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Self-organization, pattern formation, cavity solitons, and rogue waves in singly resonant optical
parametric oscillators
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The spatiotemporal dynamics of singly resonant optical parametric oscillators with external seeding displays
hexagonal, roll, and honeycomb patterns, optical turbulence, rogue waves, and cavity solitons. We derive
appropriate mean-field equations with a sinc? nonlinearity and demonstrate that off-resonance seeding is necessary
and responsible for the formation of complex spatial structures via self-organization. We compare this model
with those derived close to the threshold of signal generation and find that back-conversion of signal and idler
photons is responsible for multiple regions of spatiotemporal self-organization when increasing the power of the

pump field.
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I. INTRODUCTION

Transverse pattern formation, autosolitons, and cavity
solitons have been the subject of intense research in nonlinear
optics in the last two decades since their original predictions
[1-5]. Unlike in other fields of science, transverse patterns
and dissipative solitons find useful applications in photonics
such as optical memories, delay lines, and optical registers [6].
Cavity solitons’ counterparts in the propagation direction have
also been shown to generate passive mode locking in fiber
lasers [7].

The formation of transverse spatial structures in quadratic
nonlinear cavities was predicted first in optical parametric os-
cillators (OPOs) [8,9] and later extended to second-harmonic
generation [10,11]. Early predictions in OPOs were confined
to the degenerate case where signal and idler fields have the
same frequency. Experimental evidence of pattern formation
was indeed found in triply resonant degenerate OPOs close
to the confocal cavity configuration [12] and via conical
emissions [13,14]. Confirmation of the predictions of [8] was
provided in broad-aperture degenerate OPOs in a plane-mirror
minicavity [15]. Degenerate OPOs also display phase domain
dynamics and dark-ring cavity solitons [16]. Finally, OPO
models for nondegenerate type-II cases in doubly or triply
resonant cavity configurations have also been shown to display
self-organization and pattern formation [17-21].

Transverse instabilities in the case of nondegenerate, singly
resonant OPOs (SROPOs), where the signal field is the only
resonated field in an optical cavity, have been less discussed
in the literature. On the theoretical side, pattern formation
in SROPOs is expected to replicate results of the complex
Ginzburg-Landau laser case [18]. On the experimental side,
cw SROPO configurations are notoriously difficult to operate
because of high oscillation thresholds (typically several watts)
in common birefringent crystals [22]. Quasiphase matching
in periodically poled materials has, however, considerably
reduced operation thresholds of cw SROPOs [23], allowing
for diode [24] and fiber [25] laser pumping for spectroscopy
applications. A major advantage of cw SROPOs is that their
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wide tunability is monotonic and not affected by mode jumps
typical of doubly or triply resonant configurations.

In this paper, we investigate the formation and dynamics
of transverse structures in SROPOs. We first derive a mean-
field model in Sec. II where the nonlinearity is of sinc?
form, in agreement with early studies of SROPO steady-state
emissions [26-28]. The analysis builds on approaches that
describe and integrate the propagation equations inside the
OPO crystal [29,30] by considering transverse effects and
by carefully separating the mean-field and close-to-threshold
approximations. The final model equations are capable of
describing transverse pattern formation in the presence of
pump depletion, signal-idler recombination, and external
seeding close to the signal frequency. External seeding proves
to be of fundamental importance for transverse structures in
SROPOs since, in its absence, changes of the cavity length are
compensated by changes in the signal (and idler) frequency
thus nullifying the common mechanism of Turing pattern
formation in off-resonant optical systems [1,31].

In Sec. III, plane-wave steady states and their stability are
analyzed in the SROPO models with external seeding, close to
and far from threshold. These studies confirm that no pattern
formation should be expected without a detuned external
seed. Analytical expressions for the location in the parameter
space of the loss of stability of homogeneous solutions to
spatially modulated structures are then provided in Sec. IV.
The thresholds for pattern formation when changing the
seeding intensity are then compared with those obtained from
numerical integration of the SROPO dynamical equations with
excellent agreement. Section V investigates when spatially pe-
riodic spatial structures break down to either optical turbulence
for small seeding intensities or to cavity solitons for large pump
and seeding intensities. Optical turbulence is demonstrated
to be the mechanism which generates rogue waves in the
spatiotemporal evolution of the output fields. Finally, bright
and dark cavity solitons are found in multistable configurations
with localized hexagonal and honeycomb patterns.

