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We introduce and discuss a set of tunable two-mode states of continuous-variable systems, as well as a simple,
effective scheme for their experimental generation. This class of tunable entangled resources is defined by a gen-
eral ansatz depending on two experimentally adjustable parameters. It is very ample and flexible as it encompasses
Gaussian as well as non-Gaussian states. The latter include, among others, known states such as squeezed number
states and de-Gaussified photon-added and photon-subtracted squeezed states, the latter being the most efficient
non-Gaussian resources currently available in the laboratory. Moreover, it contains the classes of squeezed Bell
states and even more general non-Gaussian resources that can be optimized according to the specific quantum
technological task that needs to be realized. The proposed experimental scheme exploits linear optical operations
and photon detections performed on a pair of uncorrelated two-mode Gaussian squeezed states. The desired non-
Gaussian state is then realized via ancillary squeezing and conditioning. Two independent, freely tunable experi-
mental parameters can be exploited to generate different states and to optimize the performance in implementing a
given quantum protocol. As a concrete instance, we analyze in detail the performance of different states considered
as resources for the realization of quantum teleportation in realistic conditions. For the fidelity of teleportation
of an unknown coherent state, we show that the resources associated with the optimized parameters outperform,
in a significant range of experimental values, both Gaussian twin beams and photon-subtracted squeezed states.
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I. INTRODUCTION

Quantum information with Gaussian states of continu-
ous variable systems has been investigated thoroughly and
with startling success both theoretically and experimentally
(for comprehensive reviews of different aspects, see, e.g.,
Refs. [1–6]). At the same time, there has been growing
awareness of some important limitations intrinsic to working
entirely within the framework of Gaussian states and/or
Gaussian operations, so that at some point it becomes both
desirable and necessary to start exploring the vast ocean of
continuous-variable non-Gaussian states and non-Gaussian
operations. The first pioneering and paradigmatic example
of this need is given by the by now classic proof that
distillation of Gaussian entangled states resorting only to
Gaussian operations is impossible [7].

In fact, various compelling reasons suggest a thorough
investigation of the properties of continuous-variable non-
Gaussian states. Gaussian states are indeed extremal in the
sense that at fixed covariance matrix several nonclassical
properties such as entanglement, when measured by the
entanglement of formation, and distillable secret key rates
are minimized by Gaussian states [8]. Specific families of
non-Gaussian entangled resources lead to significant improve-
ments in the performance of existing continuous-variable
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quantum information protocols such as teleportation [9,10].
Measurement-based quantum computation with continuous
variables eventually needs both non-Gaussian operations and
non-Gaussian resource states in order to be universal [11,12].
Preliminary investigations of the interplay of non-Gaussian
inputs and different types of Gaussian and non-Gaussian
channels unveil the clear advantages, in general, of non-
Gaussianity for state estimation and metrology [13–17].
Stronger violations of Bell inequalities and better-performing
entanglement-swapping protocols are also expected using
non-Gaussian resources and strategies beyond the currently
available ones [18–22]. While so-called Gaussifier protocols
of entanglement distillation have been proposed that convert
noisy non-Gaussian states into Gaussian ones through con-
verging iterative procedures [23,24], general optimal strategies
for the distillation of highly entangled non-Gaussian states
are still lacking. Finally, the interplay of non-Gaussianity,
nonclassicality, and non-Markovianity is expected to lead to
further phenomena when addressing the dynamics of open
continuous-variable systems.

Among the many families of continuous-variable non-
Gaussian states that can be of interest for fundamental
quantum physics as well as for quantum information and
related quantum technologies one should mention squeezed
cat states [5]; multiphoton squeezed states, that is, states that
generalize the usual two-photon Gaussian squeezed states by
considering nonlinear extensions of the linear Bogoliubov
squeezing transformations, either single mode [25] or two
mode [26]; and especially squeezed Bell states [9]. Indeed,
the latter include squeezed Fock and de-Gaussified squeezed
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coherent states as particular cases, as we shall review below.
Non-Gaussian and de-Gaussified states can be generated by
introducing higher-order nonlinearities in the source, and/or
by performing conditional measurements.

Many theoretical and experimental efforts have been
concentrated on the engineering of noclassical, non-Gaussian
states of the radiation field [27–35]. In particular, concerning
quantum teleportation with continuous variables [36–39], it
has been demonstrated that the fidelity of teleportation can be
improved using various families of non-Gaussian resources
[40–42]. At present, the best experimentally realized non-
Gaussian resource for continuous-variable teleportation is the
photon-subtracted squeezed state [28–32]. The experimental
generation of two-mode subtracted squeezed states has been
reported very recently [43]. On the other hand, as already
mentioned, an additional class of continuous-variable non-
Gaussian states, the squeezed Bell states, has been introduced
recently [9]. These states interpolate between different de-
Gaussified states, and can be fine tuned by acting on an
independent free parameter in addition to the squeezing.

From a theoretical point of view, entangled Gaussian
and de-Gaussified states are defined by applying squeezing
and ladder operators on the two-mode vacuum. Within this
theoretical context the teleportation fidelity for the Braunstein-
Kimble-Vaidman protocol is improved, in a significant range
of the parameters, by replacing Gaussian and de-Gaussified
resources by optimized squeezed Bell states [9]. This has
been verified for different inputs (including coherent states,
squeezed states, and squeezed number states), and also in the
presence of losses and other realistic sources of imperfections
[10]. This effect can be understood by remarking a crucial
difference existing between the case of teleportation protocols
relying on entangled Gaussian resources and the case allowing
for more general entangled states. In the former it is known
that the fidelity of teleportation and the entanglement of
the shared entangled Gaussian resource are in one-to-one
correspondence [44]. In the latter this is no longer true and
the fidelity of teleportation becomes a highly complicated
function of three (in general conflicting) variables: degree
of entanglement, degree of non-Gaussianity, and degree of
Gaussian affinity [9]. In particular, the third variable (Gaussian
affinity) is crucial. It quantifies the overlap with the two-
mode squeezed vacuum. Loosely speaking, it assures that an
efficient entangled resource must contain a contribution, with a
relevant weight, given by the two-mode squeezed vacuum plus
symmetric non-Gaussian corrections. The optimized squeezed
Bell states realize indeed the best possible compromise for the
simultaneous maximization over all these three properties of
the fidelity of teleportation [9].

In the above-mentioned works, detailed theoretical investi-
gations have been carried out on the performance of entangled
non-Gaussian resources in the implementation of a specific
quantum protocol, quantum teleportation, which is one of the
most fundamental yet relatively simple tasks in the quantum
information domain. Of course, the rationale for investigat-
ing the experimental realizability of non-Gaussian states of
continuous-variable systems goes well beyond gaining some
modest advantage with respect to the use of optimal Gaussian
resources in quantum teleportation. The main implications and
applications will hopefully go well beyond the “warm-up”

