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Quantum input-output theory for optical cavities with arbitrary coupling strength:
Application to two-photon wave-packet shaping
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We develop quantum-optical input-output theory for resonators with arbitrary coupling strength, and for input
fields whose spectrum can be wider than the cavity free-spectral range, while ensuring that the field-operator
commutator relations in space-time variables are correct. The cavity-field commutator exhibits a series of
space-time “echoes,” representing causal connections of certain space-time points by light propagation. We apply
the theory to two-photon wave-packet shaping by cavity reflection, which displays a remarkable illustration
of dispersion cancellation. We also show that the theory is amenable to inclusion of intracavity absorbing and
emitting atoms, allowing, for example, dissipative losses within the cavity to be incorporated in a quantum
mechanically correct way.
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I. INTRODUCTION

Input-output theory for optical cavities or resonators plays
a crucial role in quantum and classical optics because of
the enhancement of coupling between external light fields
and the cavity modes, as well as between the cavity modes
and any medium inside the cavity. By input-output (I-O)
theory, one means a differential equation of motion for
the field in space-time variables, coupled with appropriate
cavity boundary conditions, that is amenable to inclusion
of intracavity absorbing and emitting atoms. The theory of
optical cavities was well developed in the decades following
the invention of the laser. Nevertheless, a simple formulation
treating input-output theory as a scattering problem that
is valid in quantum as well as classical contexts was not
developed until the 1980s, when the ideas of quantum-noise
squeezing and cavity QED were being developed. Collett
and Gardiner [1], Gardiner and Savage [2], and Yurke [3]
developed a quantum mechanical linear-systems approach
that describes the evolution of the input field, cavity field,
and output field. That approach crucially ensures correct
quantum commutator relations between the positive- and
negative-frequency components of the electromagnetic field,
or equivalently the photon annihilation and creation operators.
This ensures that the field evolution is quantum mechanically
unitary, as it must be in the absence of dissipative losses. The
I-O theory has been generalized to include spatially complex
cavity structures and intracavity losses [4,5].

The principal limitation of the most commonly used
input-output theories [1,6] is that they are restricted to
the limit of high cavity quality factor Q, in which the
cavity mirrors or other coupling junctions have very high
reflectivity, and no dissipative losses. In the high-Q limit,
and assuming that no standing waves are formed, the optical
field is uniformly distributed along the beam axis; that is,
there are no pulse-propagation effects inside the cavity. For
this limit to hold, the field must have spectral width much
smaller than the cavity’s free-spectral range (FSR). The field
necessarily evolves negligibly during one round trip in the
cavity. This high-Q, “good-cavity” limit is commonly used in
many experimental situations, and so the input-output theory

developed in the 1980s has seen widespread use. On the other
hand, there are situations in which a cavity with lower mirror
reflectivity, and thus lower Q, are used. For example, in a cavity
with non-negligible dissipative loss, it may be advantageous to
increase the cavity output coupling by decreasing the mirror
reflectivity, in order to increase the efficiency of extracting
field energy from the cavity. A more general theory is needed
to describe such situations.

In this paper we develop input-output theory for arbitrary-
coupling-junction strength, and for input fields whose spec-
trum can be wider than the cavity FSR, while ensuring that
the field-operator commutator relations are correct. A key
development is expressing the fields and field commutators in
the space-time variables, and extending previous results [4,7]
for these. In particular, we find that the cavity-field commutator
exhibits a series of space-time “echoes,” representing causal
connections of certain space-time points by light propagation.

Figure 1 shows examples of cavity types being considered.
Each has two input channels and two output channels, with
the two channels propagating in opposite directions. The
input-output coupling is created by a junction, which may
be a mirror or a waveguide coupler. In the common case that
only a single input channel is occupied by light, the system
operates in traveling-wave geometry where standing waves do
not form. In that case and in the absence of backscattering
and nonlinear coupling, the two counterpropagating fields
evolve independently of each other and so we can ignore one
of them. (However, one should be aware that if there is a
structure in the cavity medium that is capable of acting as a
nonlinear coupling or as a diffraction grating, such as a gain
medium periodically modulated on subwavelength scales, then
the forward and backward waves are coupled and the solution
must be generalized to account for this.)

There is a close relationship between the present theory
and laser theory, and we make use of this. In particular, early
papers on the theory of multimode optical cavity instabilities
and mode locking provide part of the inspiration for our
formulation [8–11].

In this paper we present the general formalism for arbitrary
coupling strength, expressed in both space-frequency and
space-time domains. We apply it to the problem of two-photon
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FIG. 1. (Color online) Ring cavity configurations with a single
input, showing the conventions used for amplitude transmission
coefficient τ and reflection coefficient ρ. We choose a phase
convention where external reflection creates a phase flip, and internal
reflection does not.

wave-packet shaping by cavity reflection. We also show how
dissipative losses within the cavity can be incorporated in a
quantum mechanically correct way.

II. INPUT-OUTPUT AND COMMUTATION RELATIONS

As mentioned above, it is simplest to consider only a single
input beam and a single output beam, in which case the field
in the cavity is a traveling-wave one with no standing-wave
effects. It is straightforward to generalize to the case of two
counterpropagating inputs and therefore standing waves in the
cavity. In addition, only a single transverse mode is considered,
although it is straightforward to include more such modes.

