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Dicke states in multiple quantum dots
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We present a theoretical study of the collective optical effects which can occur in groups of three and four
quantum dots. We define conditions for stable subradiant (dark) states, rapidly decaying super-radiant states, and
spontaneous trapping of excitation. Each quantum dot is treated like a two-level system. The quantum dots are,
however, realistic, meaning that they may have different transition energies and dipole moments. The dots interact
via a short-range coupling which allows excitation transfer across the dots, but conserves the total population of
the system. We calculate the time evolution of single-exciton and biexciton states using the Lindblad equation. In
the steady state the individual populations of each dot may have permanent oscillations with frequencies given
by the energy separation between the subradiant eigenstates.
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I. INTRODUCTION

Collective optical (super-radiant) effects appear in
ensembles in which the distances between single emitters
are much smaller than the radiation wavelength with which
they interact (Dicke limit) [1]. The spatial dependence of
the electromagnetic field within such ensembles is negligible
and thus all the systems effectively interact with a common
photon reservoir. This leads to formation of rapidly decaying
(super-radiant) and optically inactive (subradiant) states [2]
and consequently to the appearance of a vacuum-induced
coherence effect which results in occupation trapping [3].

Although effects resulting from collective coupling of
atoms to a radiative environment have been known for nearly
60 years, are very well described [1–5] and have been exten-
sively investigated experimentally [6,7], they still attract much
scientific attention. This is caused by the increasing variety of
physical systems in which these phenomena may be observed,
such as quantum dots (QDs) [8], Bose-Einstein condensates
[9], superconducting qubits [10,11], ionic Coulomb crystals
[12], or dipolaritons [13].

The investigation of super-radiant effects have been ini-
tiated and driven to a large extent by the promise which
the short-living states show for optimization of lasers [14].
Recently the scientific interest has been focused on the concept
of a “super-radiant laser” which allows the spectral purity
of emitted light to be increased [15,16]. The technological
realization of such a device presented in Ref. [17] allows the
accuracy of atomic clocks [18,19] and thus measurements of
gravity [20] and fundamental constants [21,22] to be increased.
The experimental investigations of the collective effects have
mostly been restricted to the analysis of the super-radiant states
which appear spontaneously in cascade emission and manifest
themselves as a maximum in the intensity or photon emission
rate [2,6,23].

Although the observation of subradiance phenomena was
also reported in atomic ensembles [7] as the opposite of the
super-radiant states, the preparation of subradiant states is
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much more difficult, and therefore the possibilities they give
have been much less investigated experimentally. Recently,
the preparation of an optically inactive state was reported in
a system of superconducting qubits [24] and in a diatomic
molecule in an optical lattice [25]. The advantage of the
subradiant states stems from their decoupling from the photon
environment because of which they do not undergo radiative
decoherence and thus may form decoherence-free subspaces
[26,27]. This makes them useful for quantum information
processing especially for noiseless encoding of quantum
information [28,29]. The stable states also allow construction
of a scalable quantum processor [30], quantum memories [31],
and nonlinear sign-shift gates [32], and storage of time-bin
qubits [33] for quantum cryptography. An interesting group
of Dicke states is formed of single-excitation combinations
belonging to the class of “W” states which have been widely
considered for quantum information processing [34–37] or
optimization of quantum clock synchronization [38].

Systems composed of two and more coupled QDs have
attracted much scientific focus due to the richness of their
properties, which pave the way to new technological appli-
cations. Already pairs of quantum dots allow for long-time
storage of quantum information [39], conditional optical
control of carrier states [40], implementation of a two-qubit
quantum gate [41], optical writing of information on the
spin state of the dopant Mn atom [42], and construction of
quantum nanoantennas due to collective phenomena [43].
Systems of three QDs enable realization of two different kinds
of entanglement [44], teleportation via super-radiance [45],
controlled-NOT (CNOT) gates [46], and the control of spin
blockades [47]. Moreover, in these systems the collective
transport effects (electronic Dicke or Kondo-Dicke effects)
may be realized [48,49] and lead to the enhancement of
thermoelectric efficiency [50]. Arrays of QDs allow reduction
of the effect of pure dephasing on quantum information
encoded in excitonic states [51].

