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Equivalence between an optomechanical system and a Kerr medium
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We study the optical bistability of an optomechanical system in which the position of a mechanical oscillator
modulates the cavity frequency. The steady-state mean-field equation of the optical mode is identical to the one
for a Kerr medium, and thus we expect it to have the same characteristic behavior with a lower, a middle, and an
upper branch. However, the presence of position fluctuations of the mechanical resonator leads to a new feature:
the upper branch will become unstable at sufficiently strong driving in certain parameter regimes. We identify the
appropriate parameter regime for the upper branch to be stable, and we confirm, by numerical investigation of
the quantum steady state, that the mechanical mode indeed acts as a Kerr nonlinearity for the optical mode in the
low-temperature limit. This equivalence of the optomechanical system and the Kerr medium will be important
for future applications of cavity optomechanics in quantum nonlinear optics and quantum information science.
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I. INTRODUCTION

Photons are ideal carriers of quantum information [1].
They can propagate large distances in optical fibers before
being absorbed, and their polarization has been used for quan-
tum communication and quantum information applications.
However, photons barely interact, and thus it is difficult to
implement the quantum two-qubit gates needed for universal
quantum computation [2]. This situation changes in an optical
medium where the photons can inherit an effective interaction,
often modeled as a Kerr nonlinearity. This is why so-called
Kerr media are important for quantum technology based on
photons [3–6].

Recently, it was suggested that optomechanical systems
[7] operated in the single-photon strong-coupling regime
[8,9] offer strong effective photon-photon interactions. In
optomechanical systems the position of a mechanical oscillator
modulates the properties and (most commonly) the frequency
of the optical cavity mode. The radiation pressure interaction
is intrinsically nonlinear. It induces many interesting effects
and enables many applications, e.g., sideband cooling [10,11],
radiation-pressure shot noise [12–15], photon blockade [9],
non-Poissonian photon statistics and multiphoton transitions
[16], and non-Gaussian and nonclassical mechanical states
[8,17–19].

In this paper, we will focus on the phenomenon of optical
bistability, produced by the radiation pressure, and neglect
other nonlinear effects such as the photothermal effect [20–22]
or a mechanical Duffing nonlinearity. Under certain conditions
and sufficiently strong driving there are two classically
stable equilibrium positions for the mechanical oscillator and
correspondingly for the optical cavity. Optical bistability in
optomechanical systems has been discussed in the context of
ponderomotive squeezing [23] and entanglement [24], and led
to one of the first experimental observations of optomechanical
coupling [25,26]. Optical bistability has also been discussed
widely in the context of a Kerr medium [27,28]. This raises
the question whether and in which way the optomechanical
system and the Kerr medium in a cavity can be considered
to be equivalent; see Fig. 1 that shows both of these systems
schematically. In the following we will investigate in detail

the similarities and differences between optical bistability in
an optomechanical system and a Kerr medium.

The paper is organized as follows. In Sec. II we introduce
the standard model of optomechanics—a cavity whose fre-
quency is modulated by the position of a mechanical oscillator.
We briefly introduce the steady-state mean-field equations of
the system and the quantum Langevin description of quantum
and thermal fluctuations for a linearized radiation-pressure
interaction. In Sec. III we show that the mean-field equation
for the optical mode is identical to the one for a Kerr
medium, with a lower, a middle and an upper branch. In the
optomechanical system, fluctuations of the mechanical mode
change the picture. A study of the stability of the different
mean-field solutions against fluctuations reveals a feature that
is absent from the Kerr medium: the upper branch becomes
unstable for certain parameters. We derive conditions on the
parameters for this upper branch to remain stable. The stability
requires the system to be in the resolved sideband regime with
a mechanical quality factor that is not too large. In this case
we expect the mechanical resonator to act as an effective Kerr
medium for the optical mode, even in the quantum regime. This
is confirmed in Sec. IV, where we compare the quantum steady
states of both the optomechanical system and the Kerr medium,
obtained from numerical solutions of the quantum master
equations in the low-temperature limit. The optomechanical
system exhibits the expected characteristic quantum signatures
proving that it can be regarded as an effective Kerr medium.

II. MODELS FOR THE OPTOMECHANICAL SYSTEM
AND THE KERR MEDIUM

We first consider the standard model of optomechanics
where the resonance frequency of an optical cavity is mod-
ulated by the position of a mechanical resonator (dispersive
coupling). A monochromatic coherent light field with fre-
quency ωd and amplitude ε drives the optical mode. The
full Hamiltonian, accounting for driving and dissipation, is
Ĥ = Ĥ0 + Ĥd + Ĥκ + Ĥγm

, where, in the rotating frame of
the driving (h̄ = 1),

Ĥ0 = ωmb̂†b̂ − �0â
†â − g0â

†â(b̂ + b̂†), (1)
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FIG. 1. Optomechanical setup (upper panel) and Kerr medium
in a cavity (lower panel). The main part of the paper investigates in
detail whether and in which way the two systems are equivalent.