In the presence of a local electric-dipole polarization P (z,t)
(which equals zero for an empty cavity), the normalized
electric-field amplitude (or photon annihilation operator)
C(z,t) obeys the partial differential traveling-wave Maxwell
equation:

(∂t + v∂z) C(z,t) = αP (z,t), (1)

where z is the distance traveled around the cavity path starting
at the junction, and v is the group velocity (speed of light c for
an empty cavity). α is a coupling parameter. The carrier wave
has been factored from the field amplitude, and all frequencies
are specified relative to the optical carrier frequency. The input
coupling and periodicity of the cavity field are represented by
the boundary condition:

C(0+,t) = ρ C(L−,t) + τ A(t), (2)

relating the cavity field to the input field A(t) at the coupling
junction. Here 0+ is the location inside the cavity immediately
following the coupling junction and L− is the location inside
the cavity just before impinging on the coupling junction. We
choose a phase convention in which the coupling coefficients τ

(for transmission) and ρ (for reflection) are real and thus they
must obey τ 2 + ρ2 = 1. This relation is the same as used in
laser theory [8–11], but generalized to include the input field,
which is normally not considered unless injection locking is
being considered [12].

The other boundary condition that must be satisfied deter-
mines the output field B(t) in terms of the input field A(t) and
the cavity field:

B(t) = τ C(L−,t) − ρA(t). (3)

It is notable that Eqs. (2) and (3) are the same as the standard
beam-splitter relations [13], familiar in quantum optics. They
can be written in common matrix form as(

B(t)

C(0+,t)

)
=

(
τ −ρ

ρ τ

) (
C(L+,t)

A(t)

)
. (4)

These relations enter the theory here as cavity-field bound-
ary conditions rather than as the (sometimes) ad hoc relations
that are postulated in order to maintain commutation relations
in free space [14]. As in those treatments, the minus sign on
−ρ makes the matrix in Eq. (4) unitary. In fact, we will show
that, rather than maintain free-space commutation relations,
Eqs. (1)–(3) lead to significant alterations to the commutation
relations in a way that maintains causality and unitarity in the
theory.

The input field, being a freely propagating field in free
space, obeys the familiar commutation relation (for a field
whose bandwidth is significantly smaller than the optical
carrier frequency):

[A(t),A†(t ′)] = δ(t − t ′). (5)

This is a special case of the more general relation that
applies to a field A(z,t) freely propagating at speed v in the
absence of dispersion:

[A(t − z/v),A†(t ′ − z′/v)] = δ(t − z/v − (t ′ − z′/v)), (6)

which results simply from A(z,t) = A(0,t − z/v). This shows
that the input field (assuming no dispersion) commutes with
itself at all times, except those that are causally connected
by the speed of light in free space. Physically, only when
a commutator is zero are the two operators independently
measurable.

The goal is to deduce from Eqs. (1)–(5) the cavity-
field operator and the output-field operator, as well as their
commutation relations. We first consider the case of an empty
cavity, so that P (t) = 0. We introduce the Fourier-transform
fields according to

f (z,ω) =
∫ ∞

−∞
dteiωtF (z,t). (7)

(Throughout the paper we denote frequency-domain functions
by lowercase letters.) Then Eqs. (1)–(5) imply

−iωc(z,ω) + v∂zc(z,ω) = 0, (8)

c(0+,ω) = ρ c(L−,ω) + τa(ω), (9)

b(ω) = τc(L−,ω) − ρa(ω). (10)

Equation (8) easily yields for the cavity field

c(L−,ω) = c(0+,ω) exp(iωT ), (11)

where T = L/v is the cavity round-trip time. Eq. (11)
represents a time shift; by transforming back to the time
domain and using the Fourier-shift theorem,

C(L−,t) = C(0+,t − T ). (12)
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FIG. 2. (Color online) Modulus square of cavity Green’s function
Eq. (14) versus frequency, for junction reflectivities ρ = 0 (dashed)
and ρ = 0.75 (solid), and T = 1.

Inserting (11) into (9), and solving, yields

c(0+,ω) = τ

1 − ρ exp(iωT )
a(ω), (13)

a result familiar from classical cavity theory. Equation (13)
is written in a linear-response form by defining a Green’s
function Gca(ω),

Gca(ω) = τ

1 − ρ exp(iωT )
, (14)

so that

c(0+,ω) = Gca(ω)a(ω). (15)

The modulus square of the Green’s function Gca(ω) is
plotted in Fig. 2, as a reminder of the well-known enhancement
of the density of states that occurs near the cavity resonances.
The free-spectral range (FSR) of the cavity in radians per
second is � = 2π/T . (Throughout the paper time is measured
in units of T , position in units of L, and other variables
are scaled accordingly.) The integral of |Gca(ω)|2 over any
integer multiple of the free-spectral range yields the value
1, showing that the number of states is conserved, while the
density of states is redistributed. This is related to an approach
picturesquely called the “modes of the universe” [15]. In
terms of that picture, our cavity is embedded in a nearly
infinite-length cavity, and the modes of that large cavity (which
have very small mode frequency spacing) are “pulled” toward
the resonances of our cavity by the dispersion it induces
(or equivalently by the boundary conditions). This leads to
a “piling-up” of mode density near the resonances.

The output-field spectral amplitude b(ω) is given in terms
of a different Green’s function Gba(ω) as

b(ω) = Gba(ω)a(ω), (16)

where

Gba(ω) = exp(iωT )

[
1 − ρ exp(−iωT )

1 − ρ exp(iωT )

]
= exp[i θ (ω)], (17)

from which we can see that in the frequency domain the output
field differs from the input field only by a unit-magnitude factor
with a frequency-dependent phase θ (ω). This fact is consistent
with energy conservation.