exercise with teleportation. In particular, while teleportation is
a useful and relatively simple test ground for the use of non-
Gaussian resources vs Gaussian ones, the crucial future appli-
cations will deal with tasks such as entanglement distillation,
loophole-free tests of quantum nonlocality, Einstein-Podolsky-
Rosen (EPR) steering, metrology, and measurement-based
universal quantum computation. These are all fundamental and
“difficult” fields of continuous-variable quantum technologies
for which is it known a priori that it is either indispensable
or highly desirable to go beyond the Gaussian regime. On
the other hand, the ocean of non-Gaussian states is so vast
that before even starting the journey into it one needs to
have some guiding lines, in order to avoid totally blind
navigation. The application to teleportation serves perfectly
the purpose of setting up the best navigation possible because
it is (I) relatively easy to handle, and (II) essentially the
only one, together with entanglement swapping, EPR steering,
and Bell’s nonlocality tests (which will be the subjects of
forthcoming studies) for which one can compare with the
best possible performances guaranteed by Gaussian resources.
Therefore, it is important to identify a class of tunable,
entangled non-Gaussian states of continuous-variable systems
that (I) are relatively easy to realize in the laboratory and
(II) provide an improvement, however moderate, over the
best possible Gaussian performance. Indeed, as we shall
briefly review in the following, many obvious non-Gaussian
generalizations that come immediately to mind (squeezed cat
states, squeezed number states, and the like) fail to improve
on the performance guaranteed by Gaussian states, so that the
matter of identifying non-Gaussian resources that are “better”
than Gaussian ones is far from trivial. In the above-mentioned
works and in the present one we have identified such a class
of highly performing non-Gaussian resources, which build on
the basic elements of squeezing (Gaussianity), numbering in
Hilbert space (non-Gaussianity), and relative superposition
in tensor spaces (entanglement). One can then follow these
initial but solid guiding lines and carry on to build up further
improvement and identify further optimization strategies for
more complex and difficult quantum technological tasks.

The present paper is focused on the design of experimental
platforms capable of generating classes of highly tunable non-
Gaussian resources with enhanced performances for protocols
of quantum technology based on continuous variables. In order
to proceed towards concrete experimental realizations, one
needs to introduce a basic scheme of generation that takes into
account all the relevant sources of noise and imperfections in
realistic instances. Thereafter, one must verify that in these
realistic scenarios the performance of the present resource
in the framework of a given quantum protocol provides an
appreciable advancement that justifies the experimental effort.
After this preliminary analysis, one needs to work out carefully
the details of the experimental setup and, finally, one needs
to provide reliable methods for the reconstruction of the
experimentally generated states.

In the following, we will introduce the basic scheme of
generation for a large class of tunable two-mode entangled
non-Gaussian states and we present a preliminary analysis
of their performance as resources for continuous-variable
quantum technologies. The experimental scheme that we are
going to discuss has the advantage of being flexible and
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versatile, in the sense that a variation of the freely adjustable
experimental parameters allows for the generation of different
non-Gaussian states including, besides the squeezed Bell
states, photon-added squeezed states [45], photon-subtracted
squeezed states [30], squeezed number states, and, obviously,
also Gaussian twin beams [46,47]. The relative performance
of different states will be investigated in detail for the protocol
of quantum teleportation of unknown coherent states [36,37].
We will show that the optimized states in realistic conditions
provide, in a significant range of physical parameters, a
superior performance compared to all existing de-Gaussified
states.

II. EXPERIMENTAL SCHEME WITH ADJUSTABLE FREE
PARAMETERS FOR THE GENERATION OF

NON-GAUSSIAN STATES

The pure (normalized) squeezed Bell states originally
introduced in Refs. [9,10] are of the form

|�〉SB ≡ S12(−r) {cos δ|0,0〉12 + sin δ|1,1〉12} , (1)

where |0,0〉12 and |1,1〉12 denote, respectively, the tensor prod-
uct of two single-mode vacua and two one-photon states, while
Sij (−r) = exp{ra†

i a
†
j − raiaj } is the two-mode squeezing

operator, and δ is a free parameter allowing for optimization.
A more general form of the squeezed Bell states could include
a relative phase, but this inclusion would not improve the
performance of the squeeze Bell states when considered
as entangled resources. At some suitably chosen values of
the δ parameter, the squeezed Bell superposition coincides
with de-Gaussified photon-added states and photon-subtracted
states, with squeezed number states, and with Gaussian twin
beams [9], where addition or subtraction operations, as well
as the number state, are referred to the case of a single photon.
For a reminder, we list in Table I the theoretical definitions of
all the states considered.

In this section we introduce a scheme capable of generating
two-mode non-Gaussian states of the electromagnetic field
that provide the best experimental approximation to the form
and/or the performance of the theoretically defined squeezed
Bell states. The idea is to manipulate an overall four-mode
system described by two independent Gaussian twin beams,
one of which will play the role of an ancillary two-mode state,
and then exploit linear optical components and conditional
measurements. The experimental scheme, applied to a very dif-
ferent context and in a different regime of physical parameters,
is similar to the one proposed previously for the realization of
a protocol mapping finite-dimensional pure input states onto

TABLE I. Theoretical definition of some states of particular
interest that are included in the class of squeezed Bell states. NPS

and NPA denote, respectively, the normalization of de-Gaussified
photon-subtracted and photon-added squeezed states.

State Definition

Photon-subtracted squeezed state NPS a1a2S12(ζ )|0,0〉12

Photon-added squeezed state NPA a
†
1a

†
2S12(ζ )|0,0〉12

Squeezed number state S12(ζ )|1,1〉12

Gaussian twin beam S12(ζ )|0,0〉12

FIG. 1. (Color online) Sketch of the ideal scheme for the
experimental generation of the states defined theoretically in Eq. (4).
Two Gaussian twin beams, generated independently, respectively
|ζ 〉12 and |ξ〉34, impinge on two beam splitters BSI and BSII of
transmissivities T1 and T2. The generation of the output two-mode
state is triggered by two simultaneous detections realized by the
single-photon projective detectors D3 and D4.

approximately Gaussian states and relying only on passive
linear optical elements and on-off photodetection [48]. In this
respect, we recall that twin beams are routinely generated in
type-II optical parametric oscillators [49]. Therefore, in our
scheme, no higher-order nonlinearities are either needed or
desirable. The basic generation scheme is illustrated in Fig. 1.

In this scheme we exploit two independent Gaussian twin
beams, |ζ 〉12 = S12(ζ )|0,0〉12 and |ξ 〉34 = S34(ξ )|0,0〉34, so
that we start with an initial four-mode “protostate”

|ζ 〉12|ξ 〉34 = S12(ζ )S34(ξ )|0〉1234, (2)

where |0〉1···n = ⊗n
k=1 |0〉k denotes the tensor product of n

single-mode vacuum states. The twin beams feed the input
ports of two beam splitters, respectively of transmissivities T1

and T2. Modes 1 and 3 mix at the beam splitter BSI, while
modes 2 and 4 mix at the beam splitter BSII. The resulting
state is a four-mode entangled state |�〉1234 of the form

|�〉1234 = U13(κ1)U24(κ2)|ζ 〉12|ξ 〉34

= U13(κ1)U24(κ2)S12(ζ )S34(ξ )|0〉1234, (3)

where S12(ζ ) and S34(ξ ) are the squeezing operators with
complex squeezing parameters ζ = r exp{iφζ } and ξ =
s exp{iφξ }, respectively. The beam splitter operators read
Ulk(κl) = exp{κl(a

†
l ak − ala

†
k)}, where l = 1,k = 3 for the

first beam splitter, and l = 2,k = 4 for the second one. Finally,
tan κl = √

(1 − Tl)/Tl .
Starting with the four-mode state |�〉1234, the conditional

measurements provided by the simultaneous clicks of the
detectors D3 and D4, and the restriction to suitable ranges of
the beam splitter parameters and of the squeezing parameters,
will lead to the generation of two-mode states which, as we will
discuss, provide an approximate realization of the theoretical
squeezed Bell states Eq. (1). Obviously, the experimental
generation implies nonideal conditions, including losses and
detection inefficiency. We will proceed in steps. We will
consider the ideal situation first, with perfect single-photon
conditional measurements. This first step is useful in order to
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describe the basic elements of the scheme and the connection
to the theoretical squeezed Bell states. In a second step, we
will discuss the full realistic instance: we will include losses
and detection inefficiency, with numerical figures well within
the range of those accessible in current experiments.