II. MEAN-FIELD MODELS

We consider parametric down-conversion in a x@® crystal
of length L at perfect phase matching, which is a condition that
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can also describe the average effect of quasiphase matching
in periodically poled crystals. In this case, the propagation of
the pump, signal, and idler fields in the crystal along the z
direction are described by [32]
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where E; with j = 0,1,2 are the slowly varying amplitudes of
pump, signal, and idler fields, respectively, with wave numbers
k; =n;Q;/c, and V? is the transverse Laplacian operator
along the x and y directions perpendicular to the propagation
axis z. The frequency constraint Q¢ = ;| + 2, is rewritten
as u + v = 1, where Q1 = u, 2, = v, and the effective
coupling parameter « is given by
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where x® is the second-order susceptibility of the crystal,
n = ng = n; = n, is the common refractive index of the three
waves that guarantees phase matching, and c is the speed of
light in vacuum.

We assume that the parametric down-conversion crystal is
contained in an optical cavity of length £ where the signal
field is the only one to be resonated (see Fig. 1). The steps
involved in taking the mean-field approximation are the same
as those reported in [21], although in the SROPO case there is
only one resonated field. The final equation for the normalized
signal field reads as
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FIG. 1. (Color online) Schematic diagram of a SROPO cavity of
length £ with a single partially reflecting mirror R and containing a
parametric down-conversion crystal of length L.
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and the parameters
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Here, R is the output mirror reflectivity, w,. is the frequency
of the longitudinal cavity mode closest to the signal frequency
Q, and E;y is a complex input field of frequency w;y close
to €1, normally known as the seeding.

The usual mean-field limit procedure requires high reflec-
tivity R and involves an expansion in longitudinal Fourier
modes and the requirement that all terms, including the
nonlinear one, are independent of the longitudinal variable z.
The z variation per pass of the resonated signal field, £, can be
neglected when it is affected by the average of the propagation
of the pump and idler waves along the crystal [30], i.e.,

1 L
=g / Eo(2)E3(2)dz. )
0

To obtain an explicit dependence of pump and idler fields
along the direction of propagation, we consider the first and
third equations of the system (1) and neglect diffraction in the
crystal:

d.Eo(z) = —aE 1 Ey(2), (¥
d.E>(z) = vaEo(2)ET, 9

where the signal amplitude E; is now independent of z. By
taking the second derivative of (8) and using (9), one obtains

d2Eq(z) = —(va’ 1) Eo(2), (10)

which shows that the pump field oscillates along the
propagation direction with a frequency that depends on the
signal intensity /;. Integrating this equation, we find

Eq(z) = Agcos(av/v112), (11)

where Ay is the amplitude of the pump field at the entrance of
the crystal [30]. From (8),

1 v
Er(z) = _aTdZEO = AoE} /I— sin(a+/v12), (12)
1 1

in agreement again with [30].
We can now calculate the spatial average (7),

1 [r E,
— | Eo2) EX(2)dz = |Ag|* ——— sin* (e L+/vI}), (13
L/o 0(z) E5(z)dz = | Aol all, sin“(aL+/viy), (13)
and insert it into (3),
. . 2 2E1
10y Ey+ Lo, Ey = —yE| —iSE; +iaV°E| 4+ ulAo| oA
1

x sin®(aLy/vI) 4+ /2y E;x. (14)

By expanding in longitudinal Fourier modes and retaining
only the longitudinal mode closest to €2, corresponding to
0, E; = 0, we finally obtain

9 E = K[ —(1+i6)E, +iaV*E,

+ 11| Aol

E R
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Finally, we renormalize the transverse space variables x and
y by dividing them by +/a, the time variable by multiplying it
by «, and the field amplitudes according to

2L2
E =aLJVE,, |Eof = A2
R (17)
E;n = aLJ/vEy,
to obtain
E = E=E;n—(+i0)E
E
+ |E0|27sin2(ﬁ) +iV’E. (18)

The analysis of Eq. (18) is the main focus of the research
presented here. It will be referred to as the sinc? model since
sin?(v/1)/1 = sinc2(V/1).

We note that in SROPO configurations, the frequency of the
signal field, 2;, is tuneable by corresponding changes of the
idler frequency, €2,, while maintaining the energy conservation
condition ¢ = 2 + 2,. This means that with no external
seeding (E;y = 0), the detuning 6 is also zero since the
SROPO tunes its signal frequency to the closest longitudinal
cavity mode w.. With an external seeding different from zero
and detuned with respect to the cavity, it is advantageous to
consider the external frequency w;y as reference and introduce

_(oy = QDL
==

Under these conditions, E;y should be considered to be real
and Eq. (18) remains unchanged.