The inverse relation is easy to write; from Eqs. (16)
and (17),

a(ω) = [Gba(ω)]−1b(ω) = exp[−i θ (ω)]b(ω)

= Gba(ω)∗b(ω). (18)

The inverse Green’s function is simply the complex conjugate
of the forward one: Gab(ω) = Gba(ω)∗. As can be seen from
(17), the complex conjugate corresponds to simply replacing
T by − T in Gba(ω).

The above relations are common lore in cavity theory. Here
we exploit them to derive simple input-output relations for
quantum fields. To further this goal, we derive the quantum-
mechanical ramifications of the above relations.

The commutator for the input field is, in the frequency
domain:

[a(ω),a†(ω′)] = 2πδ(ω − ω′). (19)

The commutator for the cavity field in the frequency domain
is, from Eqs. (15) and (19),

[c(z,ω),c†(z,ω′)] = |Gca(ω)|22πδ(ω − ω′)

=
∣∣∣∣ τ

1 − ρ exp(iωT )

∣∣∣∣2

2πδ(ω − ω′). (20)

This commutator is different from the free-space one, and
reflects the increase of the density of states near the cavity
resonances.

The cavity field can be expressed in a different way using a
Taylor-series expansion:

c(0+,ω) = τa(ω)

1 − ρ exp(iωT )
= τa(ω)

∞∑
n=0

ρneinωT . (21)

Transforming back to the time domain yields

C(0+,t) =
∫ ∞

−∞

dω

2π
e−iωt τa(ω)

∞∑
n=0

ρneinωT

= τ

∫ ∞

−∞
dt ′A(t ′)

∞∑
n=0

ρnδ (t − nT )

= τ

∞∑
n=0

ρnA (t − nT ). (22)

The first term in the sum is the beam-splitter transfer
function, while the remaining terms are delayed and attenuated
replicas (echoes) of the input. This, too, can be expressed in
linear-response form, by introducing the time-domain Green’s
function G̃ca(t), which is the Fourier transform of Gca(ω).
Then

C(0+,t) =
∫ ∞

−∞
dt ′G̃ca(t − t ′)A(t ′), (23)

where

G̃ca(t) = τ

∞∑
n=0

ρnδ (t − nT ). (24)

The commutation relation for the cavity field in the time
domain is derived in Appendix A from Eq. (22), and is found

043819-3



M. G. RAYMER AND C. J. MCKINSTRIE PHYSICAL REVIEW A 88, 043819 (2013)

to be

[C(0+,t),C†(0+,t ′)]

= τ 2
∞∑

n=0

∞∑
m=0

ρmρn[A(t − nT ),A†(t ′ − mT )]

=
∞∑

k=−∞
ρ|k|δ(t − t ′ − kT ). (25)

This shows that the cavity field at position z = 0+ com-
mutes with itself at all times except those separated by integer
multiples of the cavity round-trip time; that is, at those times
that are causally connected by the speed of light in the cavity.
In the limit that there is no cavity, i.e., ρ → 0, this recovers
the free-space relation Eq. (5), as expected. For nonzero ρ

the commutator decays as ρ|k|, indicating loss of memory or
correlation between widely separated times.

The commutator in Eq. (25) can easily be generalized to
account for different positions in the cavity in a manner similar
to Eq. (6) for the input field. Note that Eq. (1) with P = 0
implies C(z,t) = C(0+,t − z/v); then Eq. (25) implies

[C(z,t),C†(z′,t ′)] =
∞∑

k=−∞
ρ|k|δ(t − z/v − (t ′ − z′/v) + kT ).

(26)

For equal times this becomes

[C(z,t),C†(z′,t)] =
∞∑

k=−∞
ρ|k|δ((z′ − z + kL)/v),

= δ((z′ − z)/v), (27)

where the sum does not contribute because z is contained
within the interval z ∈ [0, L]. This agrees with the funda-
mental field commutator result verified in [7], where it was
noted that Eq. (27) is the same inside and outside the cavity,
as it must be. What that report left unsaid is that when
different times are considered, as in Eq. (26), the commutator
inside the cavity is not the same as that of the input field.
The temporal evolution—here manifested as echoes—affects
the commutator, consistent with causality.

Figure 3 illustrates the space-time structure of the commu-
tator, from Eq. (26). Slanted white lines indicate values of t

and z where the commutator is nonzero. For t = 0 (horizontal
white lines), it can be seen that as z′ increases from 0 to L, the
spatial position where the commutator is nonzero (indicated by
the line crossings) moves with z′. There is a single crossing for

FIG. 3. (Color online) Modulus of the cavity-field commutator,
versus z and t , for t ′ = 0, and (a) z′ = 0, (b) z′ = 0.333, and
(c) z′ = 0.666. The cavity length L = 1; the speed of light v = 1;
time t is measured in units L/v. Horizontal white lines indicate
t = 0 regions. Mirror reflectivity ρ2 = 0.998.

any fixed value of z′, in agreement with Eq. (27). In contrast,
for fixed z, z′, and t ′ values, there are an infinite number of
times t at which the commutator is nonzero.

We can also calculate the commutator between the cavity
field at position z = 0+ and the input field:

[C(0+,t),A†(t ′)] = τ

∞∑
n=0

ρn[A(t − nT ),A†(t ′)]

= τ

∞∑
n=0

ρnδ(t − t ′ − nT ). (28)

The cavity field C(0+,t) commutes with the input field
A†(t ′) for all times t < t ′ because later values of the input
field cannot affect the cavity field at earlier times. Causality is
satisfied. This can also be generalized to account for different
positions in the cavity, as in Eq. (26). The commutator between
the cavity field and the output field can be found by similar
means.