A. Single-photon conditional measurements

Here we will consider detectors that are perfectly pho-
ton resolving with perfect coincidence in the simultaneous
detections of single photons in modes 3 and 4. Within
this idealization, simultaneous detections project the state of
Eq. (3) onto the tunable state |�T〉:

|�T〉 = N34〈1,1|U13(κ1)U24(κ2)S12(ζ )S34(ξ )|0〉1234, (4)

where N denotes the normalization constant.
By varying the six free parameters κ1, κ2, r , s, φζ , and φξ

the setup can produce different two-mode states: fully non-
Gaussian, de-Gaussified, and Gaussian. Let us start by fixing
φζ = π ; then S12(ζ ) ≡ S12(−r). On the other hand, if we fix
also φξ = π (as it indeed will be later forced by optimization;
see the next section) it is straightforward to realize that the two
beam splitters play a similar, actually symmetrical role:

T1 = T2 ≡ T ,

and thus

κ1,κ2 ≡ κ.

Moreover, it is immediate to see that ξ = −s and S34(ξ ) ≡
S34(−s). This simplified instance is sufficient for the purpose
of generating the general class of squeezed Bell states. Further,
we consider the situation in which κ2 � 1, while the amplitude
|ξ | (≡s) of the ancillary squeezing S34 is chosen to be at most
of the same order of κ2 (the significance of this choice will be
clarified below). Therefore, we are considering beam splitters
with a high transmissivity T = cos2 |k|, and an ancillary
squeezing S34 with a weak relative squeezing amplitude. As
a consequence of these choices, the unitary operators U13(κ)
and U24(κ) can be expanded in a power series truncated at the
order κ2, while S34(ξ ) can be truncated at the order |ξ | ≡ s.
Wrapping up, under these conditions one finds that

|�〉1234

≈
[

1 + κ(a†
1a3 − a1a

†
3) + κ2(a†

1a3 − a1a
†
3)2

2
+ O(κ3)

]

×
[

1 + κ(a†
2a4 − a2a

†
4) + κ2(a†

2a4 − a2a
†
4)2

2
+ O(κ3)

]

×{1 + [s(a†
3a

†
4 − a3a4) + O(s2)]}

×S12(−r)|0,0,0,0〉1234. (5)

Next, we apply a postelection strategy (see Appendix A for
more details). By using photodetection in coincidence, the
conditional measurements of simultaneous detections of single
photons in modes 3 and 4 project the non-normalized state
Eq. (5) onto the reduced-overlap two-mode state 34〈1,1|�〉1234:

34〈1,1|�〉1234 ≈ (s + κ2a1a2)S12(−r)|0,0〉12. (6)

Due to our assumptions on the relative amplitude of the
parameters κ2 and |ξ |, in the above equation we have neglected

terms proportional to |ξ |κ2, that is, all contributions of
the form −sκ2(a†

1a1 + a
†
2a2)S12(−r)|0,0〉12, as well as all

those of higher order. Exploiting the two-mode Bogoliubov
transformations

S
†
12(−r)aiS12(−r) = cosh r ai + sinh r a

†
j (i �= j = 1,2),

(7)

we finally obtain the non-normalized two-mode state

S12(−r){(s + κ2 sinh r cosh r)|0,0〉12 + κ2 sinh2 r|1,1〉12},
(8)

whose form, apart from normalization, coincides with that of
the theoretical squeezed Bell state Eq. (1). Normalizing, we
obtain finally

|ψT〉12 = S12(−r) {c00|0,0〉12 + c11|1,1〉12} , (9)

c00 = −λ + sinh r cosh r

[(−λ + sinh r cosh r)2 + (sinh2 r)2]1/2
, (10)

c11 = (
1 − c2

00

)1/2
, (11)

where λ = −s/κ2. The form Eq. (1) is recovered, observing
that

δ = arctan

(
κ2 sinh2 r

s + κ2 sinh r cosh r

)
. (12)

Photon-added and photon-subtracted squeezed states,
squeezed number states, twin beams, and other particular states
in the class Eq. (9) can then be obtained by choosing the
experimental parameters in such a way that the free parameter
δ [see Eq. (12)] takes the corresponding special values [9].
On including terms of higher order in the expansion, the
ensuing family of states still realizes close approximations
to the theoretical squeezed Bell states.

The discussion of the ideal experimental setup allows a
clear understanding of the general idea, by showing that the
basic scheme can generate, in a controlled manner, states
arbitrarily close to the theoretical squeezed Bell states. On
the other hand, we can relax to some extent the constraint
that the shape of the generated states be exactly that of the
squeezed Bell states, given that the main aim is to generate
states with enhanced performances with respect to Gaussian
twin beams and de-Gaussified squeezed states. Therefore, in
the subsequent analysis of realistic schemes, while retaining
the condition κ2 � 1, we will allow s to vary arbitrarily.

B. Generation under realistic conditions

In realistic experimental conditions the state |�T〉 will be
affected by unavoidable sources of decoherence such as cavity
output couplings and losses during propagation [50,51]. In this
context, the four-mode protostate |ζ 〉12|ξ 〉34, Eq. (2), turns into
a four-mode squeezed thermal state described by the following
input density matrix (see Appendix B for details):

ρ1234 = S12 (ζ ) S34 (ξ ) ρ th
1234S

†
12 (ζ ) S

†
34 (ξ ) , (13)

where ρ th
1234 = ⊗4

k=1 ρ th
k and ρ th

k is the density matrix of the
thermal state associated with mode k. On the other hand, at
typical room temperatures, the thermal density matrix ρ th

1234
tends to the vacuum state, so that ρ1234 coincides for all
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FIG. 2. (Color online) Scheme of generation of tunable two-mode
states under realistic conditions: two independently produced Gaus-
sian twin beams |ζ 〉12 and |ξ〉34 are mixed at the two beam splitters BSI

and BSII of transmissivities T1 and T2. Four fictitious beam splitters
with transmissivity T mimic the various decoherence mechanisms.
The single-photon projective measurements are replaced by the
positive-operator valued measures (POVMs) �

(on)
3 and �

(on)
4 with

quantum efficiencies η < 1.

practical purposes with the projection operator associated with
the pure state |�〉1234 (see Appendix B for details).