and Ĥd = iε(â − â†). Here, â and b̂ are the bosonic operators
for the optical and mechanical modes, �0 = ωd − ωc is the
detuning of the drive from the unperturbed cavity resonance
frequency ωc, and ωm the resonance frequency of the mechan-
ical mode. The optomechanical coupling is given by g0 =
−xZPF(∂ωc/∂x), where xZPF = (2Mωm)−1/2 is the zero-point
fluctuation amplitude of the mechanical resonator, M its mass,
and (∂ωc/∂x) is the derivative of the cavity frequency with
respect to the resonator position x̂ = xZPF(b̂ + b̂†). The term
Ĥκ describes the damping of the optical cavity at rate κ ,
and Ĥγm

the damping of the mechanical resonator at rate
γm. This leads to the definition of two important ratios: the
sideband parameter ωm/κ and the mechanical quality factor
Qm = ωm/γm.

Using the input-output formalism [28,29], the dissipative
dynamics of the system is described by the quantum Langevin
equations (QLEs),

˙̂a =
(

i�0 − κ

2

)
â + ig0â(b̂ + b̂†) − √

κâin, (2a)

˙̂b = −
(

iωm + γm

2

)
b̂ + ig0â

†â − √
γmη̂, (2b)

where âin(t) = āin + ξ̂ (t) consists of a coherent driving ampli-
tude āin = ε/

√
κ and a vacuum noise operator ξ̂ which satisfies

〈ξ̂ (t)ξ̂ †(t ′)〉 = δ(t − t ′) and 〈ξ̂ †(t)ξ̂ (t ′)〉 = 0. Similarly, the
noise operator η̂ describes coupling to a Markovian bath
at temperature T , i.e., 〈η̂(t)η̂†(t ′)〉 = (nth + 1)δ(t − t ′) and
〈η̂†(t)η̂(t ′)〉 = nthδ(t − t ′). In the absence of any other cou-
pling, the bath gives rise to a thermal state with mean occupa-
tion number nth = [exp(ωm/kBT ) − 1]−1 for the mechanical
oscillator. This treatment of the mechanical dissipation in the
form of a QLE for the mechanical amplitude b̂, rather than for
the displacement x̂, is correct as long as Qm � 1.

The optical and mechanical field operators can be split
into a coherent mean-field amplitude and fluctuations: â(t) =
ā + d̂(t) and b̂(t) = b̄ + ĉ(t). Inserting these expressions in
the QLEs (2), we obtain two coupled mean-field equations

(MFEs) for the amplitudes ā and b̄. In steady state they read

0 =
[
i�0 + ig0(b̄ + b̄∗) − κ

2

]
ā − ε, (3a)

0 = −
(

iωm + γm

2

)
b̄ + ig0|ā|2. (3b)

The coherent amplitude of the optical field ā corresponds
to a mean cavity occupation n̄ = |ā|2 and produces a static
radiation-pressure force g0 n̄/xZPF on the resonator, displacing
its equilibrium position by an amount xZPF(b̄ + b̄∗). Proceed-
ing this way we eliminate the coherent drive ε from the QLEs
for the operators ĉ and d̂ which describe thermal and quantum
fluctuations around the mean-field values.

For large optical mean-field amplitudes |ā| � 1 and small
coupling g0 � κ,ωm, we can neglect the nonlinear terms
like d̂†d̂ or d̂ ĉ in the QLEs. As a result, the optomechani-
cal interaction becomes bilinear: g0â

†â(b̂ + b̂†) → g0(ā∗d̂ +
ād̂†)(ĉ + ĉ†). Introducing the convenient vector notation û =
(d̂†,d̂,ĉ†,ĉ)T and ûin = (

√
κξ̂ †,

√
κξ̂ ,

√
γmη̂†,

√
γmη̂)T , we can

write the linearized QLEs in matrix form,

d

dt
û(t) = −A · û(t) − ûin(t), (4)

where A reads

A =

⎛
⎜⎜⎜⎝

κ
2 + i� 0 ig∗ ig∗

0 κ
2 − i� −ig −ig

ig ig∗ γm

2 − iωm 0

−ig −ig∗ 0 γm

2 + iωm

⎞
⎟⎟⎟⎠. (5)

The new parameters entering the matrix A are the enhanced
optomechanical coupling g = g0ā and the effective detuning
� = �0 + g0(b̄ + b̄∗) = �0 + 2n̄g2

0/ωm.
The Kerr medium [27,28], to which we aim to compare the

optomechanical system, is described by the Hamiltonian Ĥ ′ =
ĤK + Ĥd + Ĥκ , where, in the rotating frame of the driving,

ĤK = −�0â
†â − g2

0

ωm

(â†â)2, (6a)

Ĥd = iε(â − â†), (6b)

and Ĥκ describes again the damping of the optical cavity at
rate κ . The QLE for this optical mode â is

˙̂a =
[
i

(
�0 + g2

0

ωm

)
− κ

2

]
â + 2i

g2
0

ωm

â†â2 − √
κâin, (7)

where the input operator âin(t) is the same as for the
optomechanical system. The steady-state equation for the
mean-field amplitude ā is