In this paper we analyze the collective optical effects in
ensembles of three and four QDs. Compared to double QDs in
which only one optically inactive state may be realized [2],
ensembles of three and more two-level systems allow the
realization of many stable states which occur at different
exciton occupations of the single emitters. Although the

043807-11050-2947/2013/88(4)/043807(10) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.043807


ANNA SITEK AND ANDREI MANOLESCU PHYSICAL REVIEW A 88, 043807 (2013)

super-radiant effects are well described in systems of identical
atoms the description of such phenomena in QD ensembles
requires taking into account properties characteristic for
those systems which distinguish them from natural ones.
Therefore we include in our model the fundamental energy
mismatches, different dipole moments of single dots, and
coupling which induces excitation transfer between single
emitters, but conserves the total population of the ensemble. In
our previous works concerning double QDs it has been shown
that the collective optical effects are extremely sensitive to
inhomogeneity of the fundamental transition energy which
leads to the decay of the exciton occupation for energy
splitting much below the present technological feasibility. This
decoherence effect may be strongly reduced by sufficiently
strong coupling between the dots [52–54] and fully overcome
in double QDs with different decay rates [55]. In this paper we
extend the results of two QDs and specify conditions which
allow us to take advantage of the super-radiant phenomena in
fully inhomogeneous QD systems. We analyze the dynamics
of single electron-hole pairs and biexcitons. We show how to
adjust the system parameters in such a way that an arbitrary
dark single-exciton combination may be blocked in a multiple
QD; we also specify the conditions which allow trapping of
two excitons and preparation of a system in a biexcitonic state
which allows recombination of only one electron-hole pair.
Due to the existence of two or more subradiant single-exciton
eigenstates and coupling between the dots the occupation
of individual dots oscillates while the population of the
whole ensemble remains stable; we show that the oscillation
amplitudes may be strongly reduced if the system is initially
prepared in a biexciton state.

The paper is organized as follows. In Sec. II we describe the
system under study, define its model, and describe a method
used to study the system evolution, in Sec. III we present and
discuss our results, and we conclude the paper in Sec. IV.

II. THE SYSTEM

The investigated system consists of N (N = 3,4) quantum
dots in which only the ground-level exciton states with fixed
spin polarizations are taken into consideration. Due to the
strong Coulomb coupling and absence of the external electric
fields we may restrict the discussion to “spatially direct”
excitonic states, i.e., states with electron-hole pairs residing
in the same QD which in these conditions have much lower
energy than the “dissociated” states referring to excitons
formed of carriers residing in two different dots [56,57]. These
assumptions allow us to treat every QD as a two-level system
which may either be empty or contain an exciton and thus
describe the set of N QDs as a 2N -level system, with |0〉
denoting the ground (or “vacuum”) state in which all N dots are
empty, single-exciton states |i〉 corresponding to one exciton
localized in the ith QD, biexcitonic states |ij 〉 referring to
electron-hole pairs residing in the ith and j th QDs, states |ijk〉
with three QDs, ith, j th, and kth (1 � i,j,k � N ), occupied
by an exciton etc.

Present manufacturing technology does not allow on
demand production of QD systems with identical funda-
mental transition energies; therefore we assume different

electron-hole binding energies of each dot defined as

Ei = E + �i,

where E is the average transition energy and �i = αi� is the
energy mismatch of the ith QD. We impose

∑
i αi = 0 and∑

i α
2
i = 1, such that �2 is the mean square variation of the

transition energies.
We analyze the system in a “rotating frame” defined by the

evolution operator

U = exp

[
− i

h̄

(
E

N∑
i

σ
(i)
+ σ

(i)
− + Hrad

)
t

]
,

where σ
(i)
− = (σ (i)

+ )† = |0〉〈i| + ∑
j |j 〉〈ij | + ∑

jk |jk〉
〈ijk| + · · · are the annihilation (creation) operators for the
exciton in the ith QD, respectively, and Hrad = ∑

kλ h̄ωkb
†
kλbkλ

is the standard free photon Hamiltonian with operators b
†
kλ and

bkλ creating and annihilating radiation modes with wave vector
k and polarization λ, while ωk is the corresponding frequency.

In this frame the Hamiltonian of the system is

H = HS + HS-rad.

The first term describes electron-hole pairs residing in the QD
system. We assume that the ground state |0〉 corresponds to
the zero energy level, so the excitonic Hamiltonian is

HS =
∑
i=1

�iσ
(i)
+ σ

(i)
− +

∑
i,j=1

Bij |ij 〉〈ij |

+
∑

i,j,k=1

Bijk|ijk〉〈ijk| + · · · +
∑
i,j=1

Vijσ
(i)
+ σ

(j )
− , (1)

where Bij are biexcitonic shifts due to the interaction of static
dipole moments of the ith and j th QDs, Bijk is the deviation
of energy caused by interaction of the dipole moments of three
dots, etc, and Vij describes coupling between the dots.