It is interesting to investigate the behavior of the pump and
idler fields inside the OPO crystal as provided by Eqgs. (11)
and (12). Figure 2 shows the pump and idler intensities during
propagation for three sample values of | Ep|?, namely, 1.2, 2.0,
and 8.0. While at |Ep|?> = 1.2 (black lines) the changes of
pump and idler per pass are limited, for | Eg|?> = 2.0 (red lines)
and |Ey|* = 8.0 (blue lines) they are substantial. In particular,
full pump depletion and substantial back-conversion of signal
and idler fields into the pump are clearly visible in Fig. 2 for
|Eo)?> = 8.0. In the SROPO case, these phenomena are not
incompatible with the mean-field approximation and are at the
base of the sinc? nonlinearity of model (18). The mean-field
approximation implies that the signal intensity remains almost
constant with respect to its input value during propagation in
the x® medium, with large changes taking place over several
cavity round-trips. No such constraints apply to pump and idler
fields, as shown in Fig. 2.

Note that the cos? and sin® nature of the pump and idler
intensities, respectively, guarantees conservation of the energy
density in every point along the SROPO crystal. Energy
conservation in turn guarantees the validity of the Manley-
Rowe relations about the variations of the energy densities N;
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FIG. 2. (Color online) Pump intensity (solid lines) and idler
intensity (dashed lines) in the SROPO crystal for | Ey|*> = 1.2 (black
lines), |Eo|?> = 2.0 (red lines), and |Ey|?> = 8.0 (blue lines). The
intensities are normalized to the input pump values |E,|?>. The
propagation distance is normalized to the crystal length.

per field along the crystal:

dNo __dN, _dNy 0
dz dz dz
since d N /dz = 0. These facts are a posteriori confirmations
that the physical processes described in Egs. (1) are compatible
with the application of the mean-field limit to the signal field
even for large values of the pump and seeding intensities.

A. The close-to-threshold approximation

Close to the signal generation threshold, it is possible to
obtain partial differential equations in the mean-field limit
where the nonlinear terms are in a polynomial form and thus
easier to analyze. The scaling of the mean-field limit requires
that the nonlinear coefficient per pass, oL, has to be of the
order of the mirror transmittivity, 1 — R. This implies that
the argument of the sin? term in Eq. (13) may become large
for large signal intensities without breaking the mean-field
conditions. Close to threshold, however, the signal intensity
satisfies I; < 1 and the sin? term can be approximated by
a power expansion. In this case, pump and idler display
small changes per pass across the crystal, meaning that pump
depletion and back-conversion do not take place in a single
pass. Equations (11) and (12), however, tell us that while the
pump can be approximated to first order to a constant value Ao,
the idler has to grow along z from its initial value. This is in
agreement with previous analysis below threshold where the
important noise term is associated with the idler fluctuations
at the entrance of the crystal [33]. In the case of SROPOs close
to threshold, we can approximate Ey and E; in (11) and (12)

with
va?z?
Eo(z) = Aol 1 — , 20
vi1elz?
Ex(z) ~ AOET<vaz - 17) (22)
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By using these expressions to evaluate the average (7), one
obtains

1 L
! / Eo(<)E5()dz’
L Jy
_ vaL|Ao|*E, <1 B vaszll)

23
> 3 (23)
By repeating the same steps of the mean-field limit as described
in the previous section, we obtain

. 2 El L2
8-[E = E;n —(1 +l9)E+ |E()| E — T +iV°E, (24)

which describes the spatiotemporal behavior of the SROPO
close to threshold in the presence of an external seeding E;y
and will be referred to as the cubic model.

III. PLANE-WAVE STEADY STATES

As mentioned in Sec. II, when there is no external seeding,
E;n = 0, the detuning is zero since the SROPO automatically
adjusts its frequency to the closest cavity resonance. The
plane-wave steady-state intensities, I, are implicit for the sinc?
model (see [26-28]) and explicit for the cubic model:

I = | Eol? sin*(\/1y),

25
I, = 3(|Eo|* — 1)/|Eol*. @

The steady-state signal intensity of the SROPO as a function of
the pump intensity, | Eo|?, is shown in Fig. 3 for the sinc? model
(solid line) and the cubic approximation (dashed line). These
are trivially complemented by the zero-intensity state that is
stable below threshold, |Eg|> < 1, and unstable above. In the
cubic case, the stationary intensity above threshold asymptotes
to the value 3 for large pump intensities and is always stable.
The steady-state curve for the sinc? model, on the other hand,
becomes multivalued at large values of the input pump inten-
sity (| Eo|? > 20, not shown here) [27,28]. Here, however, we
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FIG. 3. Intensity of the SROPO steady state for the sinc?

model (solid line) and the cubic approximation (dashed line) with

increasing pump intensities for £;y = 0 and 6 = 0. All variables are
dimensionless.
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are interested in values of the pump intensity below 10, as these
are more realistic with respect to the present state-of-the-art of
broad area SROPO realizations. In this regime, it is possible to
prove that, above threshold, the nonzero steady-state intensities
in the sinc® model are also stable [28]. Note that when
comparing the sinc? and the cubic models, there is a substantial
difference between their steady-state intensities even below
|Eo|? = 2. At twice above threshold, this difference becomes
considerable and the close-to-threshold (cubic) model has to be
discarded.