0 =
[
i

(
�0 + g2

0

ωm

)
− κ

2

]
ā + 2i

g2
0

ωm

|ā|2ā − ε. (8)

Replacing �0 by �0 − g2
0/ωm in Eq. (8) yields the equation

for the optical mean-field amplitude ā of the optomechanical
system obtained from Eq. (3) by eliminating the mechanical
mean-field amplitude b̄. This frequency shift of the detuning
�0 is consistent with the fact that Ĥ0 and ĤK are connected by
the canonical (polaron) transformation Û = exp[(g0/ωm)(b̂ −
b̂†)â†â]. Applying Û to the optomechanical Hamiltonian Ĥ0,
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Eq. (1), we obtain ÛĤ0Û
† = ĤK + ωnb̂

†b̂. In this frame, the
optomechanical interaction is eliminated and the optical mode
acquires a Kerr nonlinearity of the form of Eq. (6a) [8,9].

III. OPTICAL BISTABILITY IN THE
SEMICLASSICAL REGIME

In the following, we will first show that the optomechanical
system has MFEs with three solutions in a certain range of
driving frequency and driving amplitude, just as the Kerr
medium does. After discussing the characteristic behavior of
the mean-field solutions in the regime of optical bistability,
we study the stability of the mean-field solutions against
fluctuations of both the optical and mechanical mode and point
out the differences with the Kerr medium. Finally, we find
parameters for which the optomechanical system is accurately
described by an effective Kerr medium.

A. Bistability at the mean-field level

We briefly review the origin of bistability in the mean-field
equations of the optomechanical system [23,26,30,31].

To simplify the notation we define the dimensionless
nonlinearity parameter χ , detuning y, and driving power z

by

χ = g2
0

ωmκ
, y = −�0

κ
, z = χ

(
ε

κ

)2

.

Combining Eqs. (3a) and (3b) we obtain a third-order poly-
nomial root equation for the mean-field cavity occupation,
p(χn̄) = 0, where

p(λ) = 4λ3 − 4yλ2 +
(

y2 + 1

4

)
λ − z. (9)

The MFE for the Kerr medium, Eq. (8), leads to the same
equation for n̄, provided we replace y by y − χ in Eq. (9).

Equation (9) indicates that the MFEs can have either one
or three solutions, depending on the number of real roots of
the polynomial. The three roots depend on the dimensionless
detuning y and driving power z. Since the mean-field cavity
occupation n̄ follows from p(χn̄) = 0, the nonlinearity param-
eter χ determines whether optical bistability occurs at small
or large driving power and photon number.

The optical mean-field amplitude is ā = −eiϕ
√

λ/χ , where
ϕ = arctan(4λ − 2y). If the detuning y and driving power z are
such that the equation p(λ) = 0 has three real roots, the smaller
χ , the more distant in phase space are the different optical
mean-field amplitudes ā. A similar observation can be made
concerning the mechanical resonator: the equation p(λ) = 0
also holds for λ = √

χωm/(4κ)(b̄ + b̄∗), where b̄ + b̄∗ is the
equilibrium position of the mechanical resonator in units of
xZPF. Therefore, the smaller χ and the sideband parameter
ωm/κ , the more distant are the different equilibrium positions.

We now examine some characteristic features of the MFEs,
which occur both in an optomechanical system (3) and a Kerr
medium (8). To this end, we find the conditions on the detuning
y and the driving power z for the MFEs to have three solutions,
and illustrate them with a few examples.

First we observe that the equation p(λ) = 0 can have three
real roots only if the detuning y and the driving power z exceed

some threshold value ỹ and z̃ [23,32],

y > ỹ =
√

3

2

 0.87, (10a)

z > z̃ = 1

6
√

3

 0.1. (10b)

Therefore, optical bistability can only be found for red-
detuned driving frequencies. In addition, the three roots are
real only if

z−(y) < z < z+(y), (11)

where

z±(y) = 1
27 [y(y2 + 3ỹ2) ± (y2 − ỹ2)3/2].

The region in (y,z)-parameter space where Eqs. (10)
and (11) are satisfied is shown in Fig. 2(c) with the labels
II (blue) and III (purple). In this region the three mean-field
occupations satisfy n̄1 < n− < n̄2 < n+ < n̄3, where n± are
found from p′(χn±) = 0 and read

χn±(y) = 1
6 [2y ± (y2 − ỹ2)1/2]. (12)

In the following, we refer to n̄1, n̄2, and n̄3 as the lower, middle,
and upper branch of the MFEs.

In Fig. 2(a) we show the mean-field occupation χn̄ as a
function of the driving power z for fixed detuning y. For an
increasing driving power z and a detuning above the threshold
y > ỹ, the three branches of the mean-field occupation n̄ form
a characteristic S-shaped curve. The lower branch starts from
the origin and ends at the turning point given by (z+,n−)
where the middle branch starts. The upper branch starts from
the second turning (z−,n+), where the middle branch ends,
and increases further.