In ensembles of QDs one may distinguish two types of
interaction between the emitters: dipole (Förster) coupling
which in the leading order decays as 1/r3

ij with the QD
separation (rij ) [58–60] and short-range coupling resulting
from a combination of tunneling (wave function overlap)
and Coulomb correlations. Both types of interaction induce
excitation transfer between the emitters but conserve the total
exciton occupation of the ensemble. The short-range couplings
allow enhanced emission in the energetically inhomogeneous
ensembles to be rebuilt while in the case of dipole interaction a
similar effect is achieved if the coupling is enhanced artificially
by a factor of 400 [61]. To overcome the destructive effect of
the transition energy mismatch the coupling between the dots
must be of the order of the energy splitting, i.e., 1 meV for
technologically feasible systems [52–54]. For a planar QD
arrangement the distance between emitters is about 30 nm (the
average value for the sample studied in Ref. [8]), and for such
a distance the Förster coupling drops to about 1 μeV, which is
not sufficient to stabilize collective effects.

The Förster coupling reaches a fraction of meV for QDs
separated by only a few nanometers [62] which can be achieved
in vertically stacked QD systems, and where indeed it can
stabilize the collective effects [52,55]. In the present paper we
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describe a planar system and therefore we prefer to consider
a short-range coupling, for which we choose an exponential
model, Vij = V0 exp[−rij /r0], where the subscripts i and j

refer to the ith and j th QDs, respectively, V0 is a constant
amplitude, rij is the distance between the QDs, and r0 is the
spatial range of the interaction. Remarkably, this simple model
reproduced well recent experimental results [61].

The eigenstates of the Hamiltonian (1) do not mix quantities
associated with different exciton numbers, i.e. the eigenstates
of the system are superpositions of the basis states restricted
to a particular exciton number.

The second term of the Hamiltonian accounts for coupling
between the QD system and quantum electromagnetic field

HS-rad =
N∑

j=1

∑
kλ

σ
(j )
− g

(j )
kλ e−i(E/h̄−ωk)t b

†
kλ + H.c., (2)

where

g
(j )
kλ = idj · êλ(k)

√
h̄ωk

2ε0εrv

is a coupling constant for the j th QD. Here d(j ) is the interband
dipole moment for the j th QD, êλ(k) is the unit polarization
vector of the photon mode with polarization λ, ε0 is the vacuum
dielectric constant, εr is the relative dielectric constant, and v

is the normalization volume. We restrict our investigations to
wide-gap semiconductors with electron-hole binding energies
of the order of 1 eV which allows us to describe the photon
modes within the zero-temperature approximation at any
reasonable temperature.

To describe the evolution of the carrier subsystem we use
an equation of motion for the reduced density operator in the
Markov approximation. In the “rotating frame” it takes the
form

ρ̇ = − i

h̄
[HS,ρ] + Lrad[ρ],

where ρ is a reduced density matrix of the exciton subsystem
and Lrad is a Lindblad dissipator,

Lrad[ρ] =
N∑

i,j=1

	ij

[
σ

(i)
− ρσ

(j )
+ − 1

2
{σ (j )

+ σ
(i)
− ,ρ}

]
,

where

	ij = 	∗
ij = E3

3πε0εrh̄
4c3

di · d∗
j (3)

with c being the speed of light. Since for i = j Eq. (3) describes
the spontaneous decay rates of single QDs [63], the mixed
(off-diagonal) decay rates (3) may be expressed in terms of
single-QD quantities,

	ij = 	∗
ji = √

	ii	jj d̂i · d̂
∗
j ,

where d̂i = di/di and d̂i · d̂
∗
j ≈ eiη(1 − θ2

ij /2); here η is
an irrelevant phase and θij is a small angle between
the dipole moments which depends on the light-hole
admixture [55].

In the numerical simulations we assume constant energy
mismatches with the parameters α1 = 2/

√
56, α2 = 4/

√
56,

FIG. 1. (Color online) The planar arrangement of the three- (a)
and four- (b) QD ensembles.

α3 = −6/
√

56, α4 = 0, and � = 1 meV (except for Fig. 4).
For the coupling amplitudes we take V0 = 5 meV and r0 =
15 nm. In Secs. III A, III B, and III C we assume parallel dipole
moments, since the effect of the light-hole admixture in the
absence of external electric fields is negligible [55].

III. RESULTS

Below we present an analysis of the collective effects
which occur in multiple QDs. We define the Dicke states
for an arbitrary number of emitters and perform numerical
simulations for ensembles of three and four QDs. In Fig. 1
we illustrate the numbering of the QDs and their spatial
arrangement. In Secs. III A and III B we focus on single-
exciton states. In Sec. III A we show the evolution of uncoupled
systems with identical fundamental transitions and parallel
dipole moments of different amplitudes. Then, in Sec. III B
we analyze the same effects in a system composed of three
coupled energetically inhomogeneous dots. The dynamics of
biexciton states is presented in Sec. III C. In Sec. III D we show
possibilities of controlling the exciton occupation given by a
p-i-n junction.