In Fig. 2 we illustrate the scheme of generation under real-
istic conditions. The decoherence mechanisms are modeled by
introducing four fictitious beam splitters (one for every input
mode) with equal transmissivity T(=1 − R). Each beam
splitter is illuminated at the empty port by a single-mode
vacuum υk . As already mentioned, at room temperature the
thermal contribution is negligible, and thus one simply needs
to replace the state |�〉1234 of Eq. (3) with the state

|�′〉1234 =
4⊗

k=1

Uk (T) |�〉1234, (14)

where the beam splitter operator that mixes mode ak with
the vacuum vk is given by Uk (T) = exp{κa

†
kvk − κ∗

 akv
†
k },

and κ is such that tan κ = √
(1 − T) /T. The postselection

procedure is implemented as follows (see Appendix A for
further details). The detection associated with modes k = 3,4
is now modeled by the positive-operator valued measure
(POVM) �

(on)
k (ηk) that takes into account the threshold

detection of n � 1 photons:

�
(on)
k (ηk) = Ik − �

(off)
k (ηk), (15)

where

�
(off)
k (ηk) =

∞∑
m=0

(1 − ηk)m |m〉k k〈m|, (16)

and ηk is the nonunit detection efficiency for mode k. The
corresponding density matrix reads

ρ
(on)
T (T,η3,η4) = Tr34

[
ρ ′

1234 ⊗ �
(on)
3 (ηk) ⊗ �

(on)
4 (ηk)

]
N (on)

T (η3,η4)
,

(17)
where ρ ′

1234 is the density matrix relative to the state |�′〉1234 .
The normalization constant reads

N (on)
T (η3,η4) = Tr1234

[
ρ1234 ⊗ �

(on)
3 (ηk) ⊗ �

(on)
4 (ηk)

]
. (18)

It depends on η3 and η4 and represents the success rate
for entanglement distillation in a realistic scenario [52]. In
the presence of losses (T < 1) and of imperfect quantum
efficiencies (η3,η4 < 1), the corresponding approximations to
squeezed Bell states, photon-subtracted squeezed states, and
Gaussian twin beams are obtained by inserting the values of
the ancillary parameters that yield these states in the theoretical
instance [9]:

ρ
(on)
PS (T,η3,η4) = ρ

(on)
T (T,η3,η4)

∣∣
s=0,κ0,

ρ
(on)
SB (T,η3,η4) = ρ

(on)
T (T,η3,η4)

∣∣
sκ2�1,φ=π

,

ρ
(on)
TB (T,η3,η4) = ρ

(on)
T (T,η3,η4)

∣∣
ξ=ζ≡ε

.

A further practical restriction, due to decoherence, comes
from the fact that the effective value of the squeezing
parameters is reduced. In Appendix A we show in detail that
the actual squeezing parameter r ′ is related to the loss-free
ideal parameter r according to the following correspondence:

r ′ = − 1
2 ln[1 − T(1 − e−2r )]. (19)

For instance, if in the block scheme of Fig. 1 the squeezing is
fixed at r = 2 (17.4 dB), in realistic conditions, with a 15%
level of losses (T = 0.85), it corresponds to a beam with r ′ of
about 0.90 (7.81 dB).

In the following, we will discuss the performance of
non-Gaussian entangled resources in implementing quantum
teleportation protocols, as measured by the teleportation
fidelity. Given that the photon-added squeezed states and
the squeezed number states, due to their very low degree of
Gaussian affinity, can never outperform Gaussian twin beams
with the same covariance matrix, as already discussed, e.g., in
Ref. [9], in the following we will compare optimized squeezed
Bell states, photon-subtracted squeezed states, and Gaussian
twin beams.

III. TUNABLE NON-GAUSSIAN RESOURCES AND
QUANTUM TELEPORTATION

A. Preliminaries

In this section we seek to optimize the fidelity of the
Braunstein-Kimble-Vaidman teleportation protocol of un-
known coherent states [36,37] using, as two-mode entangled
resources, the states generated using the realistic scheme in-
troduced in the previous section. To this end, it is convenient to
exploit the formalism of the characteristic function [53], which
is particularly suited for the analysis of non-Gaussian states,
because it greatly simplifies the computational strategies [9].

For an n-mode state described by a density matrix ρ the
characteristic function is defined as

χ (β1, . . . ,βn) = Tr[ρD1(β1) ⊗ · · · ⊗ Dn(βn)], (20)

where Di(βi) denotes the Glauber displacement operator
for the mode i (i = 1, . . . ,n). In Appendix A we show
in detail that, given a four-mode state represented by the
characteristic function χ1234 (β1; β2; β3; β4), the state achieved
after conditional measurements on the two ancillary modes 3
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and 4 (see Fig. 1) is given by the characteristic function

χ
(D)
T (β1; β2) = 1

Nπ2

∫
d2β3d

2β4χ1234 (β1; β2; β3; β4)

×χ
(D)
3 (β3) χ

(D)
4 (β4) , (21)

where d2βk = dβkdβ∗
k with βk the complex coherent ampli-

tude, and χ1234 (β1; β2; β3; β4) is the characteristic function
of the initial state. It corresponds to |�〉1234 [see Eq. (3)]
for the ideal scheme and to |�′〉1234 [see Eq. (14)] for
the realistic scheme. In the above, χ

(D)
k (βk) denotes the

characteristic function of the conditional measurement real-
ized by detectors D3 and D4 on the modes k = 3,4. For
more details, see Appendix A, in which D = |1〉 〈1| when
postselection is applied using single-photon projectors and
D = “on” when postselection is applied using realistic on-off
operators (POVMs).

We will consider the following states:
(a) Theoretical states. These are the ideal states defined in

Table I. They are not always exactly attainable within our
scheme of generation, not even in ideal conditions. Their
performances as entangled resources have been investigated
in Refs. [9,10].

(b) States generated experimentally: ideal conditions.
These are the states generated by our scheme when we assume
that losses are absent, detectors are perfectly photon resolving,
and measurements are perfectly projective.

(c) States generated experimentally: realistic conditions.
These are the states generated by our scheme when losses
are considered, and only on-off measurements, described by
nonideal POVMs, are allowed.

In the formalism of the characteristic function, the fidelity
of teleportation is defined as

F = 1

π

∫
d2λχin(λ)χout(−λ), (22)

where d2λ = dλdλ∗ with λ the vector of complex coherent
amplitude for a generic state. For an input coherent state |α〉,
the characteristic function χin ≡ χcoh is

χcoh(λ) = e−(1/2)|λ|2+2iIm[λα∗], (23)

while the characteristic function χout of the output state is [9]

χout(λ) = χcoh(λ)χres(λ
∗; λ), (24)

where χres (λ∗; λ) denotes the characteristic function of the
entangled state used as resource for the protocol. Before
proceeding further, we recall that the generation scheme
is based on the condition κ2 � 1 and on the possibility
of optimizing over largely tunable parameters. The only
unconditioned parameter is the amplitude r of the squeezing
operator S12(ξ ). Once r is fixed, the fidelity of the state
generated in the scheme will depend on the two squeezing
parameters and on transmissivities; therefore, from now on,
we will redefine the fidelity F as FT(ζ,ξ,T ).

This notation allows us to see clearly that the optimization
has to be performed with respect to the phases φζ and φξ of
the two squeezing operators, the transmissivity T (recall that
T1 = T2 = T ), and the squeezing amplitude s of the ancillary
squeezing operator S34(ξ ). In the following we will show that
optimization with respect to phases and transmissivities is

compatible with the assumptions imposed in order to generate
experimentally the class of squeezed Bell states. In general,
at fixed squeezing amplitude |ζ | = r for modes 1 and 2 (see
Fig. 1), the optimal fidelity is defined as

Fopt(r) = max
φζ ,ξ,T

FT(ζ,ξ,T ). (25)

Starting from this general relation, one has to solve the
optimization problem with respect to the phases of the complex
squeezing amplitudes. A thorough analysis shows that the
optimization procedure always yields φζ = φξ = π , thus
implying that the optimal building blocks of the generation
scheme (see Fig. 1) are always two independent two-mode
squeezed states with ζ = −r , and ξ = −s. This finding is
in agreement with and justifies a posteriori the a priori
position assumed in the previous section. Therefore, from
now on we will fix for the squeezing operators the notations:
S12(−r),S34(−s).

The optimization with respect to T must take into account
the role that the transmissivity plays in setting the distillation
success rate; see Eq. (18). Furthermore, the result of this
analysis must be congruent with the assumption κ2 � 1,
implying the high transmissivity T = cos2 |k| needed to
implement the generation scheme.