In Fig. 2(b) we plot the mean-field occupation χn̄ as a
function of the detuning y for fixed driving power z. The
cavity line shape is approximately Lorentzian if the driving
power is far below the threshold z � z̃ (not shown). For larger
and larger z it becomes more and more asymmetric and tilts
until, for z = z̃, it has an infinite slope at y = ỹ. For a driving
power beyond this threshold the cavity line shape has three
branches in the range of detuning y determined by Eq. (11).

According to these considerations, the optomechanical
system and the Kerr medium are equivalent at the level of the
steady-state MFEs. Our next goal is to discuss the stability
of the different branches of the MFEs. The existence of
three solutions to the MFEs indicates that the optomechanical
system may be in a regime of bistability, with stable lower and
upper branches, as well as an unstable middle branch. While
for the Kerr medium this is always true [27], a stability analysis
leads to different conclusions in the case of the optomechanical
system. In addition, if the detuning y and driving power z lead
to a unique solution for the mean-field cavity occupation n̄,
this solution is always stable for the Kerr medium, but not
necessarily so for the optomechanical system.

B. Stability analysis of the mean-field solutions

The upper and lower branches are always stable for the
Kerr medium. To find the range of parameters where the
optomechanical system reproduces this behavior, we analyze
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FIG. 2. (Color online) Optical bistability in the semiclassical regime. Typical curves for the mean-field cavity occupation n̄ as a function of
the dimensionless driving power z (a) and the dimensionless detuning y (b), obtained from the condition p(χn̄) = 0 [see Eq. (9)]. According
to the stability criteria c1,2 > 0 [see Eqs. (13)], Gaussian fluctuations lead to stable (solid black) or unstable (dotted blue and dashed red)
mean-field solutions. As in the case of the Kerr medium, the first criterion c1 > 0 always yields an unstable middle branch (dotted blue),
while the additional criterion for the optomechanical system c2 > 0 can turn part of the upper or only branch unstable (dashed red). In (b)
we also show the critical mean-field occupation nc (dash-dotted gray) obtained from the condition c2 = 0. In (c) we summarize the behavior
of the mean-field solution as a function of the parameters y and z. In regions II and III , between the curves z− and z+, Eqs. (10) and (11)
are satisfied and there are three distinct mean-field solutions; the middle branch is always unstable. In region II (blue) the lower and upper
branches are stable. In region III (purple) the second stability criterion shows the upper branch to be unstable (c2 < 0) and only the lower
branch is stable. In regions I and IV the mean-field equations (MFEs) have only one solution. Below the zc curve in region I (gray) this unique
branch is stable, while in region IV (red) the second criterion again shows that this solution is unstable (c2 < 0). The values of the detuning
y and driving power z used in (a) and (b) are indicated by the orange and green dashed lines. Note that none of these features depends on the
nonlinearity parameter χ , due to appropriate scaling of the axes. The threshold detuning ỹ and driving power z̃ indicate the minimal values of
y and z needed for the MFEs to have three solutions. The sideband parameter and mechanical quality factor chosen to show the influence of
the second stability criterion c2 > 0 are ωm/κ = 10 and Qm = 1000.

the stability of the different branches of the MFEs (3) against
fluctuations of both the optical and mechanical modes.

The stability of a point in any of the branches of the MFEs is
established, if the linear QLEs (4), describing the fluctuations
around this point, are stable. This in turn is ensured if all the
eigenvalues of the matrix A given in Eq. (5), derived from the
corresponding mean-field amplitudes ā and b̄, have positive
real parts. This has to be verified even if the MFEs have only
one solution.

The differences and similarities between the optome-
chanical system and the Kerr medium are summarized
in Table I.

The difference between the two systems is explained by the
parametric instability in the optomechanical system [33,34]
that occurs at a mean-field occupation n̄ above some critical
value nc. Around such a mean-field solution, the linear

dynamics of optical and mechanical fluctuations becomes
unstable. This particular feature of the optomechanical system
is illustrated in Fig. 2; it is absent for the Kerr medium.

In Figs. 2(a) and 2(b), we indicate the unstable seg-
ments of the branches where n̄ > nc. In case the MFEs
have three branches, this critical value for the mean-field
occupation nc systematically lies in the upper branch or
in its extension to the region where there is only one
branch.

In Fig. 2(a), for a fixed detuning above threshold y > ỹ, the
upper branch is stable only in a finite segment near the second
turning point n+ at the beginning of the upper branch. The size
of this stable segment diminishes as the detuning y increases,
and shrinks to a single point in the limit of a far red-detuned
driving frequency. The same effect is seen in Fig. 2(b). With
increasing driving power z the stability in the upper branch is
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TABLE I. Stability for the different branches in an optomechani-
cal system and a Kerr medium determined from the QLEs (4) and (7).
The critical mean-field occupation nc is found from the stability
criterion, Eq. (13b), and depends on the detuning y = −�0/κ , the
sideband parameter ωm/κ , and the mechanical quality factor Qm.