Analogously to lasers, the field phase is decoupled from
the steady-state equations and is affected by fluctuations and
drift processes. When there is external seeding, E;y > O,
the phase of the SROPO locks to that of the external beam,
depending on the magnitude of the detuning 6 and the input
intensity. Such behavior strongly differs from that of E;y = 0.
In the case of E;y # 0, the steady-state intensities are given
by

E2y = IL{[1 — |Eo> fU)P + 62}, (26)

where
fy) = sinc® (1), 27)
fly) =1-1/3, (28)

for the sinc? and cubic models, respectively. The steady-state
curves of the SROPO intensity versus the input intensity
become S shaped, which is a behavior typical of injected
optical systems, as shown in Sec. I'V.

For the cubic model without diffraction, it is possible to ob-
tain analytical results. For example, for |0| < (IEol> = 1) / V3,
the plane-wave steady-state curves are S shaped, and the
positions of the turning points [(E?y)~,1; ] and [(EZ )", 1}"]
can be determined by finding the maxima and minima
of (20),

[ 2(|Eol* — 1) £ [(|Eol* — 1)* — 362]"/2
' |Eol?

and then using these values in (26). At resonance, 6 = 0, the
turning points are located at

[(E2y) . 1] = 10,31 Eo > = 1)/1Eoll,
[(E7y) .1, ] = [4(Eol* — 1)*/OIEo/),
(IEol* — D/BIEo)]. (30)

Note that the 4 turning point at resonance corresponds to the
zero seeding case of SROPO intensity given by Eq. (25).

) (29)

A. Linear stability analysis of the SROPO with seeding

The linear stability analysis of the steady states given in the
previous section produces two stability eigenvalues,

A =& /B2 —062, (31)

where, for the sinc? model,

£ = |Eo|*sinc(2y/1,) — 1, (32)
g — |EO|2cos(2\/I_s) + gsin(Z\/I_X) - 1’ 33)
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FIG. 4. (Color online) Plane-wave steady-state stability and
pattern formation for (a) the sinc> model (18) of a SROPO and
(b) the cubic model (24) of a SROPO close to threshold. The solid
(black), dot-dashed (blue), and dashed (red) lines correspond to stable,
unstable, and Hopf unstable plane-wave steady states, respectively.
The black dotted (black dashed) lines correspond to the minimum and
maximum of the intensity of stationary hexagonal (roll) patterns. The
vertical dotted line corresponds to the instability of hexagons leading
to optical turbulence. Parameters are |Ey|> =2 and 6 = —0.3. All
variables are dimensionless.

and for the cubic model,
£ = |Eo|* — 1 —2|Ey|’L,/3,

34
B = —|Eol*L,/3. Gy

For the sinc?> model, the stability eigenvalues are implicit
functions of the steady-state intensity, /. It is, however, easy
to display the stability of the stationary states graphically
along the S-shaped curves by picking increasing values of I,
evaluating A, and reporting the stability result on the diagram,
as displayed in Figs. 4 and 5. Here, black solid lines correspond
to two negative real eigenvalues (sinks), turquoise solid lines
correspond to stable complex eigenvalues (foci), dot-dashed
blue lines correspond to at least one positive real eigenvalue
(saddles or sources), and red dashed lines correspond to
complex eigenvalues with positive real part (unstable foci).
In terms of bifurcations, the intersection of a black solid line
and a blue dot-dashed line signals a saddle-node bifurcation,
while the transition of a turquoise solid line into a red dashed
line signals a Hopf bifurcation.
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FIG. 5. (Color online) Same as Fig. 4, but for parameter values
|Eo|> =8 and @ = —1 (all variables are dimensionless). The solid
turquoise lines correspond to stable plane-wave steady states with
complex stability eigenvalues. For seed intensities above 20, minima
and maxima of the intensity of stable hexagonal patterns H™ (dotted
lines), stable roll patterns R (solid lines), and stable honeycomb
patterns H™ (dashed lines) are displayed.

We find that the turning points of the S-shaped curves
always correspond to either saddle-node (the [(EZ,)* 1]
points) or saddle-source (the [(E f )1 1 points) bifurcations,
corresponding to a change of sign of one real eigenvalue. For
the cubic model, this fact can be demonstrated analytically. In
the lowest branch of the S curve, the two real eigenvalues turn
complex (see the red dashed line in Figs. 4 and 5). This means
that the lowermost part of the S curve is Hopf unstable.