The output field B(t), being a freely propagating field in
free space, must obey the same commutation relations as does
the input field, i.e., Eqs. (5) and (19). This is easy to see in
the frequency domain, where the commutator, from Eqs. (16)–
(19), is

[b(ω),b†(ω′)] = |Gba(ω)|22πδ(ω − ω′)
= 2πδ(ω − ω′). (29)

On the other hand, the mapping between the input and
output fields is nontrivial when expressed in the time domain.
To derive this, express the output-field Green’s function in the
frequency domain, Eq. (17), as

Gba(ω) = −ρ +
[

τ 2 exp(iωT )

1 − ρ exp(iωT )

]
= −ρ + τ 2

∞∑
n=1

ρn−1ei nωT . (30)

An inverse Fourier transform then gives the output Green’s
function in the time domain:

G̃ba(t) = −ρδ(t) + τ 2
∞∑

n=1

ρn−1δ(t − nT ), (31)

Therefore, the output field in the time domain is

B(t) =
∫ ∞

−∞
dt ′G̃ba(t − t ′)A(t ′), (32)

or

B(t) = −ρA(t) + τ 2
∞∑

n=1

ρn−1A(t − nT ). (33)

The first term here is the beam-splitter transfer function,
while the terms in the sum are echoes. It can be shown that
Eq. (33) is consistent with Eqs. (3), (12), and (22). From this
result, the commutation relation for the output field in the time
domain can be derived as a consistency check, and indeed is
found to be

[B(t),B†(t ′)] = δ(t − t ′), (34)
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that is, the same free-space commutator that is obeyed by
the input field. The derivation is given in Appendix B. The
generalized form in Eq. (6) also holds for the output field. This
reflects the fact that the output field, because it is traveling
in free space, can in principle be measured with arbitrarily
high precision simultaneously at distinct space-time points
not connected by causal propagation.

The inverse relation can be written in the time domain as
well; from Eq. (18), we saw that it corresponds to simply
replacing T by − T . Thus

A(t) =
∫ ∞

−∞
dt ′G̃ab(t − t ′)B(t ′), (35)

where

G̃ab(t) = −ρδ(t) + τ 2
∞∑

n=1

ρn−1δ(t + nT ), (36)

so,

A(t) = −ρB(t) + τ 2
∞∑

n=1

ρn−1B(t + nT ). (37)

This result can be verified explicitly by substituting Eq. (33)
into Eq. (37) and performing the sums.

III. REDUCTION TO STANDARD HIGH- Q
INPUT-OUTPUT THEORY

To verify that the theory above includes the standard I-O
theory [1] as a limiting case, we consider the limit regime
satisfying three conditions:

(i) The junction transmission coefficient τ is very small,
so the cavity storage time is long.

(ii) The cavity round-trip time T is very small, compared
to the duration of the input-field pulse.

(iii) The input field is narrow band, so it is well contained
within a single FSR of the cavity.

For a transform-limited input field, conditions (ii) and (iii)
are equivalent.

Define a cavity damping rate κ by κ = (1/T ) ln(1/ρ), so
that ρ = e−κT , which gives two ways to write the attenuation
factor suffered by the field on each trip around the cavity. Then
we can write, without approximation,

G̃ca(t) =
∞∑

n=0

τe−κnT δ(t − nT ). (38)

In order to consider how G̃ca(t) behaves in the high-Q limit,
note that it is a distribution (not a function), so it has meaning
only as a factor inside an integral. The relevant integral is
Eq. (23), which gives

C(0+,t) =
∞∑

n=0

τ e−κnT A(t − nT ). (39)

If the conditions (i)–(iii) are met, meaning that κT � 1,
then the sum in Eq. (39) can be well approximated by an
integral:

C(0+,t) ≈
∫ t

−∞
dt ′

τ

T
e−κ(t−t ′)A(t ′), (40)

where we used t ′ = t − nT and noted that n � 0 implies t ′ �
t . Comparing this to Eq. (23) shows that in this limit the
Green’s function can be effectively replaced by

G̃ca(t − t ′)eff = τ

T
e−κ(t−t ′)�(t − t ′), (41)

where �(x) is the Heaviside step (theta) function. Transform-
ing this to the frequency domain gives

Gca(ω)eff =
∫ ∞

−∞
dteiωt τ

T
e−κt�(t) = τ/T

κ − iω
, (42)

a complex Lorentzian, as expected for a single, narrow
resonance of a cavity. The same result is obtained directly
by considering Eq. (14) in the limit ωT → 0, and using ρ =
e−κT ≈ 1 − κT ≈ 1 − τ 2/2, which implies κ ≈ (1 − ρ)/T

and κ ≈ τ 2/2T , which is standard in high-Q cavity theory.
Near the resonance, the shape of the spectral response in

Eq. (42) is similar to the exact result given by Eq. (14), so it
might seem tempting to apply the approximate form even in
the intermediate-loss regime, where ρ is significantly different
than 1. The problem with this idea is that the approximate form
Eq. (42) has a maximum value τ/ ln(1/ρ), whereas the exact
result has a maximum value τ/(1 − ρ). These agree only in
the limit ρ → 1, which is the high-Q regime. Therefore, we
restrict application of Eq. (42) to the high-Q regime.