A. Single-exciton states of ideal quantum dots

The collective effects were described first in ensembles
of uncoupled identical atoms where all the emitters have the
same transition energies and dipole moments [1]. Such optical
effects, resulting from the interaction in the Dicke limit, are
also present in uncoupled systems, even with different dipole
moments, if all the emitters have identical transition energies.
For the purpose of this paper we define such systems as
ideal QDs.

The coupling of excitons to their radiative environment
described in the Dicke limit by the Hamiltonian (2) and Fermi’s
golden rule, according to which the probability of releasing
a photon through a transition from the initial to the final
states is P ∼ |〈final|HS-rad|initial〉|2, allow definition of rapidly
decaying (super-radiant) and optically inactive (subradiant)
states, both also known as Dicke states. By definition the
super-radiant states (|SUPER〉) correspond to the maximum
transition probability, whereas the subradiant states (|SUB〉)
refer to a vanishing probability. Due to the decoupling from the
photon reservoir these are dark, optically inactive states. In the
weak-excitation limit, i.e., for a single excitation in the system
from which the sample may decay only to the ground state
(|0〉), the proportionality g

(j )
kλ ∼ √

	jj allows the short-living
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states to be written in the form

|SUPER〉 =
∑N

i=1

√
	ii |i〉√∑N

i=1 	ii

, (4)

and the stable superpositions to be expressed as

|SUB〉 =
∑N

i=1 ai

√∏N
j=1

	jj

	ii
|i〉√∑N

i=1 |ai |2
∏N

j=1
	jj

	ii

, (5)

where the coefficients ai satisfy
∑

i ai = 0. Irrespective of
the number of emitters there is only one super-radiant state
in a system of a particular number of QDs, whereas the only
structure which realizes just one dark state is a double quantum
dot. The systems of three and more QDs allow realization of
an arbitrary number of dark states of the form (5) since there
are many combinations of the parameters ai for which the
transition matrix element 〈0|HS-rad|SUB〉 = 0.

The consequence of the coexistence of rapidly decaying and
stable states is the effect of spontaneous trapping of excitation
[3,55]. An arbitrary single-exciton state |s〉 = ∑

i ci |i〉, where
|ci |2 is the localization probability of the exciton on the ith
QD and

∑
i |ci |2 = 1, may be expressed as a combination of

the super-radiant state (4) and a dark state of type (5),

|s〉 =
(∑N

i=1 ci

√
	ii

)
√∑N

i=1 	ii

|SUPER〉

+
√√√√1 −

(∑N
i=1 ci

√
	ii

)2∑N
i=1 	ii

|SUB〉s, (6)

where the dark state is

|SUB〉s =
∑N

i=1 ci

[(∑N
j �=i 	jj

)|i〉 − ∑N
j �=i

√
	ii	jj |j 〉]√( ∑N

i=1 	ii

)[∑N
i=1 	ii − (∑N

i=1 ci

√
	ii

)2] .

(7)

The derivation of Eqs. (6) and (7) is done in the the Appendix.
The collective coupling to the radiative surrounding induces
emission only from the super-radiant state and thus the fraction
of excitation initially spanned in the dark state,

1 −
⎛
⎝ N∑

i=1

ci

√
	ii

/ √√√√ N∑
i=1

	ii

⎞
⎠

2

,

remains unaffected. Since the only single-exciton state which
decays totally is the super-radiant state, we define a state |s〉
as being bright if it has a super-radiant component, i.e., if a
system prepared in that state partially recombines and only a
part of the initial exciton occupation remains trapped.

In Figs. 2(a) and 2(b) we show the dynamics of a single
excitation induced by a common photon reservoir in an ideal
system of three uncoupled (Vij = 0) QDs with equal electron-
hole binding energies (� = 0) and parallel dipole moments
(θij = 0) of different magnitudes. In Fig. 2(a) we show the
evolution of the exciton occupations of a system prepared
initially in a bright state (5|1〉 + |2〉)/√26 and in Fig. 2(b) we
show the corresponding coherences. As expected, the coupling
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FIG. 2. (Color online) Exciton occupations [(a) and (c)] and
coherences [(b) and (d)] of a system of three QDs prepared initially in
a bright state (5|1〉 + |2〉)/√26 for 	11 = 2.44 ns−1, 	22 = 3.31 ns−1,
and 	33 = 1 ns−1. (a) and (b) show the results for uncoupled QDs
(Vij = 0) with identical transition energies (� = 0), while (c) and (d)
refer to energetically inhomogeneous (� �= 0) and coupled (Vij �= 0)
systems arranged in a lateral array of an equidistant triangle shape
with the side length r = 30 nm. The inset to (a) shows the initial
evolution of the exciton occupation of the QD no. 2.

to the photon reservoir spans the excitation into the sub- and
super-radiant states according to Eq. (6) and induces emission
only from the short-living state