IV. TURING INSTABILITIES AND PATTERN FORMATION

In this section, we describe instabilities of the stationary
states of the SROPO to transverse perturbations due to
diffraction with and without external seeding. By moving
to the spatial Fourier space of the transverse wave vector k
and repeating the linear stability steps of the previous section,
we obtain the two stability eigenvalues of (31) but with the
detuning 6 replaced by

O =0 +k°, (35)

which introduces an explicit dependence on the transverse
spatial scale.

We start with the analysis of possible Turing instabilities
without external seeding (E;y = 0) and with zero detuning
6 = 0. In this case, the evaluation of the stability eigenvalues
with the appropriate factor (35) is done only at the values of
I, given by (25). In the cubic case, the eigenvalues reduce to

hi=—(Eol> = D EV(E? = 1> —k*.  (36)

The largest eigenvalue has a zero value for the plane-wave
case, k = 0, corresponding to the uncoupled phase of the
SROPO models without seeding, as studied in the previous
section. For large wave vectors, the eigenvalues can become
complex, i.e., one may observe damped oscillations. However,
the presence of diffraction cannot make the real part of the
eigenvalues positive, which means that, for the SROPO alone,
there are no spatiotemporal instabilities and hence no pattern
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formation. We obtain the same result for the sinc’> model
within the pump intensity ranges studied here, although the
implicit nature of the steady state (25) requires straightforward
numerical evaluations of the stability eigenvalues for given
wave vectors k.

We now consider the case of external seeding where the
detuning, 6, can be nonzero. By using the expressions (31) with
0 replaced by 6, (35), one observes that the transverse wave
vector can destabilize the system only when it counterbalances
the detuning and that this is most effective when

k> = -0, (37)

i.e., the off-resonance mechanism for pattern formation typical
of optical systems [1,8]. We refer to the off-resonance
mechanism as Turing pattern formation since it has been
demonstrated that all the requirements of Turing instabilities
are fully satisfied [31].

The condition (37) provides us with the value along the
steady-state curves at which we expect pattern formation to
occur, I¢. This value simply corresponds to the steady-state
value of the plane-wave solution at zero detuning (25), since
for 6; = 0 the stability eigenvalues (31) reduceto AL = & + 8,
where £ and  are given by (32) for the sinc?> model and (34) for
the cubic model. By tracing a horizontal line at the I value on
the diagrams of Figs. 4 and 5, one obtains the corresponding
value of |E¢,|* of the seeding intensity where the Turing
instability takes place. The bifurcation from the homogeneous
states to steady transverse patterns is obtained when decreasing
the seeded amplitude E;y so that the locked plane-wave
state progressively approaches the upper turning point of the
S-shaped steady-state curve (the [(E7,)", ;"] point). Before
reaching it, the stationary plane-wave intensity reaches the
value I{ and a stationary roll pattern is formed supercritically
while a hexagonal pattern is formed subcritically, in agreement
with [35]. This bifurcation scenario is in agreement with
early analysis of complex Ginzburg-Landau models in the
presence of injection [36,37], although our cubic model does
not contain diffusion or purely imaginary nonlinearities. It is
also in remarkable agreement with numerical simulations, as
demonstrated in Sec. IV.

We have also investigated instabilities of the plane wave to
pattern structures for large values of both the input pump and
the seeding intensity, as shown in Fig. 5. These instabilities
have no counterpart in the close-to-threshold regime and can
be estimated analytically by using the stability eigenvalues
(31) with (32) and 6, = 0 for the most unstable wave vector
(37). Figure 6 shows the instability eigenvalue A, versus
the stationary SROPO intensity for different values of the
input pump |E|>. Above a threshold value of |Ey|*> ~ 4.37
(corresponding to a critical value of I; = 14.5), there is a
range of values of the SROPO intensity where the plane-wave
solution is unstable to spatial patterns. The limit values of
the SROPO intensity are the zeros of the A, curve shown
in Fig. 6 with the lower (upper) intersection corresponding
to an instability when increasing (decreasing) the seeding
intensity. In Fig. 7, we show the plane-wave instability range
in the parameter space of the SROPO intensity versus the
seed intensity for different values of the pump intensity. In
Sec. IV, we show that the bifurcations at the boundaries of
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SROPO Intensity, I

FIG. 6. (Color online) Stability eigenvalue A, vs the SROPO
stationary intensity. Parameters are § = —1, |Eo|*> = 4 (lowermost
dash-dotted blue line), |Eo|*> = 4.5 (solid black line), |Eo|> =5
(dashed black line), |Ey|> = 6 (dotted black line), |Ey|> =7 (up-
permost dash-dotted black line), and |Ey|> = 8 (uppermost solid red
line). All variables are dimensionless.

the instability ranges are subcritical in nature and that there
are extended regions of bistability between patterns and stable
plane waves to support cavity solitons. The ranges displayed in
Fig. 7 provide a minimum size of the parameter region where
pattern formation is expected. For example, the plane-wave
instability range for |Eg|> = 8 evaluated analytically from the
stability eigenvalues is approximately between |E;y|> = 22
and |E;n|* = 26 (see Fig. 7), while the numerical simulations
find stable patterns between |E;y|*> =20 and |E;y|> =28
because of subcriticality (see Fig. 5).