The fidelity turns out to be a monotonically increasing
function of T . The optimal value is thus obtained asymp-
totically for T approaching unity. Since the limiting value
T = 1 corresponds, obviously, to a vanishing success rate, in
the following we will set T = 0.99 (a value that is perfectly
reachable in a real experiment) and remove the dependence on
the transmissivity. In this way, one satisfies the assumption
κ2 ∼ 0.01 � 1 and, simultaneously, achieves de facto the
optimization with respect to the transmissivity.

Finally, one is left with the optimization with respect to
the ancillary squeezing parameter s. For each case one can
identify the explicit value of s that, at each given r , maximizes
the fidelity. We will see that for very small values of r the opti-
mization selects non-Gaussian states that coincide essentially
with the de-Gaussified photon-subtracted squeezed states. In
a regime of intermediated values of r the optimization selects
non-Gaussian states that coincide essentially with the squeezed
Bell states. Finally, for large values of r all states converge to
the continuous-variable Einstein-Podolsky-Rosen state, and
therefore the performance of Gaussian twin beams is indistin-
guishable from that of non-Gaussian squeezed Bell states.

B. Ideal single-photon measurements

To begin with, let us consider the teleportation fidelity in
the ideal case where the detectors D3 and D4 (see Fig. 1)
realize simultaneous projective single-photon measurements,
and there are no losses. Under these conditions, the output
state is pure and of the form given by Eq. (4).

In Fig. 3 we analyze the fidelity FT for the teleportation
of an unknown single-mode coherent state using, as shared
entangled resource, the ideal states of Eq. (4). The teleportation
fidelity is plotted as a function of the ancillary squeezing s, for
all values of s � r and for eight different values of r . For each
curve, the entangled resource corresponding to s = 0 is a de-
Gaussified photon-subtracted squeezed state, while for s = r

the corresponding entangled resource is a Gaussian twin beam.
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FIG. 3. (Color online) Fidelity of teleportation, as a function of
the ancillary squeezing parameter s (�r), obtained using as shared
entangled resources, in the Braunstein-Kimble-Vaidman teleportation
protocol, the tunable states generated by our ideal scheme (perfect
single-photon conditional measurements). The fidelity is plotted
parametrically for different values of the main squeezing parameter
r: (a) r = 0.6 (brown full line); (b) r = 0.8 (purple dashed line);
(c) r = 1 (red large-dashed line); (d) r = 1.2 (blue dotted line);
(e) r = 1.4 (green large-dotted line); (f) r = 1.6 (black dot-dashed
line); (g) r = 1.8 (magenta double dot-dashed line); (h) r = 2 (orange
triple dot-dashed line). The point at s = 0 corresponds to the fidelity
achieved with a photon-subtracted squeezed state generated in ideal
conditions, while at s = r one recovers the fidelity achieved with an
ideal twin beam.

It can be seen that the maximum of the teleportation fidelity
moves toward higher values of s as r increases; at the same
time the maximum becomes less pronounced. The results can
be summarized as follows:

(a) For small values of the main squeezing r the optimal
resource for teleportation is obtained for a vanishingly small
ancillary squeezing s. In particular, for the sequence of values
r = 0.6,0.8,1 the approximate squeezed Bell state, as realized
by our generation scheme, yields the best performance, and the
ancillary squeezing s does not exceed, in order of magnitude,
κ2 ∼ 0.01 (see Table II).

(b) For values of r greater than 1 the state produced by the
generation scheme and corresponding to the maximum fidelity,

TABLE II. Values of the ancillary squeez-
ing s corresponding to the maximum perfor-
mance of the states produced by our scheme
in the ideal case for the given values of the
principal squeezing r .

r s

0.6 0.00057
0.8 0.0046
1.0 0.011
1.2 0.022
1.4 0.036
1.6 0.056
1.8 0.082
2.0 0.12
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FIG. 4. (Color online) Comparison among the optimized fidelity
of teleportation, Eq. (25), obtained using as entangled resources the
class of optimized tunable states produced by our scheme in ideal
conditions (red dashed line), the fidelity of teleportation obtained
using as entangled resources the photon-subtracted squeezed state
generated in ideal conditions (green large-dashed line), the ideal op-
timized fidelity obtained using as entangled resources the theoretical
squeezed Bell states (cyan solid line), the fidelity obtained using as
entangled resources the theoretical photon-subtracted squeezed states
(purple dot-dashed line), and the fidelity obtained using as entangled
resources the theoretical Gaussian twin beams (black dotted line).

as r grows moves away increasingly from the squeezed Bell
state (the value of s exceeds sensibly the order of magnitude
of κ2 ∼ 0.01; see Table II). However, this state still provides
a better performance than that of a twin beam and of an
(experimentally generated) photon-subtracted squeezed state.

(c) In this same last region a Gaussian twin beam provides a
better performance than that of the photon-subtracted squeezed
states and approximate squeezed Bell states generated by our
scheme in ideal conditions.

We will now compare the optimal fidelity of teleportation,
Eq. (25), that can be achieved using as entangled resources
the states in the class produced by our scheme, i.e., the
value of the maximum in Fig. 3, with the ideal fidelity
of teleportation obtained when the entangled resources are
the theoretical states listed in Table I. In Fig. 4 we report,
as a function of the principal squeezing r , the behavior
of the optimal fidelity corresponding to the resource states
generated by our ideal scheme, and we compare it with that
associated with the theoretical states listed in Table I (twin
beams, photon-subtracted squeezed states, and squeezed Bell
states). In the same figure we report also the fidelity of the
photon-subtracted squeezed states (s = 0) generated by the
ideal scheme.

From this analysis, it emerges that in the ideal contest of
state generation, the ideal optimized fidelity of teleportation
is achieved, in the entire range of the considered values of
r , by using as entangled resources the (optimized) theoretical
squeezed Bell states [9]. On the other hand, the optimal fidelity
achievable using the class of states that can be generated by
our experimental scheme in ideal conditions approximates
remarkably well the ideal one associated with the theoretical
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squeezed Bell states for large enough values of the principal
squeezing r .

It is also important to notice that while the fidelities
associated with the theoretical states and with the photon-
subtracted squeezed states generated in ideal conditions can be
computed analytically as functions of r , the optimal fidelities
associated with the entire class of states produced by our
scheme in ideal conditions must be determined numerically
point by point, so that the plots of these optimized fidelities, if
seen in greater detail, would look like discrete, broken lines.
In the plot range 0 < r � 2 which represents the current levels
of squeezing that are experimentally feasible [54], we can then
identify two distinct regimes:

(a) r � 0.5. The procedure of maximization Eq. (25) yields
s  0, i.e., the best entangled resources generated by our
scheme in ideal conditions coincide with states that approxi-
mate the photon-subtracted squeezed states generated in ideal
conditions. On the other hand, the three curves corresponding,
respectively, to the optimized fidelity of teleportation, Eq. (25),
obtained using as entangled resources the class of states
produced by our scheme in ideal conditions, to the fidelity of
teleportation obtained using as entangled resources the photon-
subtracted squeezed state generated in ideal conditions, and
to the fidelity of teleportation obtained using as entangled
resources the theoretical photon-subtracted squeezed states,
are superimposed and lie in between an upper limit given
by the fidelity of teleportation obtained using as entangled
resources the optimized theoretical squeezed Bell states and a
lower limit given by the fidelity of teleportation obtained using
as entangled resources the theoretical Gaussian twin beams.