√
	11|1〉 + √

	22|2〉 + √
	33|3〉√

	11 + 	22 + 	33

[Fig. 2(a)]. The excitation dynamics occurs until occupations
of all dots stabilize at certain levels corresponding to the
dark state defined in Eq. (7) which confirms that the state
(7) is indeed unaffected by the photon reservoir and, after
the decay of the super-radiant state, neither the total exciton
occupation nor occupations of single dots (n1,2,3) change due
to radiative environment. The emission from the above state
induces decay of the total exciton occupation and excitation
transfer, which results in the redistribution of the occupations
of single dots. Since all of the localized single-exciton states
|i〉 contribute to the super-radiant state (4), the collective
coupling spans the initial excitation in all of the dots even
if some of them were initially empty. Therefore the population
of initially unoccupied systems builds up spontaneously [n3,
green dashed line in Fig. 2(a)]. If the initial occupation of one
of the dots is relatively small while the spontaneous decay
rate from that system is sufficiently strong, then the exciton
occupation of that dot may vanish at some point and then be
restored due to the excitation transfer [magenta dotted line in
Fig. 2(a) and the inset to Fig. 2(a)]. During the emission process
also evolution of the off-diagonal density matrix elements is
observed, the coherences related to the initially populated dots
decay, while those corresponding to initially empty systems
build up spontaneously due to the increasing occupations of
those dots. When exciton dynamics in the system reaches
population distribution corresponding to the optically inactive
state also the off-diagonal density matrix elements stabilize
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at a certain nonzero level [Fig. 2(b)], defined by the dark
contribution to the initial state.

B. Single-exciton states for inhomogeneous quantum dots

Technologically feasible QDs forming multiple structures
differ in both fundamental transition energies (� �= 0) and
dipole moments (di �= dj ), and are coupled with each other
(Vij �= 0). As shown in the previous section and, for a double
QD in Ref. [55], the super-radiant character of the evolution
of one exciton is present in ideal systems (� = 0), but with
parallel dipole moments (θij = 0). The collective evolution is
very sensitive to the energy mismatches and is destroyed in
ensembles with energy splittings of the order of the transition
linewidth [52–55]. In such systems the localized eigenstates
corresponding to different energies cannot form delocalized
superpositions which would also be the system eigenstates.
This destructive effect may be overcome by coupling between
the dots (Vij ) which delocalizes the system eigenstates and
different dipole moments allowing the super-radiant state to
be a nonsymmetric superposition of the localized states |i〉
[Eq. (4)].

The single-exciton eigenstates of the system depend on
the energy mismatches and coupling between the dots, while
the Dicke states are defined by the interplay of decay rates
[Eqs. (4) and (5)]. If the individual QD decay rates [Eq. (3)
for i = j ] are adjusted in such a way that the super-radiant
state (4) corresponds to one of the system eigenstates, then the
inhomogeneous ensemble of QDs interacts with its radiative
environment in the “collective regime”, i.e., allows many ef-
fects typically present only in systems with identical electron-
hole binding energies. The amplitudes ci of a single-exciton
state orthogonal to the super-radiant state (4) must satisfy
the equation

∑
i ci

√
	ii = 0 which implies the condition

〈0|HS-rad|SUB〉 = 0 defining a subradiant state. Therefore,
if one of the eigenstates has a super-radiant character then
the other eigenstates of a system are optically inactive and
thus defying the collective regime requires only specifying the
super-radiant eigenstate.

In Figs. 2(c) and 2(d) we show the evolution of a realistic
group of three QDs placed in the corners of an equilateral
triangle, we assume nonequal fundamental transition energies
(� = 1 meV), nonvanishing coupling between the systems
(Vij �= 0), and parallel dipole moments (θij = 0). We compare
the results obtained for an inhomogeneous system coupled
to the photon reservoir in the collective regime to the ideal
case presented in Figs. 2(a) and 2(b), where the decay rates
of individual dots take the same values as in Figs. 2(c) and
2(d). As can be seen in Fig. 2(c), coupled ensembles with
energy mismatches of the order of meV allow trapping of the
same fraction of excitation as ideal dots with the same decay
rates [red solid lines in Figs. 2(a) and 2(c)]. Here, as in the
ideal case, any single-exciton eigenstate may be decomposed
into sub- and super-radiant components according to Eq. (6)
and also in this case the super-radiant state is the only state
which decays totally. For an arbitrary set of decay rates, which
do not correspond to the super-radiant eigenstate, the exciton
occupation of a system prepared initially in a state of the form
(5) is quenched and the decay of the state (4) is slowed down
compared to the collective regime.
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FIG. 3. (Color online) The exciton occupation of the QD no. 1
(n1) shown by the blue line in Fig. 2(c). The time evolution is shown
for three different time intervals at picosecond resolution scale.