Standard I-O theory in the high-Q regime can be recovered
easily by noting that the solution in Eq. (40) (valid in the limit
ωT → 0) satisfies the following differential equation:

∂tC(0+,t) = −κC(0+,t) + τ

T
A(t). (43)

This fundamental equation of motion for the cavity field is
supplemented with the output-field equation, Eq. (3):

B(t) = τ C(L−,t) − ρA(t). (44)

The goal of standard I-O theory is to be able to treat the
cavity field as an effective single mode, called a “quasimode,”
with annihilation operator C(t) that obeys the commutator
[C(t),C†(t)] = 1. To this end, we note that in the limit ωT →
0, the effect of one round trip is negligible, so Eqs. (11) and
(12) imply that c(L−,ω) ≈ c(0+,ω) and C(L−,t) ≈ C(0+,t),
so we define C(t) = √

T C(0+,t), where we also introduced a
scaling factor

√
T . This makes the cavity field dimensionless.

Then, also using
√

κ ≈
√

τ 2/2T , we find

∂tC(t) = −κC(t) +
√

2κ A(t). (45)

The output-field equation becomes, in the limit ρ → 1,

B(t) =
√

2κ C(t) − A(t). (46)

The commutator of the (rescaled) quasimode operator is
easily found from Eq. (40) to be

[C(t),C†(t ′)] = exp(−κ|t − t ′|). (47)

This reduces to [C(t),C†(t)] = 1 for equal times, justifying
the scaling factor that we used. Equations (45)–(47) are the
standard I-O theory for high-Q cavities, originally derived
using a master-equation method [1]. Note that the commutator
Eq. (34) is exactly upheld even with the approximations made
in arriving at Eqs. (45) and (47).
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FIG. 4. (Color online) Cavity-field commutator [C(t),C†(t ′)]
versus time difference; (solid) exact from Eq. (28); (dashed) standard
approximation from Eq. (47), using κ ≈ (1 − ρ)/T . (a) ρ = 0.97,
(b) ρ = 0.70. (Delta functions are represented by narrow Gaussians
for visualization.)

It is helpful to compare graphically the forms of the
commutator in the exact and approximate theories, as in Fig. 4.
For high junction reflectivity, ρ = 0.97, the approximate
commutator (using κ ≈ (1 − ρ)/T ) acts like an accurate
envelope for the exact commutator, which is a sum of delta
functions. However, for ρ = 0.70, the approximate result
deviates significantly from the true envelope of the delta
functions. By using the exact expression for the damping rate,
κ = (1/T ) ln(1/ρ), the approximate commutator can be made
to decay at the exact same rate as the exact commutator. But
then, as stated above, the magnitudes of the Green’s functions
in the frequency domain do not agree quantitatively unless
(1 − ρ) � 1, which is the high-Q limit.

IV. CAVITY SHAPING OF
TIME-FREQUENCY-ENTANGLED
TWO-PHOTON WAVE PACKETS

A standard example of nonclassical light is the time-
frequency-entangled photon pair [16–19]. It can exhibit
violations of Bell inequalities [16], violation of classical
Maxwell electromagnetic theory [20,21], and is useful in
quantum cryptographic key distribution [22], among other
applications. It is easily created using spontaneous parametric
down-conversion in crystals [23,24] or spontaneous four-wave
mixing in fibers [25–28], and since it contains only two
photons is fully characterized by its fourth-order electric-field
correlation function,

f (t1,t2) = 〈| A†(t1)A†(t2)A(t2)A(t1) |〉 , (48)

where the field operator is (if the light is not too broadband)

A(t) =
∫

dω

2π
a(ω)e−iωt . (49)

The state can be expressed equivalently in the frequency or
time domains as

|〉 = (2π )−2
∫

dω

∫
dω′ψ̃(ω,ω′)a†(ω)a†(ω′) |vac〉

=
∫

dt

∫
dt ′ψ(t,t ′)A†(t)A†(t ′)|vac〉, (50)

where ψ(t,t ′) is the double Fourier transform of ψ̃(ω,ω′) and
the field operators obey the commutators Eq. (19) or Eq. (5).
(Note that we are working in the Heisenberg picture, where
the state |〉 is time independent.) The modulus squared of
the two-photon probability amplitude |ψ(t1,t2)|2 gives the
joint probability to detect photons at both times t1 and t2,

and is determined by the properties of the down-conversion
crystal and the laser field used to pump it [29–31]. Likewise,∣∣ψ̃(ω,ω′)

∣∣2
gives the joint spectral density—the probability to

detect photons at both frequencies ω and ω′.
The correlation function in Eq. (48) is the inner product of

A(t2)A(t1) |〉 with its Hermitian conjugate, so we evaluate

A(t2)A(t1)|〉
=

∫
dt

∫
dt ′ψ(t,t ′)A(t2)A(t1)A†(t)A†(t ′)|vac〉

= [ψ(t1,t2) + ψ(t2,t1)]|vac〉, (51)

where we used the commutator Eq. (5) repeatedly inside the
integral to put the operators into normal order (annihilation
operators to the right). Then the correlation function becomes
f (t1,t2) = |�(t1,t2)|2, where we defined the “two-photon wave
function” as

�(t1,t2) = 〈vac|A(t2)A(t1)|〉 = ψ(t1,t2) + ψ(t2,t1). (52)

This definition is standard notation in the quantum-field
theory of massive particles. In quantum optics, it can be
thought of as simply a function that is proportional to the
two-photon detection amplitude [32,33] or as a true photon
wave function [34,35]. Note that this function automatically
has the correct boson symmetry under photon label exchange
(t1 ↔ t2) [35]. This function can be engineered to be very
narrow in the time difference t1 − t2, which implies that in
the frequency domain there is strong anticorrelation between
observed frequencies, with their sum equaling that of the pump
laser [36].