SROPO Intensity, I
© = 3 5> I > o

—_
\S]
T
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Seed Intensity, [E,

FIG. 7. (Color online) Plane-wave instability regions to spatial
patterns in the (seed intensity, SROPO intensity) parameter space.
Parameters are 0 = —1, |Eg|> =4.5 (solid black line), |Ey|> =
5 (dashed black line), |Ey|> =6 (dotted black line), |Ey|> =7
(uppermost dash-dotted black line), and | Ey|> = 8 (uppermost solid
red line). All variables are dimensionless.
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FIG. 8. (Color online) Intensity of transverse patterns in a
SROPO. (a) Hexagons for | E;y|> = 3. (b) Hexagons for | E;y |* = 22.
(c) Rolls for |E;y|* = 24. (d) Honeycombs for | E;y|* = 27. Param-
eters are |Ey|> = 8 and @ = —1. All variables are dimensionless.

A. Numerical patterns

We have first numerically integrated the sinc? (18) and cubic
(24) models for | Eg|?> = 2 and 8 = —0.3. We have started with
relatively large values of the seeding amplitude, E;y = 0.45,
where the stable plane-wave solution has been recovered. By
progressively decreasing E;y, a supercritical roll pattern is
observed to appear at around E;y = 0.424, I{ = 1.9 for the
sinc model, and E;y = 0.374, I = 1.5 for the cubic model,
in excellent agreement with the theoretical predictions given
in Sec. IV. By further decreasing the seeding intensity, the
amplitude of the roll pattern increases (see black dashed lines
in Fig. 4) until it merges into a hexagonal structure. Having
located the hexagonal pattern [see Fig. 8(a) for its transverse
intensity structure], we have traced it with increasing and
decreasing values of the external seeding intensity. For small
seeding intensities, Figs. 4 and 5 show the maximum and
minimum intensity of the hexagonal pattern (dotted lines)
and show that these change linearly with decreasing seeding
intensity. The bifurcation back to the steady plane-wave
solution is subcritical, although the regime of subcritical
bistability is very small and difficult to detect on the scales of
the diagrams. When further decreasing the external seeding,
one observes a sudden destabilization of the hexagonal pattern
into a region of optical turbulence. The abrupt transition from
stable patterns to turbulence is clearly displayed in Figs. 4 and
5 by the almost vertical line on the right-hand side of these
diagrams that corresponds to a sudden jump in the values of
the minima and maxima intensities observed in the transverse
section during the turbulent evolution.

For larger values of the input pump, |Eo|?, new regions
of pattern formation arise in the SROPO with seeding, in a
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way similar to what has been described for nascent optical
bistability [4]. These new regions can only be observed in
the sinc?> model since the cubic model can only display stable
plane-wave solutions for large | Eo|? and large E2,,. Moreover,
the cubic model is not accurate away from threshold. For the
numerical simulations presented here, we have selected the
value of |Ep|> = 8 where the minimum size of the pattern
region is more than 15% of the maximum value of the
seed intensity in order to guarantee relevance to possible
experimental realizations. In Fig. 5, we present the intensities
of the observed patterns together with the steady-state plane-
wave curves for the selected value of |Eg|? = 8. At low seed
intensities, the phenomenology is similar to that described for
|Eo|> = 2 above. However, at larger seeding intensities, the
upper branch of the S-shaped plane-wave steady-state curve
suddenly increases. The steady-state first develops damped
oscillations and then becomes unstable to a Hopf bifurcation
(see dashed red lines around the seed intensity of 23 in Fig. 5).
Around such bifurcation, a new region of stationary patterns
develops. We have identified rolls R (solid lines), hexagons
H* (dotted lines), and honeycombs H™ (dashed lines). The
intensities of the different transverse patterns are displayed in
Fig. 8. We note that none of the patterns observed at large
input pumps and seeding intensities are present in the cubic
model. Finally, pattern bistability is observed between rolls
and hexagons as well as rolls and honeycombs.