Although sub- and super-radiant states may exist in appro-
priately designed realistic systems, the dynamics of individual
QD occupations differs considerably from the ideal case
discussed in the previous section, when the dots interact only
through the common radiative reservoir. The situation changes
when the dots communicate with each other via short-range
coupling which induces excitation transfer between dots and
thus oscillations in the evolution of single-QD populations. In a
double-QD system the oscillation amplitudes decrease and the
occupations stabilize at levels corresponding to the single dark
state of the system [55]. In multiple QDs composed of three
or more emitters oscillations of the individual dot populations
never vanish [Figs. 2(c) and 3]. The excitation is trapped in
the system because of the existence of dark states, which in
such systems may be realized by many different amplitude
combinations and thus also the final population number may
be realized in various ways.

In Fig. 3 we enlarge the exciton occupation n1 shown in
Fig. 2(c) (blue line). As can be seen in Fig. 3(a) the initial
oscillation pattern is relatively complicated; this is caused by
the existence of three energy gaps defined by the differences
between the super-radiant eigenstate and the subradiant ones,
|ESUPER − ESUB1(2) |, and by the energy splitting between the
two subradiant eigenstates, |ESUB1 − ESUB2 |. The period of
the envelope oscillations is a multiplication of the corre-
sponding three periods, i.e., T1(2) = h/|ESUPER − ESUB1(2) |)
and T = h/|ESUB1 − ESUB1 |. The period T itself defines
the fine oscillations of the occupation. Due to the emission
process, the super-radiant contribution attenuates and the
interference pattern simplifies [Fig. 3(b)]. Finally, when the
short-living state decays and the total exciton occupation
becomes trapped, the evolution of the single-dot occupation
shows a single-mode pattern which repeats with the time T

and with amplitude depending on the initial occupation of
individual dots [Fig. 3(c)].

A system of three and more QDs allows many different
planar arrangements of the emitters. Since the coupling
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FIG. 4. (Color online) Decay rate (in the collective regime)
dependence on the spatial arrangement of a triple QD, i.e., on the
angle α defined in Fig. 1 (a) and on the energy mismatch (b),
and the corresponding steady-state occupations for the initial state
(5|1〉 + |2〉)/√26 (c) and (d), respectively. For all panels we assume
r12 = 30 nm and r23 = 20 nm and a constant decay rate of the QD
No. 2 (	22 = 2 ns−1).

amplitudes (Vij ) depend on the distances between emitters,
the eigenstates of the system, and thus the decay rates for
which the ensemble interacts collectively with its radiative
environment, also depend on the arrangement of the dots.
Using the geometry design defined in Fig. 1(a) we calculate
the dependence of the decay rates 	11 and 	33 on the spatial
arrangement of the system. We assume constant distances r12

and r23 and thus constant values of the coupling amplitudes
V12 and V23 and change the angle α from 60◦ to a linear
design, i.e., we increase the distance between dots 1 and 3.
As seen in Fig. 4(a) the values of the decay rates necessary
to form the collective regime slightly decrease with increasing
angle α. The two similarly decreasing decay rates (while the
third one is constant), according to Eq. (6) lead to increasing
steady-state (final) exciton occupation which is shown in
Fig. 4(c). If the coupling between two out of three QDs is
much stronger than the coupling of those dots with the third
one (e.g., V13 
 V12,V23, r13 � r12,r23) then one of the system
eigenstates has a large contribution from the localized state
associated with the weakly coupled dot (no. 2) and to achieve
collective regime the decay rate 	22 must be much smaller than
	11 and 	33. In the limiting case of vanishing couplings V12

and V23 the localized state |2〉 becomes the system eigenstate
and the corresponding decay rate (	22) vanishes. Consequently
the pair of coupled dots acts as a double QD while the third
dot does not contribute to the evolution.

In Fig. 4(b) we show the dependence of the decay
rates forming the collective regime on the energy mismatch.
Both calculated decay rates decrease with increasing energy
separation, but one changes slowly while the second decays
fast; this leads to decreasing [Eq. (6)] steady-state occupation
shown in Fig. 4(d). For an appropriately arranged ensemble of
dots the decay rates may decrease in such a way that for smaller
energy mismatches the final exciton occupation decreases with
increasing energy mismatch, but after exceeding a critical point

it increases. Similar effects in the dynamics of single excitons
are observed for electron-hole pairs confined in ensembles of
four and more dots.