Branch Kerr medium Optomechanical system

No. Type

3 Lower Stable Stable
Middle Unstable Unstable
Upper Stable Stable Unstable

n̄ < nc n̄ > nc

1 Stable Stable Unstable
n̄ < nc n̄ > nc

confined to a smaller and smaller segment near the maximum
of the cavity line shape.

In Fig. 2(c), the regions in (y,z)-parameter space where the
upper or only branch turns unstable are labeled by III and IV.
These are the regions where the driving power z is larger than
the critical value zc, found by solving the equation p(χnc) = 0
for z, where p is given in Eq. (9). The range of detuning y or
driving power z at which bistability is observed shrinks with
increasing y or z.

We now characterize the regime leading to optical bistabil-
ity in the optomechanical system, and therefore examine how
the stability of the branches depends on the parameters. To
this end, we apply the Routh-Hurwitz criterion to the linear
QLEs (4). Two conditions have to be satisfied for a particular
mean-field solution to be stable, c1,2 > 0, where [35].

c1 = 4|g|2� + ωm

(
�2 + κ2

4

)
, (13a)

c2 = κγm

[(
�2 − ω2

m

)2 + 1

2

(
�2 + ω2

m

)
(κ + γm)2

+ 1

16
(κ + γm)4

]
− 4|g|2�ωm (κ + γm)2 . (13b)

The identification of the parameter regime leading to
c1,2 > 0 is done as follows. We replace |g|2 and � by their
n̄-dependent expressions,

|g|2 = κωmχn̄, � = κ(2χn̄ − y),

in Eqs. (13), and express c1,2 as functions of the rescaled mean-
field occupation χn̄, the detuning y, the sideband parameter
ωm/κ , and the mechanical quality factor Qm = ωm/γm.

From the condition c1 < 0 we conclude that the middle
branch is unstable [23,30,31]. This follows from sgn(c1) =
sgn[(n+ − n̄)(n− − n̄)], where n±, Eq. (12), are the values
of the mean-field cavity occupation at the lower and upper
limits of the middle branch. The physical interpretation of this
condition is simple. In the middle branch, the modification
of the mechanical frequency due to radiation pressure, also
known as the optical spring effect, is such that the modified
mechanical force is no longer a restoring force.

In the Kerr medium, the same stability condition, c1 > 0,
is found from the linear QLEs, obtained by substituting â =
ā + d̂ in Eq. (7) and neglecting second- and third-order terms

FIG. 3. (Color online) Critical cavity occupation nc in units
of n�, as a function of the sideband parameter ωm/κ and the
mechanical quality factor Qm. At nc the mean-field solution n̄ leads
to unstable linear dynamics for the optomechanical system. The
cavity occupation n� = y/(2χ ) marks the point at which the effective
detuning � becomes positive. We find nc from the second stability
criterion, Eq. (13b). The bare detuning is y = −�0/κ = 1.5. Note
that the ratio nc/n� does not depend on the nonlinearity parameter
χ . The black cross indicates the parameters used in Fig. 4.

in d̂ , d̂†. No other criteria are needed to establish the stability
of the system, and therefore the lower and upper branches are
always stable.

The condition c2 = 0 is equivalent to the relaxation rate of
the system going to zero [36]. In a stable system, this relaxation
rate is the real part of the eigenvalue of A closest to zero. Above
the critical mean-field occupation, n̄ > nc, this relaxation rate
becomes negative, c2 < 0, and the branch turns unstable. If
in addition n̄ is the only mean-field solution, the system is
parametrically unstable. We find nc by solving the equation
c2 = 0 for n̄, as a function of the detuning y, the sideband
parameter ωm/κ , and the mechanical quality factor Qm.

It turns out that nc always lies in the upper branch or in
its extension to the region with only one branch. This can be
seen as follows. Since the condition c2 > 0 is automatically
satisfied for negative effective detuning, � � 0, we find a lower
bound for the critical occupation,

nc � n� = y

2χ
.

In addition, the effective detuning � always turns positive in
the upper branch, since n� � n+. Thus the upper branch is
only stable in the range n+ < n̄ < nc. This stable portion can
be very small, e.g., in the extreme case −�0 � κ and γm = 0,
we have nc = n� 
 n+.

In Fig. 3 we compare the critical mean-field cavity occu-
pation nc to the occupation n� at which � changes sign. The
ratio nc/n� is shown as a function of ωm/κ and Qm. If nc/n�

is large, the upper branch is stable beyond the parameter range
leading to bistability, nc � n+, mimicking the behavior of the
Kerr medium. On the contrary, if nc/n� 
 1, the upper branch
turns unstable for � > 0 and is only stable on a finite segment
near its beginning.

We can distinguish four parameter regimes which encom-
pass most experimental situations.
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1. Resolved sideband and large mechanical damping (Ia)

For extremely low cavity damping, ωm > γm > κ , the
critical occupation nc is approximately

χnc = 1

4

(
y +

√
y2 + 2Qm

ωm

κ

)
.