V. OPTICAL TURBULENCE, ROGUE WAVES, AND
CAVITY SOLITONS

When the seeding is small, the input energy is not sufficient
to lock the SROPO to the external laser. These unlocked
regimes are typical of lasers with injected signals [38]. The
larger the detuning, 6, between the external laser and the
SROPO cavity, the larger the seed intensity necessary for
locking. Since the lower branch of the S-shaped steady-
state curves is always Hopf unstable for small seeding, one
expects to observe dynamical regimes where locking and
unlocking alternate in space and time. In comparison with
purely temporal systems, the presence of transverse degrees
of freedom elongates the locking region to lower values of
the seeding intensity, as displayed in Figs. 4 and 5 where
stable hexagons are observed well into the region where
plane-wave solutions are unstable. As the seeding intensity
is decreased, unlocking eventually takes place and stable
patterns develop defects [37,39] that induce first phase and
then amplitude instabilities. The resulting regime corresponds
to optical turbulence since one observes a sudden (exponential)
decrease of the spatiotemporal correlation function [40],

_ Re[(E(r,n)E*(r',1)) — (E(r,0))(E*(r,1))]

C(p) = ,
Re[(E(r,t)E*(r,1)) — (E(r,0))(E*(r,1))]

(38)

where r and r’ identify separate positions on the transverse
plane, p = |r — r’|, Re denotes the real part, and (-) corre-
sponds to temporal averages. Such behavior is demonstrated
in Fig. 9 where the correlation function C(p) is calculated for
the hexagonal pattern (dashed line), and the turbulent regimes
for |Eg|?> = 2 (solid line) and |Ey|> = 8 (dot-dashed line).
Fitting exponentials to the correlation functions shows that
in the turbulent regimes, the correlation length is reduced by
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FIG. 9. (Color online) Spatial correlation function C(p) as in
(38) for the hexagonal pattern (red dashed line, |Ey|> = 2,6 = —0.3,
|E;n]? = 0.09), optical turbulence close to threshold (black solid line,
|Eo|> =2,6 = —0.3, |E;y|* = 0.04), and away from threshold (blue
dot-dashed line, |Ey|?> = 8,0 = —1.0, |E;n|> = 2.19). All variables
are dimensionless.

at least a factor of six. In the regime of optical turbulence,
large variations of the SROPO intensity are observed in both
space and time. In Figs. 4 and 5, we display the range of
variation of the SROPO intensity at a given time ¢ at the onset of
optical turbulence. The wide increase in the maximum SROPO
intensity when changing the seed strength below the hexagon
instability is clearly visible.

To characterize the regime of optical turbulence, we have
considered the temporal evolutions of the maximum SROPO
intensity, the spatial average of the SROPO intensity, and its
standard deviation. As displayed in Fig. 10, the spatial statistics
is large enough to guarantee probability distributions of well-
defined averages and deviations. Larger values of the pump
power increase the size of the probability distribution of the
SROPO intensity and that of the fluctuations of its maximum
value [compare Figs. 10(a) and 10(b)]. Such increase results
in the occurrence and propagation of transverse rogue waves.

Following the generally accepted definition of rogue waves
in systems with injection [41], we plot the temporal evolution
of

q(0) = 1) = ((Dry)e —8((0)xy)er  (39)

corresponding to transverse pulse maxima, / M;"‘, above or
below a threshold given by the average value of the intensity,
(I)x,y» plus eight times the standard deviation, o , y, of the
SROPO intensity for the sinc> model in the dash-dotted red
lines of Figs. 10(a) and 10(b). The presence of peaks of a
rogue wave is signaled by positive values of g(t) [41]. With
pump intensities a few times above threshold [Fig. 10(a)], the
rogue-wave test fails [¢g(7) remains negative] and the optical
turbulence generated by the unlocking of the seed laser and
the SROPO is relatively mild. With larger values of the pump
power, however, rogue waves are commonplace and affect the
spatiotemporal evolution of the SROPO field for long durations
of the temporal evolution [see Fig. 10(b)]. When comparing
these results with those related to lasers with injections [41],
we note that our simulations are fully spatiotemporal and
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FIG. 10. (Color online) Temporal evolution of the maximum
SROPO intensity (solid black line), the spatially averaged SROPO
intensity (dashed black line), its standard deviation (dotted black
line), and ¢(t) for the sinc> model (18). Parameters are (a) | Ey|> = 2,
0 = —0.3,|E;x> =0.04and (b) |Eo)*> = 8,0 = —1,|E;n|> = 2.19.
All variables are dimensionless.

show that the material dynamics, typical of semiconductor
media, is not essential in the generation and maintenance of
rogue waves during optical turbulence. The main mechanism
underlying rogue waves in SROPOs is the absence of locking
between master and slave devices, leading to intermittent
phase jumps. Full investigations of optical turbulence in
injected (seeded) optical devices will be presented elsewhere.