(b) r > 0.5. The optimized resources generated by our
scheme outperform both the theoretical photon-subtracted
squeezed states and those generated in ideal conditions, at
the same time providing a performance very close to that
of the optimized theoretical squeezed Bell states. In Fig. 5
we report their behaviors in the range 1 � r � 2. As an
example, if we fix r = 1.6, we obtain the value 0.974 (at
s = 0.056) for the optimized fidelity of teleportation, Eq. (25),
obtained using as entangled resources the photon-subtracted
squeezed state generated in ideal conditions. At the same value
of r , the teleportation fidelities obtained using as entangled
resources the theoretical states are, respectively, 0.977 for
the optimized theoretical squeezed Bell state, 0.965 for the
theoretical photon-subtracted squeezed state, and 0.961 for
the theoretical Gaussian twin beam. Therefore, within the ideal
conditions considered so far, the level of performance of the
states generated by our scheme as entangled resources for
quantum teleportation is remarkably close to that of the ideal
theoretical states.

C. Realistic conditions

A realistic scenario of state generation within our scheme
must include inefficient photon detection and a lossy envi-
ronment for the input pair of two-mode squeezed states. In
what follows we have considered the value η = 0.15 for the
detection efficiency (which is the value currently obtainable in
real experiments). Moreover, we remark that the values of the
squeezing amplitude r which appear in the plots are referred
to the theoretical principal squeezing, but the reduction to
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FIG. 5. (Color online) Zoom of Fig. 4 in the range 1 � r � 2 for
the optimized fidelity of teleportation obtained considering as entan-
gled resources the optimized tunable states generated by our scheme
in ideal conditions (red dashed line); the fidelity of teleportation
obtained considering as entangled resources the photon-subtracted
squeezed states generated in ideal conditions (green large-dashed
line); the optimized fidelity of teleportation obtained considering as
entangled resources the theoretical squeezed Bell states (cyan solid
line); the fidelity of teleportation obtained considering as entangled
resources the theoretical photon-subtracted squeezed states (purple
dot-dashed line); and the fidelity of teleportation obtained considering
as entangled resources the theoretical Gaussian twin beams (black
dotted line).

the effective squeezing r ′ has been taken into account when
displaying the final results.

In Fig. 6 we have plotted the optimized fidelity of
teleportation, which depends on the squeezing amplitudes r

and s, assuming an overall transmissivity T = 0.85, i.e., a
level of loss equal to 0.15, in Eq. (14). For consistency in
the comparison between ideal and realistic conditions, in the
figure we have plotted the optimized fidelity as a function

0.0 0.2 0.4 0.6 0.8 1.0

0.70

0.75

0.80

0.85

s

T

FIG. 6. (Color online) Fidelity of teleportation in a realistic lossy
scenario (level of losses equal to 0.15, i.e., T = 0.85, and η = 0.15),
as a function of the ancillary squeezing s (�r) for the same values of
the principal squeezing r as in Fig. 3: (a) r = 0.6 (brown solid line);
(b) r = 0.8 (purple dashed line); (c) r = 1 (red large-dashed line);
(d) r = 1.2 (blue dotted line); (e) r = 1.4 (green large-dotted line);
(f) r = 1.6 (black dot-dashed line); (g) r = 1.8 (magenta double-dot-
dashed line); (h) r = 2 (orange triple-dot-dashed line).
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FIG. 7. (Color online) Optimized fidelity of teleportation (blue
solid line) obtained considering as entangled resources the optimized
tunable states generated by our scheme in realistic conditions, with
η = 0.15, plotted as a function of the loss parameter , at fixed princi-
pal squeezing r = 1.6. The optimized fidelity is compared with those
obtained considering as entangled resources the photon-subtracted
squeezed states (s = 0, black dotted line)) and the Gaussian twin
beams (s = r , green large-dashed line), generated in the same realistic
conditions.

of the ancillary squeezing s (�r), assuming for the principal
squeezing r the same values as in Fig. 3. We can observe the
following:

(a) The overall behavior of the fidelities does not change
qualitatively, apart from a smoothing of the curves around their
maximum.

(b) As expected, the fidelities suffer a further deterioration
due to the combined effect of losses and nonideal single-
photon-detection processes.

In this first plot the level of losses equals 0.15. At present,
this level is experimentally accessible by properly choosing
optical components for the source of squeezing. On the other
hand, very recently an outstanding source of squeezing with
an overall loss of less than 0.08 has been reported [55]. In view
of this result, we have considered the behavior of the fidelities
when the level of losses is varied.

Fixing the detection efficiency at η = 0.15 and the principal
squeezing parameter at r = 1.6, in Fig. 7 we report the opti-
mized fidelity of teleportation, Eq. (25), obtained considering
as entangled resources the optimized tunable states generated
by our scheme in realistic conditions, as a function of the
loss parameter, denoted by . In the same plot the optimal
fidelity is compared with the fidelity of teleportation obtained
considering as entangled resources the photon-subtracted
squeezed states and the Gaussian twin beams generated in
the same realistic conditions, i.e., with η = 0.15 and r = 1.6.
As can be seen, for losses up to  = 0.30 the optimized tunable
states generated by our scheme in realistic conditions always
yield the largest fidelity of teleportation. It has to be noted
that, at fixed principal squeezing r , the value of the ancillary
squeezing s corresponding to the maximum value of the
optimized fidelity remains essentially constant. Indeed, in the
case considered, this value varies in the interval [0.048,0.050].

From Fig. 7 we see that in realistic conditions and for values
of the principal squeezing r varying in the interval [1.2,1.6] the

optimized tunable states yield fidelities of teleportation sizably
larger than those provided by photon-subtracted squeezed
states and Gaussian twin beams. Furthermore, the behavior
reported in Fig. 7 implies that foreseeable improvements in
the control of losses could lead to levels of performance of
the tunable non-Gaussian states comparable to those of the
theoretical squeezed Bell states.

IV. DISCUSSION AND OUTLOOK

In the present work we have introduced a scheme of
state generation able to produce a class of tunable two-mode
non-Gaussian states that approximate closely the class of
theoretical squeezed Bell states introduced in Refs. [9,10].
A thorough analysis yields that the states generated by
our scheme in realistic conditions, when properly optimized
by tuning two experimentally adjustable free parameters,
provide, as entangled resources, the maximum fidelity of
teleportation in the Braunstein-Kimble-Vaidman teleportation
protocol of an unknown coherent state. Indeed, the optimized
tunable non-Gaussian resources yield, in the most interesting
range of the currently accessible experimental values of the
principal squeezing amplitude r , a better performance with
respect both to Gaussian twin beams and to photon-subtracted
squeezed states, the latter being at present the best performing
continuous-variable entangled resource that can be produced
experimentally. This result holds true both in ideal and in
realistic conditions. In particular, in ideal conditions of gen-
eration (no losses, perfect photon-resolving detection, perfect
projections), for values of the principal squeezing r > 0.5,
the optimized tunable states show a level of performance
very close to that of the optimized theoretical squeezed Bell
states. In realistic conditions (presence of losses, only on-off
measurements allowed), the optimized tunable states provide
again, in a wide interval of values of the principal squeezing r ,
the best performance with respect to that yielded by Gaussian
twin beams state and photon-subtracted squeezed states.

It is interesting to note that even a slight improvement, with
respect to the current experimental situation, in reducing the
level of losses and in increasing the detection efficiency would
lead to a significant improvement in the performance of the
optimal tunable states generated by our scheme in realistic
conditions. As remarked in Sec. III B, a sizable reduction of
losses to very low levels seems at hand. Regarding the problem
of improving the efficiency in photon-resolving procedures,
detectors based on superconducting devices could lead to
important progress in the near future [56].