In the case of a fixed detuning satisfying y2 � 2Qmωm/κ , we
have nc � n� and the upper branch is stable on a considerable
segment, extending up to driving powers z and mean-field oc-
cupations n̄ that are much larger than those needed for bistable
MFEs, i.e., zc � z+ and nc � n+. We recall that zc is found
by solving the equation p(χnc) = 0, with p defined in Eq. (9).
Therefore, the mean-field behavior of the optomechanical
system is equivalent to the behavior of a Kerr medium in the
regime of bistability. In Ref. [16], the optomechanical system
was compared to the Kerr medium in terms of the full counting
statistics of photons. Although the two systems can behave dif-
ferently in some regime of parameters, the authors demonstrate
that the influence of the mechanical resonator reduces to an
effective Kerr nonlinearity when γm ∼ κ , in particular with
y = ωm/κ .

2. Resolved sideband and small mechanical damping (Ib and IIa)

In the regime characterized by ωm > κ > γm, the critical
mean-field cavity occupation is found to be approximately

χnc = 1

4

⎛
⎝y +

√
y2 + 2

(ωm/κ)3

Qm

⎞
⎠ . (14)

In this case, the parameter (ωm/κ)3/Qm plays an important
role to characterize the mean-field behavior.

If Qm > (ωm/κ)3, we obtain nc 
 n� for a detuning above
the bistability threshold y > ỹ. In this case, the upper branch
turns unstable if the effective detuning is positive, � > 0. In
addition, this means that if the detuning is negative and large,
such that −�0 � κ , the stable segment is small, as n� 
 n+.

In the opposite limit, Qm � (ωm/κ)3, we can have nc �
n� as in the previous case (γm > κ), provided the detuning y

satisfies y2 � (ωm/κ)3/Qm. The same conclusions then apply,
i.e., zc � z+ and nc � n+, and the mean-field behavior of the
optomechanical system and the Kerr medium is equivalent in
the parameter regime of bistability.

Using the exact expression for nc, we see in Fig. 3 that
the border between the region where the optomechanical
system experiences a parametric instability as soon as � > 0
(black region), and the region where the system is still
linearly stable for some positive effective detuning, nc > n�, is
approximately given by y2 = 2(ωm/κ)3/Qm. Above this line,
an optomechanical system driven to the regime of bistability
behaves like a Kerr medium, as described by Eqs. (6) and (7).
This will be confirmed in the next section by obtaining the
quantum steady state of both systems numerically and showing
that the states of the optical mode are similar.

Many experimental realizations of cavity optomechanics
are in the resolved-sideband limit and fall into this category
[39]: micromechanical microwave resonators [40–43], coated

micromechanical resonators [44], photonic crystal cavities
[45], microspheres [46], and microtoroids [47,48].

3. Unresolved sideband and small mechanical damping (IIb)

The critical occupation nc can be approximated in the
limit of a small sideband parameter ωm/κ and large enough
mechanical quality factor, such that 1 > ωm/κ > 1/Qm, as

χnc = 1

4

(
y +

√
y2 + κ/ωm

8Qm

)
. (15)

If the bare detuning �0 is negative and exceeds the threshold
value for possible bistability, y > ỹ, we obtain that nc 
 n�.
The upper branch turns unstable as soon as the effective
detuning � is positive, and for large bare red detuning,
−�0 � κ , the upper branch is only stable on a small segment
close to its beginning.

In this regime we find several experimental implementa-
tions of optomechanics: ultracold atoms [49–51], suspended
membranes [52], and coated mechanical resonators [53,54].

A simple interpretation of the critical mean-field occupation
nc in Eqs. (14) and (15) can be provided by considering
the total mechanical damping γtot = γm + �opt, where �opt is
the additional mechanical damping induced by coupling to
the optical degree of freedom. In the weak-coupling limit of
linearized optomechanics, i.e., g,γm < κ , this contribution is
given by �opt = −2 Im�(ωm), where �(ω) = −ig2[χc(ω) −
χ∗

c (−ω)] is the so-called optomechanical self-energy and
χc(ω) = [κ/2 − i(� + ω)]−1 the optical susceptibility [11].
In this case, the condition n̄ = nc coincides with γtot = 0 in
both limits ωm ≶ κ .

4. Very small sideband parameter

In the regime where the sideband parameter is so small that
ωm/κ � 1/Qm, the situation is different. The upper branch
is unconditionally stable as long as the detuning y is not
too large: y < κ/(

√
32Qmωm). For larger values of y, an

unstable segment of the upper branch develops, from the
second turning point n+ up to some value n′ of the mean-field
cavity occupation given by

χn′ = y

⎛
⎝1

2
+ Qm

ωm

κ
+

√(
Qm

ωm

κ

)2

− 1

32y2

⎞
⎠ .

The dynamical time scales of the two modes are different
in this limit. The optical mode adiabatically follows the
mechanical motion and produces an effective mechanical
potential with two stable equilibrium positions. However, as
we have seen in the previous paragraph, this picture holds only
if Qm is not too large compared to κ/ωm.