As an example of the input-output theory, consider what
happens when such a two-photon state is incident on a
cavity of the type in Fig. 1. One might expect one of a few
possibilities: The tight temporal correlation will be disrupted
because a given photon in the pair may take any number
of round trips around the cavity before emerging; the tight
temporal correlation will be maintained because the effect of
the cavity is only to introduce dispersion, and it is known that
dispersion in bulk-media propagation is canceled in certain
situations for time-frequency-entangled photon pairs [37]; or
some combination of these two effects might occur.

The quantum state, Eq. (50), when expressed in the output-
mode variables in the frequency domain, can be found using
the inverse relation Eq. (18) to write a†(ω) = Gba(ω)b†(ω).
Then

|〉 = (2π )−2
∫

dω

∫
dω′{ψ̃(ω,ω′)Gba(ω)Gba(ω′)}

× b†(ω)b†(ω′)|vac〉. (53)

The quantity in brackets inside the integral is the output
wave function. Because the Green’s function Gba(ω) is
unimodular, this confirms that there is no change of the joint
spectral density as a consequence of passing through the cavity.

The output state in the time domain is found by writing
Eq. (35) for the creation operator (note the Green’s function is
real):

A†(t) =
∫ ∞

−∞
dt ′G̃ab(t − t ′)B†(t ′), (54)
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and G̃ab(t − t ′) is given by Eq. (36). Then Eq. (50) implies

|〉 =
∫

dt

∫
dt ′ψ(t,t ′)

∫ ∞

−∞
dτG̃ab(t − τ )B†(τ )

×
∫ ∞

−∞
dτ ′G̃ab(t ′ − τ ′)B†(τ ′) |vac〉

=
∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′ψout(τ,τ

′)B†(τ )B†(τ ′)|vac〉, (55)

where the two-photon amplitude at the output is

ψout(τ,τ
′) =

∫
dt

∫
dt ′G̃ab(t − τ )G̃ab(t ′ − τ ′)ψ(t,t ′).

(56)

The correlation function at the output is

fout(t1,t2) = 〈|B†(t1)B†(t2)B(t2)B(t1)|〉, (57)

which equals the inner product of B(t2)B(t1) |〉 with its
Hermitian conjugate. In Appendix C we show that

B(t2)B(t1)|〉
=

∫
dt

∫
dt ′G̃ab(t − t1)G̃ab(t ′ − t2)�(t,t ′)|vac〉. (58)

The correlation function for the output is thus fout(t1,t2) =
|�out(t1,t2)|2, where the two-photon wave function is, using
Eq. (36),

�out(t1,t2) =
∫

dt

∫
dt ′G̃ab(t − t1)G̃ab(t ′ − t2)�(t,t ′)

= ρ2�(t1,t2) − τ 2
∞∑

m=1

ρm�(t1,t2 − mT )

− τ 2
∞∑

n=1

ρn�(t1 − nT ,t2)

+ τ 4
∞∑

n=1

∞∑
m=1

ρn+m−2�(t1 − nT ,t2 − mT ).

(59)

This clearly holds the possibility for photon-counting
coincidences to occur at any combinations of delays suffered
separately by the two photons. But two-photon quantum
interference can eliminate some of these possibilities under
certain conditions.

As an example, first consider the common case of a
stationary down-conversion source, pumped by a constant (cw)
laser field. In this case the two-time wave function depends
only on the time difference, �(t1,t2) = D(t1 − t2), with the
width of the function D being the coherence time. This implies
a two-time wave function in the frequency domain proportional
to

ϕ(ω,ω′) ∝ δ(ω + ω′)
∫

dτ ei(ω−ω′)τD(τ ), (60)

showing the perfect frequency anticorrelation that is character-
istic of this form of time-frequency entanglement. To evaluate
the two-time wave function of the output field in this case, we

use the math relation
∞∑

n=1

∞∑
m=1

ρn+m D(t1 − t2 + (n − m)T )

=
∞∑

k=−∞

∞∑
s=|k|/2+1

ρ2sD(t1 − t2 + kT )

= ρ2

1 − ρ2

∞∑
k=−∞

ρ|k|D(t1 − t2 + kT ). (61)

Then we find

�out(t1,t2) = ρ2D(t1 − t2) − τ 2
∞∑

m=1

ρmD(t1 − t2 + mT )

− τ 2
∞∑

n=1

ρnD(t1 − t2 − nT )

+ τ 4

ρ2

∞∑
n=1

∞∑
m=1

ρn+m D(t1 − t2 − (n − m)T )

= D(t1 − t2). (62)

The output field has the same narrow temporal correlation
function as does the input field! The photons of a pair emerge
together after scattering from the cavity.

To see the origin of this result, note that the second term
canceled with the positive-k parts of the fourth term [written
in the form of Eq. (61)], whereas the third term canceled with
the negative-k parts of the fourth term. The k = 0 part of the
fourth term combined with the first term to yield the result.
That is, quantum amplitudes with zero cavity transits for one
photon and m transits for the other (second and third terms)
are canceled by amplitudes with k transits for one photon and
k + m for the other. This is a remarkable example of the
cancellation of dispersion that is known for two-photon light
with perfect frequency anticorrelation [37].