The theoretical study carried out in the present work proves
that our scheme of state generation can produce a large
class of two-mode non-Gaussian states that, when operated
as entangled resources, can outperform both the currently
available entangled two-mode Gaussian and de-Gaussified
states. In forthcoming works, the experimental setup needed to
realize our scheme of generation will be designed, analyzed,
and discussed in all its technical details, including aspects that
had to be left out in the present analysis, such as the role of dark
counts at the photon counters. We will consider two possible
working regimes: the continuous-wave regime and pulsed
regime. We will also consider at length the problem of efficient
detection in coincidence of two photons in two different
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modes, as this is one of the crucial requirements of our scheme,
and we will show how the generated states can be reconstructed
by performing suitable tomographic homodyne detections.
Finally, further aspects of tunable non-Gaussian states will be
investigated, in particular concerning their use as resources
for protocols beyond teleportation, including entanglement
swapping and distillation, as well as their properties with
respect to Bell’s nonlocality and Einstein-Podolsky-Rosen
steering.
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APPENDIX A

1. Postselection: Single-photon projector

In the ideal scheme of state generation, Fig. 1, the posts-
election strategy is based on ideal conditional measurements,
i.e., simultaneous detections of single photons in modes 3 and
4. Such coincidence detections of single photons project the
density matrix ρ1234 into the tunable state ρ

(|1〉〈1|)
T , which reads

ρ
(|1〉〈1|)
T ≡ Tr34 [ρ1234 ⊗ 3|1〉〈1|3 ⊗ 4|1〉〈1|4]

N (|1〉〈1|)
T

= 1

N (|1〉〈1|)
T π4

∫
d2β1d

2β2d
2β3d

2β4

×χ1234 (β1; β2; β3; β4) D1 (−β1) D2 (−β2)

× Tr 34[D3(−β3)D4(−β4)3|1〉〈1|3 4|1〉〈1|4]

=
∫

d2β1d
2β2M(|1〉〈1|) (β1; β2) D1 (−β1) D2 (−β2)

N (|1〉〈1|)
T π2

.

In the above,

M(|1〉〈1|) (β1; β2) ≡ 1

π2

∫
d2β3d

2β4χ1234 (β1; β2; β3; β4)

×χ
(|1〉)
3 (β3) χ

(|1〉)
4 (β4) .

Recalling that

〈m|D (−α) |n〉 =
(

n!

m!

)1/2

αm−ne−|α|2/2Lm−n
n (|α|2)

and that L0
1 (x) = L1 (x) = 1 − x, one has

χ
(|1〉〈1|)
k (βk) = Trk[D̂l(−βl)3|1〉〈1|3]

= (1 − |βk|2)e−|βk |2/2 for k = 3,4,

which is the characteristic function of the single-photon
projector k|1〉〈1|k , acting on the kth mode. Moreover, the
normalization constant N (|1〉〈1|)

T is given by

N (|1〉〈1|)
T =Tr1234[ρ1234 ⊗ 3|1〉〈1|3 ⊗ 4|1〉〈1|4].

In conclusion, we have

χ
(|1〉〈1|)
T (γ1,γ2)

= Tr12 [ρ12D1 (γ1) D2 (γ2)]

N (|1〉〈1|)
T

= 1

N (|1〉〈1|)
T π2

∫
d2β1d

2β2M(|1〉〈1|) (β1; β2)

× Tr12 [D1 (γ1) D1 (−β1) D2 (γ2) D2 (−β2)]

= 1

N (|1〉〈1|)
T

M(|1〉〈1|) (γ1; γ2) .

2. Postselection: Realistic on-off operator (POVM)

In the realistic case (see Fig. 2), the postselection strategy is
based on realistic conditional measurements made by realistic
on-off detectors. They are described by positive operator-
valued measures, Eq. (17). The detection on POVM yields
the state

ρ
(on)
T = Tr34

[
ρ1234 ⊗ �

(on)
3 (η3) ⊗ �

(on)
4 (η4)

]
N (on)

T

= 1

N (on)
T π4

∫
d2β1d

2β2d
2β3d

2β4

×χ1234 (β1; β2; β3; β4) D1 (−β1) D2 (−β2)

× Tr34
[
D3 (−β3) D4 (−β4) �

(on)
3 (η3) �

(on)
4 (η4)

]
= 1

N (on)
T π4

∫
d2β1d

2β2M(on) (β1; β2)

×D1 (−β1) D2 (−β2) ,

where

M(on) (β1; β2) = 1

N (on)
T π2

∫
d2β3d

2β4χ1234 (β1; β2; β3; β4)

×χon
3 (β3) χon

4 (β4) .

Here

χon
k (−βl) ≡ Trk

[
Dk(−βk)�(on)

k

]

= πδ(2) (βk) − 1

ηk

exp

{
−2 − ηk

2ηk

|βk|2
}

= χon
k (βk)

is the characteristic function of the POVM of the photodetector
of the modes 3 and 4, and the normalization reads

N (on)
T = Tr1234

[
ρ1234 ⊗ �

(on)
3 (η3) ⊗ �

(on)
4 (η4)

]
.

The characteristic function corresponding to the density
matrix ρ

(on)
T is

χ
(on)
T (γ1; γ2) = 1

N (on)
T

Tr12 [ρ12D1 (γ1) D2 (γ2)]

= 1

N (on)
T π2

∫
d2β1d

2β2M(on) (β1; β2)

× Tr12 [D1 (−β1) D2 (−β2) D1 (γ1) D2 (γ2)]

= 1

N (on)
T π2

M(on) (γ1; γ2) .
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In terms of the complex amplitudes β1 and β2, the
characteristic function reads

χ
(on)
T (β1; β2)

= 1

N (on)
T π2

∫
d2β3d

2β4χ1234 (β1; β2; β3; β4)

×χon
3 (β3) χon

4 (β4)

= 1

N (on)
T

[
χ1234 (β1; β2; 0; 0)

+ 1

π

∫
d2β4χ1234 (β1; β2; 0; β4)G4 (β4)

+ 1

π

∫
d2β3χ1234 (β1; β2; β3; 0)G3 (β3)

+ 1

π2

∫
d2β3d

2β4χ1234 (β1; β2; β3; β4)G3 (β3)G4 (β4)

]
,

where

Gk (βk) = − 1

ηk

exp

{
−2 − ηk

2ηk

|βk|2
}

(k = 3,4).

3. Effective values of the squeezing amplitudes

The values of the principal squeezing r and of the
ancillary squeezing s are referred to the pure input parameters,
before decoherence and losses affect the incoming beams
and decrease the amplitudes to the real values r ′ and s ′.
In the following we determine the relation holding between
the squeezing parameters before and after the action of
decoherence and losses. For this purpose, we express the two-
mode squeezing operator Sab(−|λ|) in terms of single-mode
squeezing operators Sc (−|λ|) and Sd (|λ|). These are obtained
by introducing the transformed annihilation operators c and d

defined by the linear superpositions

c = a + b√
2

, d = −a + b√
2

.