In this parameter regime, early experiments with hertz-
scale mechanical resonance frequencies enabled the first
observations of optical bistability and the related hysteresis
cycle both in the optical [25] and the microwave domain [26].

In low-finesse cavities, the optical field can create several
stable minima in the mechanical potential, a phenomenon
sometimes referred to as multistability [30,31]. It has recently
been observed with a torsion balance oscillator acting as the
moving mirror [56]. This effect should not be confused with
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dynamical multistability [33], where mechanical limit-cycle
orbits of stable amplitudes arise due to parametric instability.

IV. OPTICAL BISTABILITY IN THE QUANTUM REGIME

So far we have focused on the semiclassical regime,
considering the mean-field solutions as well as the effect of
fluctuations around them, and have identified the regime of
parameters where the optomechanical system and the Kerr
medium exhibit similar behavior. In the remainder, we want to
confirm that the conclusions of this approach also hold in the
quantum limit. To this end, we compare the quantum steady
states of the optomechanical system and the Kerr medium,
obtained from numerical solutions of the quantum master
equations.

A. Quantum master equations description of dissipation

An alternative description of either the optomechanical
system or the Kerr medium can be given in the form of quantum
master equations, which describe the dynamics of their density
operators ρ̂, respectively ρ̂K . This treatment is equivalent to
the quantum Langevin description given by Eqs. (2) and (7).
Instead of using input noise operators ξ̂ or η̂, dissipation is
taken into account with Lindblad dissipative terms.

The quantum master equation for the optomechanical
system reads

dρ̂

dt
= L[ρ̂] = −i[Ĥ0 + Ĥd,ρ̂] + κDâ[ρ̂]

+ (nth + 1)γmDb̂[ρ̂] + nthγmDb̂† [ρ̂], (16)

where the dissipative terms have the standard form Dô[ρ̂] =
ôρ̂ô† − 1

2 (ô†ôρ̂ + ρ̂ô†ô).
In the same way, the quantum master equation for the

equivalent Kerr medium is given by

dρ̂K

dt
= LK [ρ̂K ] = −i[ĤK + Ĥd,ρ̂K ] + κDâ[ρ̂K ]. (17)

The steady-state density operators are found from the numer-
ical solutions of L[ρ̂] = 0 and LK [ρ̂K ] = 0, respectively.

B. Comparison of the quantum steady states

To corroborate the fact that the optomechanical system
behaves like an effective Kerr medium, we compare the
quantum steady states of both systems for parameters that
lead to bistable behavior. To this end, we calculate the
photon number 〈â†â〉, the cavity amplitude |〈â〉|2, and the
second-order correlation function

g(2)(0) = 〈â†â†ââ〉
〈â†â〉2

,

which describes fluctuations in the photon number. We also
characterize the similarity between the optomechanical system
and the Kerr medium with the help of the overlap

F (ρ̂opt,ρ̂K ) = Tr[
√√

ρ̂K ρ̂opt

√
ρ̂K ], (18)

where ρ̂opt is the reduced density matrix of the system, obtained
by tracing out the mechanical degree of freedom from ρ̂.
Finally, we investigate the Wigner distribution function of the

optical mode, which reads

Wopt(α) = 1

π2

∫
d2λ Tr

[
ρ̂opte

λ(â†−α∗)−λ∗(â−α)
]
.

The steady states of both systems are compared for a
constant detuning above the bistability threshold, y > ỹ, and
as a function of the driving power z. In this configuration the
mean-field cavity occupation n̄ forms a characteristic S-shaped
curve.

The results are presented in Fig. 4. In the upper panel,
we show the mean-field cavity occupation n̄, the photon
number 〈â†â〉, and the cavity amplitude |〈â〉|2 for both the
optomechanical system, with zero and finite temperature of the
mechanical bath, as well as for the equivalent Kerr medium.
The two insets show the second-order correlation g(2)(0) and
the overlap F (ρ̂opt,ρ̂K ). The lower panel of Fig. 4 shows the
optical Wigner density function of the optomechanical system.

At low driving power before entering the region of bistabil-
ity, z < z−, the state of the optical mode is rather well described
by a coherent state in both systems, as 〈â†â〉 = |〈â〉|2 
 n̄.

In the range of driving power where two stable mean-
field solutions exist, z− < z < z+, the master equations (16)
and (17) have unique quantum steady states. Thus, instead
of any bistable behavior, a transition of 〈â†â〉 and |〈â〉|2,
from the lower to the upper branch, occurs, as the driving
power z increases. Simultaneously, both systems show large
fluctuations in the photon number, g(2)(0) > 1. Such behavior,
in the regime where the MFEs lead to bistability, is well known
from the Kerr medium [27].