The case of a nonstationary two-photon source is also of
interest. This occurs if the pump field is pulsed. In a special
case we can model the wave function as a two-dimensional
Gaussian, with parameter σ giving the correlation time, and a
second parameter β giving the pulse duration,

�(t1,t2) = exp[−(t1 + t2)2/2β2] exp[−(t1 − t2)2/2σ 2]. (63)

Then, from Eqs. (59) and (63),

�b(t1,t2) = {τ 2F0 + ρ2 exp[−(t1 + t2)2/2β2]}
× exp[−(t1 − t2)2/2σ 2]

+ τ 2
∞∑

m=1

{Fm − ρm exp[−(t1 + t2 − mT )2/2β2]}

× exp[−(t1 − t2 + mT )2/2σ 2]

+ τ 2
∞∑

m=1

{Fm − ρm exp[−(t1 + t2 − mT )2/2β2]}

× exp[−(t1 − t2 − mT )2/2σ 2], (64)

where

Fm = τ 2
∞∑

s=|m|/2+1

ρ2s−2 exp[−(t1 + t2 − 2sT )2/2β2]. (65)
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FIG. 5. (Color online) Magnitude of two-photon wave function
|�b(t1,t2)| versus t1 and t2, from Eq. (64), for parameter values σ =
0.3, β = 0.3, T = 1, and the junction transmission varied as (a) τ =
0.999, (b) τ = 0.95, (c) τ = 0.85, (d) τ = 0.60.

The function Fk goes to ρ|k| in the limit β → ∞, thus
recovering the result in Eq. (62).

Consider the case of equal σ and β, so the wave function
of the input field is separable (expressible as a product of
two functions, one in t1 and one in t2). The magnitude of the
two-photon wave function, Eq. (64), is plotted in Fig. 5.

For τ = 0.999 the dominant correlation peak occurs at
(t1,t2) = (1,1) because the light takes one full round trip in the
nearly nonreflecting cavity before emerging. For τ = 0.60
the dominant correlation peak occurs at (t1,t2) = (0,0) because
the light reflects from the junction, without delay, into the
output beam. The output wave function is separable, as it
was at the input. See Appendix D. (This can be understood
by noting that the output wave function in the frequency
domain, in Eq. (53) retains its separability if the input state is
separable, and by noting that separability in frequency implies
separability in time.)

Figure 6 shows a case in which the input field’s wave
function is nonseparable. The wave function retains this
nonseparability at the output, as it develops echoes.

V. INCLUSION OF DISSIPATIVE LOSS

To include dissipative loss in the arbitrary-coupling-
strength model, we introduce an absorbing molecular medium
throughout the cavity. Then Eq. (1) reads

(∂t + v∂z)C(z,t) = αP (z,t),
(66)

∂tP (z,t) = −γP (z,t) − βC(z,t) + F (z,t),

where α, β are coupling parameters, γ is the damping rate
for the molecular electric-dipole polarization P (z,t), and
F (z,t) is a quantum Langevin fluctuation operator obeying

FIG. 6. (Color online) Magnitude of two-photon wave function
|�b(t1,t2)| versus t1 and t2, from Eq. (64), for parameter values σ =
0.2, β = 0.7, T = 1, and the junction transmission varied as (a) τ =
0.999, (b) τ = 0.95, (c) τ = 0.85, (d) τ = 0.60.

the commutator [38]

[F (z,t),F †(z′,t ′)] = 2γ δ(t − t ′)δ(z − z′). (67)

Integrate the equation for the dipole polarization, assuming
the molecular damping is fast, making the absorber broadband:

P (z,t) =
∫ t

−∞
dt ′e−γ (t−t ′)[−βC(z,t ′) + F (z,t ′)]

≈ −(β/γ )C(z,t) + FP (z,t), (68)

where the effective Langevin fluctuation operator for the dipole
polarization is

FP (z,t) ≡
∫ t

−∞
dt ′e−γ (t−t ′)F (z,t ′). (69)

Calculate the commutator for the dipole fluctuation
operator:

[FP (z,t),F †
P (z′,t ′)] = exp(−γ |t − t ′|)δ(z − z′)

→ 2γ δ(t − t ′)δ(z − z′), (70)

where the final step results from assuming the molecular
damping is fast. That is, in the limit we consider, one can
idealize the P fluctuations as delta correlated. Absorber
models were introduced previously in I-O theory [4,5]. Here
it leads to the modified cavity-field propagation equation,

(∂t + v∂z)C(z,t) = −(αβ/γ )C(z,t) + αFP (z,t), (71)

where αβ/γ plays the role of the attenuation rate of the cavity
field. The key point is that dissipative loss always brings with
it additional fluctuations, and these are accounted for by the
Langevin operator.

It is straightforward to solve Eq. (71), along with the
boundary conditions Eqs. (2) and (3), in steady state to study

043819-8



QUANTUM INPUT-OUTPUT THEORY FOR OPTICAL . . . PHYSICAL REVIEW A 88, 043819 (2013)

the effects of attenuation and fluctuation on the cavity and
output fields. We leave this as an exercise.

VI. DISCUSSION

The main results of this study are (i) showing that the
standard classical field propagation equations, Eqs. (1)–(3),
provide a proper quantum mechanical description of input,
cavity, and output fields when the input coupling strength
takes on arbitrary values; (ii) deriving explicit formulas for
Green’s functions and commutators for the three fields in
both space-frequency and space-time domains; (iii) confirming
that the commutator Eq. (26) agrees with the fundamental
equal-time field commutator Eq. (27), which must always be
respected; and (iv) deriving the effects of a reflecting cavity
on a two-photon wave-packet state.