C. Biexciton states

In multiple QDs built out of three and four units more
than one exciton may be delocalized and thus these systems
allow for more complex collective effects. Below we focus
on biexciton states which in general are described by a
vector |biexciton〉 = ∑N

i,j,i �=j bij |ij 〉, where
∑N

i,j,i �=j |bij |2 =
1. Realistic ensembles of QDs (� �= 0, di �= dj , Vij �= 0, and
Bij �= 0) permit super-radiance phenomena in the two-exciton
subspace if the biexcitonic, as well as single-exciton, eigen-
states correspond to the Dicke states. As in the single-exciton
case, the biexcitonic state is considered to be super-radiant
if the exciton occupation of a system prepared in this state
decays totally. Although eigenstates of the Hamiltonian (1)
do not mix localized basis states associated with different
exciton numbers, the biexcitonic super-radiant state may
be formed provided one of the single-exciton eigenstates
has a super-radiant character. Thus the biexcitonic super-
radiant states occur only if collective effects are present in
the single-exciton subspace. Due to the equal number of
single-exciton eigenstates and QDs forming the ensemble,
the collective regime in the single-exciton domain may be
achieved by adjusting only the decay rates (dipole moments).
As will be explained in detail below, the same rates 	ij (3)
define the biexcitonic Dicke states. Thus, in order to achieve
collective effects in the two-exciton subspace one has to also
appropriately adjust the spatial arrangement of the dots or
energies.

The super-radiant two-exciton superpositions may be
spanned as well in ensembles of four emitters as in triple
QDs and take the form

|SUPER〉B =
∑N

i,j,i �=j

√
	ii	jj |ij 〉√∑N

i,j,i �=j 	ii	jj

. (8)

Similarly to the single-exciton case, the biexcitonic super-
radiant states are defined by the maximum value of the tran-
sition probability (∼ |〈SUPER|HS-rad|biexciton〉|2), but this
time from the initial biexciton state to the final single-exciton
super-radiant one (4). The form of the condition is governed
by the coupling to the radiative environment [Hamiltonian (2)]
which induces decay of only one exciton at a time. Thus total
quenching of two excitons must occur through formation of
single-exciton super-radiant states. As can be seen in Fig. 5(a),
due to the decay of the biexciton super-radiant state a part of
the initial excitation is initially transferred to the single-exciton
state, which reaches a maximum population and then is totally
quenched, together with the biexciton state. The condition for
the existence of the super-radiant state (8) implies that the
transition to subradiant states (5) vanishes.

Two excitons can be blocked in a system if a
transition from the biexciton state to any single-exciton
state is forbidden, i.e., the transition matrix element
〈single|HS-rad|biexciton〉 vanishes. Due to the infinite number
of possible single-exciton states this condition reduces
to the requirement HS-rad|biexciton〉 = 0. To simplify the
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FIG. 5. (Color online) Exciton occupation for a biexciton initial
state spanned in a system of four QDs placed at the corners of a
square of side length r = 30 nm. (a) Super-radiant initial state.
(b) and (c) Initial biexciton state which allows for a recombination
of only one exciton. d12 = √

	33	44, d13 = −√
	22	44, d14 =

	44(	33 − 	22)
√

	22	33/(	22	33 − 	11	44), d23 = −	44(	33 −
	22)

√
	11	44/(	22	33 − 	11	44), d24 = 	44

√
	11	33/	11, and

d34 = −	44
√

	11	22/	11. The values of the decay rates of individual
dots are the same for all panels and take the values 	11 = 2.26 ns−1,
	22 = 2.75 ns−1, 	33 = 0.88 ns−1, and 	44 = 1.5 ns−1. The
biexciton shifts are B13 = B12 − 0.702 meV, B14 = B12 +
0.022 meV, B23 = B12 + 0.218 meV, B24 = B12 − 0.741 meV, and
B34 = B12 + 0.042 meV with B12 being an arbitrary parameter. The
line types used in (b) are also valid for (a).

description we define non-normalized amplitudes dij in
such a way that the amplitudes of the biexciton states

bij = dij /
√∑

i,j,i �=j |dij |2. For a triple QD the condition leads

to a system of three equations of the form

dij

√
	jj + dik

√
	kk = 0,

where every subscript i, j , and k takes the values 1, 2, and
3, respectively. The system is satisfied only in the case of
vanishing amplitudes d12 = d13 = d23 = 0 which means that
it is impossible to block two excitons in a triple QD. The
coefficients of a stable biexcitonic state spanned in a system of
four QDs must satisfy the system of four equations of the form

dij

√
	jj + dik

√
	kk + dil

√
	ll = 0,

where every subscript i, j , k, and l takes the values 1, 2, 3,
and 4, respectively. The above equations lead to the condition
for the dij numbers in the form

d12 = −
√

	33d13 + √
	44d14√

	22
,

d23 =
√

	11	44

	22	33
d14, d24 =

√
	11	33

	22	44
d13, (9)

d34 = −
√

	11	33d13 + √
	11	44d14√

	33	44
.

Although in a system of four QDs many dark states may
be spanned, in realistic systems the parameters of biexciton
states may be adjusted in such a way that only one particular
(for specified values d13 and d14) state is blocked. Thus,
as in ideal systems and similarly to the double QDs [55],
the contribution of any pair of dots to the total biexcitonic
population is constant in time (nij = const).