In this regime, the Wigner function Wopt(α), shown in the
lower part of Fig. 4, exhibits two separate lobes peaked at
the mean-field amplitudes, α 
 ā. This is another well-known
feature of the Kerr medium [32,57] and shows how classical
bistability persists in the quantum regime. The two lobes are
distinguishable if the phase-space separation of the two stable
mean-field amplitudes ā is larger than the fluctuations around
them, which is satisfied here since χ � 1. Since Wopt > 0
everywhere, the optical mode can be regarded as an incoherent
statistical mixture of two states with different amplitudes and
non-Gaussian fluctuations. As the driving power z increases
from z− to z+, the relative weights of the lobes continuously
change from the lower branch to the upper one, describing
the shift in probability for the system to be found in one or
the other. This effect is robust to finite temperature of the
mechanical environment.

The particular situation where the two stable branches are
approximately equally likely (z 
 0.26 for kBT = ωm) would
enable the observation of noise-induced switching between
both branches [58,59] and constitute a clear signature of
the nonlinear interaction between the optical and mechanical
mode.

At higher driving power, z > z+, when the MFEs have
only one solution, both the optomechanical system and the
Kerr medium exhibit sub-Possionian statistics, g(2)(0) < 1.
Photon blockade in optomechanical systems has already been
predicted for χ > 1 [9]. In our case, photon blockade is not
very pronounced: we chose χ � 1 to have bistable mean-field
solutions that are appreciably distant in phase space. For the
parameters of Fig. 4, this effect is slightly suppressed even
further due to the finite-temperature bath, nth > 0.
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〉

|〈
â
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FIG. 4. (Color online) Optical bistability in the quantum regime. (a) Mean-field cavity occupation n̄, with stable (black solid line) and
unstable (black dotted line) branches, steady-state photon number 〈â†â〉 (red), and cavity amplitude |〈â〉|2 (purple) of the optomechanical
system, as a function of the dimensionless driving power z. The upper branch turns unstable outside the range of z parameters we plot,
beyond zc 
 92 and nc 
 42. For comparison we also show 〈â†â〉 (black dashed line) and |〈â〉|2 (black dash-dotted line) for the equivalent
Kerr medium. For both systems, y = −�0/κ = 1.5 and χ = 0.08. The parameters of the optomechanical system are ωm/κ = 30, Qm = 300
(indicated by the black cross in Fig. 3), and kBT = 0 (dots) or kBT = ωm (crosses). Inset (b) shows the second-order correlation function
g(2)(0) = 〈â†â†ââ〉/〈â†â〉2 for the optomechanical system with kBT = 0 (green solid line) as well as kBT = ωm (green dashed line) and for
the Kerr medium (black dash-dotted line). The first and third curves are indistinguishable. Inset (c) shows the overlap F (ρ̂opt,ρ̂K ), as defined in
Eq. (18), between the density matrices of the pure Kerr medium ρ̂K and the reduced density matrix of the optomechanical system ρ̂opt, obtained
by tracing out the mechanical degree of freedom from ρ̂. The temperatures chosen are kBT = 0 (solid line) and kBT = ωm (dashed line). (d)
Wigner function Wopt(α) of the optical mode of the optomechanical system for six different driving powers z and two different temperatures.
The white crosses indicate the mean-field amplitudes ā of the stable branches. The values of z are indicated by blue dots and lines in (a).

At various points of the paper, we have already demon-
strated that the optomechanical system can be regarded as
an effective Kerr medium in some range of parameters that
we have specified. In particular, in the present section we have

shown numerically that both systems exhibit the same features.
For example, the photon number and the second-order photon
correlation function follow the same parameter dependence,
the Wigner function has a two-lobe structure, and both systems
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show photon blockade. As a further strong confirmation of
this equivalence, we compare the states ρ̂opt and ρ̂K of the
optical field in both systems. As can be seen in inset (c) of
Fig. 4, their overlap F is close to 1 even at a finite thermal
occupation of the mechanical mode. All of these calculations
clearly establish the equivalence of the optomechanical system
and a Kerr medium in the appropriate parameter range.

V. CONCLUSION

The mean-field equations for the optical mode of a disper-
sively coupled optomechanical system agree with those of a
Kerr medium, a paradigmatic quantum optics system whose
nonlinearity induces optical bistability. This raises the question
of whether and under which conditions the two systems can
be considered to be equivalent. We have therefore compared
the optical bistability in an optomechanical system and a
Kerr medium. A stability analysis of the mean-field solutions

reveals differences between the two systems: the upper branch
of an optomechanical system can become unstable due to
position fluctuations of the mechanical degree of freedom. We
have identified the regime of parameters where the two systems
are equivalent. Corroborating this semiclassical approach, we
have shown that the (optical) quantum steady states of both
systems, obtained numerically, show large overlap. Our results
clarify when an optomechanical system can be used as a Kerr
nonlinearity in applications of quantum optics and quantum
information.
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[48] E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and
T. Kippenberg, Nature (London) 482, 63 (2012).

[49] K. W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-Kurn,
Nat. Phys. 4, 561 (2008).

[50] M. H. Schleier-Smith, I. D. Leroux, H. Zhang, M. A. Van Camp,
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