Finally, we have studied the presence and stability of cavity
solitons (CSs) in SROPOs with a particular focus on localized
structures induced by the sinc? nonlinearity, i.e., away from
threshold and with large seeding from an external laser. CSs
have been described in a variety of OPO devices without
seeding from degenerate [16,42—44] to nondegenerate triply
resonant configurations [20,45,46]. CSs in degenerate OPOs
have also been numerically extended to include the presence
of seeding [47]. In the case of the nondegenerate SROPOs
investigated here, the resonance condition of SROPO operation
rules out any CSs in the absence of seeding. It is then important
to stress that all CS solutions described in this section are due
to the external seeding field and have no counterpart in the
case of E;y = 0.

Since we have introduced the sinc? nonlinearity in spa-
tiotemporal models of SROPOs to describe self-organization
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FIG. 11. (Color online) Stable (a)—(c) bright and (d)—(f) dark CS
configurations of the SROPO model (18). Parameters are (a)—(c)
|Eo)> =8, 0 = —1, |E;n> =20.8, (d) |E;nI> =26.5, and (e),(f)
|E;n|> = 27.1. All variables are dimensionless.

when pump depletion and back-conversion take place, we
focus here on CSs in the limit of large pump powers. From
Figs. 5 and 7, we see that there are broad ranges of the
parameter space where bistability between the plane-wave
solution and pattern structures is observed. For example,
we find coexistent hexagons and homogeneous solutions for
|E;n|? between 19.98 and 21.90 and coexistent honeycombs
and homogeneous solutions for |E;y|*> between 26.00 and
28.09. Note that we even observe tristability among plane
waves, hexagons, and rolls for |E;n]? between 21.25 and
21.90 and among plane waves, honeycombs, and rolls for
|E;n|? between 26.00 and 26.52. In the two wide regions of
homogeneous-pattern bistability, we have been able to locate
single peak (bright) and single trough (dark) CSs, as shown,
for example, in Figs. 11(a) and 11(d), respectively. The onset
and nature of these CSs are again similar to those observed
in nascent optical bistability [4]. Together with the single-unit
bright and dark CSs, we have also found many multipeak [48]
and multitrough localized structures that correspond to clusters
of CSs (also referred to as localized patterns [49]). A few
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FIG. 12. (Color online) Stability range of clusters of CSs for
bright (main figure) and dark (inset) CSs. Solid, dashed, and dot-
dashed black lines correspond to the maximum SROPO intensity
in clusters of one, three, and seven CSs. The red dotted line
corresponds to the maximum (minimum) intensity of the stable
hexagonal (honeycomb) pattern in the main figure (inset). Parameters
are |Ey|> = 8 and @ = —1. All variables are dimensionless.

examples of these bright and dark clusters are displayed in
Fig. 11. The range of existence of single-unit CSs and CS
clusters is displayed in Fig. 12. Snaking of both bright and
dark CSs is observed with stability branches of larger and
larger clusters approaching the pattern stability lines in the
parameter space (see Fig. 12). The details of the bifurcations
and of the number of branches of bright and dark CSs for
changing | Ey|? are too long to be described here and will be
the subject of a future paper.

VI. CONCLUSIONS

Self-organization and pattern formation in OPOs has been
known for a number of years in degenerate [8] or doubly
or triply resonant nondegenerate configurations [19-21]. The
case of a widely nondegenerate SROPO has, however, been
overlooked because of experimental limitations, now over-
come, and the fact that off-resonance operation is inhibited
because of its intrinsic tunability. Here we have shown that
under the action of a detuned injection close to the signal fre-
quency, one can find an extremely rich variety of self-organized
structures, from regular coexisting patterns to clusters of CSs
and even optical turbulence. In particular, we have derived
mean-field models for SROPOs with external seeding and
shown that, away from threshold, cubic nonlinearities should
be replaced by sinc? terms. The sinc? nonlinearity is capable
of describing regimes of pump depletion and back-conversion.
In these regimes, the external seeding generates hexagonal,
roll, and honeycomb patterns as well as bright and dark CSs.
Note that CSs in SROPOs offer positional control associated
to the generation of entangled photons with vastly different
frequencies.

In contrast to laser systems, the fast material dynamics of
x® media makes a SROPO with external seeding an ideal
candidate for comparisons between theory and experiments of
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optical self-organization. The fast material dynamics is also
beneficial to the investigation of spatiotemporal structures in
the regime of short-pulse generation where many of the results
presented here can find useful extensions. These investigations
together with the full characterization of the turbulent regimes
will be the subject of future communications.
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