Under this transformation, the two-mode squeezed state
Sab(−|λ|)|0〉ab goes into the two-mode squeezed state

Sc (−|λ|) Sd (|λ|) |0〉cd , (A1)

where Sk(λ) = exp[− 1
2λk†2 + 1

2λ∗k2],(k = c,d) denotes the
single-mode squeezing operator. Introducing the fictitious
beam splitters that simulate losses and decoherence, the
original, decoherence-free state Eq. (A1) becomes

|ψ〉cd = Uc (T) Ud (T) Sc (r) Sd (−r) |00〉cd ,
where Uk(T) is the beam splitter operator corresponding
the kth mode. Consequently, the characteristic function that
describes the state |ψ〉cd reads

χcd (βc; βd ) = Tr [ρcdDc (αc) Dd (αd )] ,

where ρcd = |ψ〉cd cd〈ψ |. The variances of the modes c and
d can be evaluated using the following property of the
characteristic function:

(−)q
∂p+q

∂α
p

k ∂α
∗q

l

χ (α)

∣∣∣∣
α,α∗=0

= Tr{ρcd [(k†)plq]symmetric},

(A2)

with k,l = c,d. From this relation we can obtain the following
variances:

VarXc
(T) = VarYd

(T) = 1 − T(1 − e2r )

2
, (A3)

VarXd
(T) = VarYc

(T) = 1 − T(1 − e−2r )

2
, (A4)

where

Xk = k + k†√
2

, Yk = i
−k + k†√

2

are the quadrature operators corresponding to the kth mode.
Therefore, in realistic conditions, the lower limit for the
variance VarXd

(T) is (1 − T) /2, corresponding to r → ∞.
When T tends to 1 (ideal case), the variances (A3) and (A4)
tend, respectively, to the ideal values e2r/2 and e−2r/2, while
the lower limit for the variance VarXd

(T) vanishes.
If we denote by r ′ the effective, actually observed principal

squeezing parameter, we have

VarXd
(T) = 1

2e−2r ′
.

The inverse relation is

r ′ = − 1
2 ln

[
2VarXd

(T)
]

= − 1
2 ln[1 − T(1 − e−2r )].

Similar relations hold for the ancillary squeezing s. We may
notice that if one lets the actually observed principal squeezing
parameter r ′ go to zero, then the ideal squeezing parameter r

goes to zero as well ∀ T. There is no finite value of r > 0
and T such that the observed squeezing vanishes. This fact
implies that decoherence can never attenuate the squeezing to
vanishingly small values.

APPENDIX B

1. Formalism of the characteristic function

In this Appendix we describe in some detail the tunable
states in terms of the characteristic function formalism.
The state |ζ 〉12|ξ 〉34, Eq. (2), is the product of a pair of
two independent two-mode squeezing states. Therefore, the
characteristic function associated with the overall four-mode
density matrix ρ1234 corresponding to |ζ 〉12|ξ 〉34 reads as
follows:

χ ′′(α′′
12; α′′

34) = χ12(α′′
12)χ34(α′′

34),

where

χij (α′′
ij ) = exp

{− 1
2 (|ςi |2 + |ςj |2)

}
and ςi,j = α′′

i,j cosh |λ| + α′′∗
j,ie

iφλ sinh |λ|, with λ = ζ if i =
1 ∧ j = 2, and λ = ξ if i = 3 ∧ j = 4. In order to simulate
the effect of decoherence (see Fig. 2), we have introduced
four thermal beam splitters (TBSs) (one for each beam), with
transmissivity Tth(=1 − Rth), in which each second port is
impinged on by the thermal state described by the following
characteristic function:

χ th
k (τ ′

k) = exp
{− 1

2

(
2n̄th

k + 1
) |τ ′

k|2
}
,
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where n̄th is the average number of thermal quanta at
equilibrium in the kth mode:

n̄th
k = (eh̄ω/kBT − 1)−1.

The overall characteristic function before entering the
thermal beam splitters, χpreTBS, describes the following eight-
mode state:

χpreTBS(α′′; τ ′) = χ ′′(α′′)χth(τ ′), (B1)

where χth(τ ′) = ∏4
k=1 χ th

k (τ ′
k). The beam splitters act on

the state through a SU(2) transformation that yields the
following relation among the variables of the input and output
modes:

α′ =
√

Tthα
′′ +

√
Rthτ

′,

τ =
√

Tthτ
′ −

√
Rthα

′′.

Therefore the input modes are related to the output modes by
the following linear transformation:

α′′ =
√

Tthα
′ −

√
Rthτ,

(B2)
τ ′ =

√
Tthτ +

√
Rthα

′.

Using the transformations Eq. (B2), the characteristic function
Eq. (B1) describing the state after the passage through the four
thermal beam splitters BSth depends on α′ and τ , and reads:

χpostTBS(α′; τ )

= χ ′′(
√

Tthα
′ −

√
Rthτ )χth(

√
Tthτ +

√
Rthα

′). (B3)

Tracing out the thermal state by putting τ = 0, we are left with

χ ′(α′) = χpostTBS(α′; 0) = χ ′′(
√

Tthα
′)χth(

√
Rthα

′).
(B4)

The photon losses are introduced through four further
beam splitters (VBSs) (V for “vacuum”), with transmissivity
T (=1 − R), in which each second port is occupied by a
vacuum mode:

χvac
k (υ ′

k) = exp
{− 1

2 |υ ′
k|2

}
, (B5)

with υ ′
k complex coherent amplitudes. Hence, the overall

vacuum characteristic function is χvac(υ ′) = ∏4
k=1 χvac

k (υ ′
k).

The overall characteristic function before the vacuum beam
splitters, χpreVBS, reads

χpreVBS(α′; υ ′) = χ ′(α′)χvac(υ ′). (B6)

In this case, the SU(2) transformation defines the relations

α =
√

Tα
′ +

√
Rυ

′,
(B7)

υ =
√

Tυ
′ −

√
Rα

′,

α′ =
√

Tα −
√

Rυ,
(B8)

υ ′ =
√

Tυ +
√

Rα.

Thus, at the output of the beam splitters VBS, under the
transformations Eq. (B8), the characteristic function Eq. (B6)
has evolved into

χpostVBS (α; υ) = χ ′(
√

Tα −
√

Rυ)χvac(
√

Tυ +
√

Rα).

Tracing out the vacuum state (υ = 0), we are left with

χ (α) = χ ′(
√

Tα)χvac(
√

Rα)

= χ ′′(
√

TthTα)χth(
√

RthTα)χvac(
√

Rα).

Considering the transformations produced by BSI and
BSII , for the complex variables α1,α2,α3,α4 (see Fig. 2), we
have

α1 =
√

T1β1 −
√

R1β3, α3 =
√

T1β3 +
√

R1β1,

α2 =
√

T2β2 −
√

R2β4, α4 =
√

T2β4 +
√

R2β2,

so that the four-mode characteristic function χ (α) is given by

χ1234 (β1; β2; β3; β4)

= χ (
√

T1β1 −
√

R1β3;
√

T2β2 −
√

R2β4;√
T1β3 +

√
R1β1;

√
T2β4 +

√
R2β2). (B9)

Finally, the density matrix corresponding to the characteristic
function χ1234(β1; β2; β3; β4) is

ρ1234 = 1

π4

∫
d2β1d

2β2d
2β3d

2β4χ1234 (β1; β2; β3; β4)

×D1 (−β1) D2 (−β2) D3 (−β3) D4 (−β4) .

At optical frequencies, the characteristic field energy h̄ω lies
always in the range between 1.5 and 2.5 eV, so that at
room temperature T  300 K, the average number of thermal
photons n̄th is of the order of 10−30. Therefore, the value of
n̄th is orders of magnitude smaller than the the mean number
of photons associated with the various quantum sources and
operators. For this reason, we have neglected throughout the
thermal contribution to decoherence. In all cases, the ideal,
decoherence-free state is recovered by putting T = 1.
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