The I-O theory formulated here is amenable to inclusion
of intracavity absorbing and emitting atoms. Given that the

equal-time field commutator agrees with the fundamentally
required one, Eq. (27) [7], the effects of atoms in the
cavity may be accounted for by using the standard minimal-
coupling atom-field interaction Hamiltonian. The theory can
also account for dynamical absorbing media in the cavity
by generalizing the equation of motion for the dipole po-
larization P (z,t) in Eq. (66) to include multilevel media
with or without population inversion and/or coherent control
fields. This might be useful, for example, as a model for
a quantum memory, and will be considered in a following
paper.
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APPENDIX A: COMMUTATOR FOR CAVITY FIELD

To verify Eq. (25), write

[C(0+,t),C†(0+,t ′)] = τ 2
∞∑

n=0

∞∑
m=0

ρmρn[A(t − nT ),A†(t ′ − mT )] = τ 2
∞∑

n=0

∞∑
m=0

ρn+mδ[t − t ′ − (n − m)T ]. (A1)

For t � t ′ it is required that n � m, so

[C(0+,t),C†(0+,t ′)]t�t ′ = τ 2
∞∑

n=0

n∑
m=0

ρn+mδ(t − t ′ − (n − m)T ) = τ 2
∞∑

k=0

∞∑
s=0

ρk+2sδ(t − t ′ − kT ) =
∞∑

k=0

ρkδ(t − t ′ − kT ),

(A2)

where we used τ 2 + ρ2 = 1 and the general relation
∞∑

n=0

n∑
m=0

f (n + m)g(n − m) =
∞∑

k=0

∞∑
s=0

f (k + 2s)g(k). (A3)

For t � t ′, it is required that n � m; so

[C(0+,t),C†(0+,t ′)]t�t ′ =
0∑

k=−∞
ρ−kδ(t − t ′ + kT ). (A4)

Combining the two cases gives:

[C(0+,t),C†(0+,t ′)] =
∞∑

k=−∞
ρ|k|δ(t − t ′ + kT ) =

∞∑
k=−∞

ρ|k|δ(t − t ′ − kT ). (A5)

APPENDIX B: COMMUTATOR FOR OUTPUT FIELD

To verify Eq. (34), use Eqs. (2) and (3) to write

B(t) = − 1

ρ
A(t) + τ

ρ
C(0+,t). (B1)

Use this and Eq. (28) to write

[B(t),B†(t ′)] = 1

ρ2
[A(t),A†(t ′)] − τ

ρ2
[C(0+,t),A†(t ′)] − τ

ρ2
[A(t),C†(0+,t ′)] + τ 2

ρ2
[C(0+,t),C†(0+,t ′)]

= 1

ρ2
δ(t − t ′) − τ 2

ρ2

∞∑
n=0

ρnδ(t − t ′ − nT ) − τ 2

ρ2

∞∑
n=0

ρnδ(t − t ′ + nT ) + τ 2

ρ2

[ ∞∑
k=−∞

ρ|k|δ(t − t ′ − kT )

]
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= 1

ρ2
δ(t − t ′) − τ 2

ρ2

⎡⎣δ(t − t ′) +
∞∑

n�=0

ρnδ(t − t ′ − nT )

⎤⎦ − τ 2

ρ2

⎡⎣δ(t − t ′) +
∞∑

n�=0

ρnδ(t − t ′ + nT )

⎤⎦
+ τ 2

ρ2

⎡⎣δ(t − t ′) +
∞∑

n�=0

ρnδ(t − t ′ − nT ) +
∞∑

k �=0

ρ|k|δ(t − t ′ + kT )

⎤⎦
=

(
1

ρ2
− τ 2

ρ2

)
δ(t − t ′) = δ(t − t ′). (B2)

APPENDIX C: TWO-PHOTON CORRELATION FUNCTION

To verify Eq. (58), write

B(t2)B(t1) |〉 =
∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′F (τ,τ ′)B(t2)B(t1)B†(τ )B†(τ ′) |vac〉 , (C1)

where

F (τ,τ ′) =
∫

dt

∫
dt ′G̃ab(t − τ )G̃ab(t ′ − τ ′)ψ(t,t ′). (C2)

Repeated use of commutators gives

B(t2)B(t1)|〉 = (F (t1,t2) + F (t2,t1)) |vac〉 (C3)

The input two-photon function is

�(t1,t2) = 〈vac| A(t2)A(t1) |〉 = ψ(t1,t2) + ψ(t2,t1), (C4)

and the output one is

�out(t1,t2) = 〈vac| B(t2)B(t1) |〉 =
∫

dt

∫
dt ′

[
G̃ab(t − t1)G̃ab(t ′ − t2) + G̃ab(t − t2)G̃ab(t ′ − t1)

]
ψ(t,t ′). (C5)

This can be written as

�out(t1,t2) =
∫

dt

∫
dt ′G̃ab(t − t1)G̃ab(t ′ − t2)[ψ(t,t ′) + ψ(t ′,t)]. (C6)

APPENDIX D: SEPARABILITY OF TWO-PHOTON STATE

Proof that if the state is separable at the input, then it is separable at the output: If �(t,t ′) = φ1(t)φ2(t ′), then from
Eq. (59),

�out(t1,t2) = ψ1out (t1)ψ2out (t2), (D1)

where

ψ1out (t) =
∫

dt ′G̃ab(t ′ − t)φ1(t) = −ρφ1(t) + τ 2

ρ

∞∑
n=1

ρnφ1(t − nT ),

ψ2out (t) =
∫

dt ′G̃ab(t ′ − t)φ2(t ′), = −ρφ2(t) + τ 2

ρ

∞∑
n=1

ρnφ2(t − nT ). (D2)

Plotting this form Eq. (D1) for the example shown in Fig. 5 gives results identical to those shown there.
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