the nuclear part of the reflection
coefficient are in perfect agreement with the prediction of the
matrix formalism [21] and a previously used quantum optical
description [2]. Both these formalisms, however, have the
disadvantage that analytic expressions for the reflectance could
not readily be calculated for the cases where the quantization
axis B̂hf and the beam propagation direction k̂ are either
parallel or perpendicular. In other situations, such as the one
shown in Fig. 5(d), a numerical study had to be performed.
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Furthermore, the different physical processes contributing to
the obtained spectrum cannot be distinguished. In contrast,
our approach renders analytic calculations for general choices
of the axes possible and agrees with the previous numerical
results. In the general case all six excited states |E(+)

μ 〉 need
to be considered and thus a system of six equations has to be
solved to obtain any observable in linear response. From the
master equation, each physical process contributing to the final
response can easily be identified and quantified.

VI. SUMMARY AND DISCUSSION

We presented a quantum optical framework for thin-film
cavities containing layers of resonant nuclei, probed by hard
x rays in grazing incidence. This setting has recently been
used in several experiments exploring the foundations of x-ray
quantum optics. Compared to previously existing frameworks,
our approach allows for a full interpretation of all physical
processes contributing to the observed signals, on the basis of
a full understanding of the involved states and their mutual
couplings from a microscopic point of view. In particular,
we focused on the archetype Mössbauer isotope 57Fe, which is
presently also in the focus of interest in current experiments. To
overcome the difficulty of the large Hilbert space in the initial
formulation of our theory, two well-justified approximations
were made. First, we adiabatically eliminated the cavity modes
to obtain effective equations of motion for the nuclei. While
there is no direct interaction among the nuclei initially, this
procedure gives rise to mutual couplings in the equations.
This way, an intuitive understanding of the relevant physical
processes contributing to the coupling of the nuclei and thus to
cooperative phenomena can be gained. In particular, we found
that the cavity leads to an enhanced decay rate and energy
shifts due to cooperativity and the Purcell effect. The second
approximation was to consider the system only in first order
of the driving field, which is sufficient to describe current
experiments. Here, we found that cavity and the collective
behavior of the nuclei can be described by one ground state
and up to only six collective excited states in the presence
of a magnetic hyperfine splitting. It is important to note that
these states are of excitonic nature; i.e., they are coherent
superpositions of possible excitations to any of the nuclei in
the whole nuclear ensemble. We note that it is the design of
the cavity and the resulting geometrical arrangement of the
nuclei in the cavity which enable the description in terms of
collective states rather than individual atoms.

We then applied the formalism to particular settings of
current experimental interest and focused on the calculation

of the x-ray reflectance. In the respective limits, we found
excellent agreement with the previous models, as well as
to numerical calculations using CONUSS. In the case of a
plain cavity, we could recover the collective Lamb shift and,
fundamentally linked, superradiant enhancement of sponta-
neous emission. These effects have been observed already in
the considered cavity [3], as well as in the visible regime
[43]. A more involved setting was studied by introducing a
magnetic hyperfine splitting in the 57Fe nuclei. We found that
a large set of level schemes can be engineered and controlled
by suitable choices of the magnetization and polarization
axes. This opens perspectives for the realization of advanced
quantum optical level schemes with nuclei. In addition, we
showed that interatomic interaction effects strongly modify the
spectrum of the reflected signal, mainly due to the presence
of vacuum-induced coherences, as observed in [2]. Within our
framework, we could show that the resulting level scheme
is analytically equivalent to the archetype EIT setup [41].
However, in contrast to the usual EIT setting involving a
coupling and a probe field, in our setting, only a probe field,
but no externally applied coupling field is used. Rather, it
is the effect of spontaneously generated coherences and the
splitting of the upper levels that effectively take this role [42].
Furthermore, cooperative effects are required to render one
of the obtained excited states metastable on the time scale of
the accelerated decay dynamics of the other states, in order to
achieve EIT.

In this work we mainly applied our formalism to situations
studied in synchrotron experiments, where the linear response
approximation is valid. However, it is not limited to the
linear regime and can, in principle, be applied to describe
future experiments with much higher probe intensity studying
nonlinear effects, e.g., performed at seeded x-ray free electron
lasers or x-ray free electron laser oscillators [38,44]. Since,
in contrast to previous approaches, we used a quantized
field description, the accessible observables also cover more
involved ones such as photon correlation functions. The model
is suitable for any resonant nucleus with arbitrary hyperfine
level structure. One could also easily extend it to multiple
guided modes by including more cavity modes characterized
by a certain wave number. Therefore, our formalism provides
a promising platform for the further exploration of x-ray
quantum optics with nuclei embedded in thin-film waveguides.
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KILIAN P. HEEG AND JÖRG EVERS PHYSICAL REVIEW A 88, 043828 (2013)

[5] F. Vagizov, V. Antonov, Y. Radeonychev, R. N. Shakhmuratov,
and O. Kocharovskaya, arXiv:1309.2814.

[6] Y. V. Shvydko, T. Hertrich, U. van Bürck, E. Gerdau, O. Leupold,
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