In realistic QDs one may realize either the super-radiant or
subradiant biexciton eigenstate but never both simultaneously

as in the ideal system. In both cases the basis is supplemented
by a third kind of state which allows for a recombination of
one electron-hole pair and trapping of the second exciton. The
evolution of a four-QD system prepared in this state is shown in
Figs. 5(b) and 5(c). While the population of the biexciton state
decreases, the occupation of a single-exciton state increases
until it stabilizes at the level corresponding to total trapping
of one electron-hole pair [green dashed line in Fig. 5(b)]. The
third basis state must be orthogonal to the super-radiant state
(8), which equals the requirement of a vanishing transition
matrix element between the biexciton state and the single-
exciton super-radiant state (〈SUPER|HS-rad|biexciton〉 = 0)
and means that the state HS-rad|biexciton〉 has a subradiant
character. The orthogonality to the subradiant biexcitonic state
(9) excludes contributions from the two-exciton dark states
and thus population trapping occurs only due to formation
of a single-exciton subradiant state (5). Since the transition
to the state (4) and thus the decay of single-exciton states is
forbidden, one exciton is blocked in the ensemble. Because
the biexcitonic subradiant states cannot be formed in triple
QDs, the requirement defining biexcitonic states which allow
blocking of one exciton reduces to the orthogonality to the
super-radiant state, and the states take the form

a12
√

	33|12〉 + a13
√

	22|13〉 + a23
√

	11|23〉√
|a12|2	33 + |a13|2	22 + |a23|2	11

,

where a12 + a13 + a23 = 0. In contrast, due to the orthog-
onality to the super-radiant state the six amplitudes of the
biexcitonic states spanned in ensembles of four QDs take the
form

dij = aij

√
	kk	ll,

where the coefficients (aij ) must satisfy the equation a12 +
a13 + a14 + a23 + a24 + a34 = 0 and, using further the orthog-
onality to the subradiant state relations,

a12	33	44 − a13	22	44 − a24	11	33 + a34	11	22 = 0,

a12	33	44 − a14	22	33 − a23	11	44 + a34	11	22 = 0.

Due to the existence of single-exciton and biexciton
optically inactive states in ensembles of four QDs the initial
biexcitonic states allow for many combinations of final
occupation. An arbitrary fraction of exciton occupation (�2)
may be trapped by an appropriate combination of blocked
single excitons and biexcitons due to the contribution to the
initial state from dark states and basis states which allow only
one electron-hole pair to recombine. Irrespective of the initial
number of excitons, ensembles of three QDs allow spanning
of only single-exciton subradiant states and thus block only
single excitons.

It is important to emphasize that if the system were prepared
in a bright biexcitonic state which leads to trapping of single-
exciton occupation [Figs. 5(b) and 5(c)], then the pronounced
oscillations due to coupling between the dots appear only
in the occupation of localized biexciton states, while the
amplitudes of oscillations in the populations of single dots
are negligible [Fig. 5(c)] compared to the single-exciton initial
state [Fig. 2(c)]. This means that the biexciton initial state
allows well-defined stable single-exciton subradiant states to
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be achieved, which is important for the application of quantum
computation.

D. p-i-n junction

The presence of optical collective effects in realistic QD
systems requires high accuracy of the system parameters which
may be controlled in the manufacturing stage or by external
fields by, e.g., implementing the dots into the intrinsic region
of a p-i-n junction. This structure provides the possibility of
a separate injection of electrons and holes into QDs from
both sides of a sample and control of the exciton dynamics
and QD parameters through application of contacts on n- and
p-type regions. It has been shown that control with a bias
voltage carrier tunneling into a single QD in a p-i-n structure
incorporated into a microcavity leads to regulated emission
of single photons and pairs of photons [64]. The ideas were
followed by technological realization of an electrically driven
single-photon emitter with a layer of self-organized InAs QDs
[65]. Gate voltages constructed over dots allow control of the
energies of the dots and dipole moments, but the magnitudes
of the decay rates of single QDs (3) depend on the average
energy of the ensemble (E) and thus operations on one dot
change the decay rates of all QDs in the system.

In order to simulate the possibility of controlling exciton oc-
cupation we have calculated the time evolution of the system of
four QDs and we have changed the decay rates at some selected
time points. The results are shown in Fig. 6 where the system
is initially in the collective regime and has been prepared in
a single-exciton subradiant state. We assume that the control
electric fields are weak enough to exclude dissociated exciton
states. As expected, initially the excitation is blocked in the
system.

At time 2.5 ns a change of parameters occurs which destabi-
lizes the system and induces quenching of the excitation. The
effect may be produced by a variation of the internal electric
field in the p-i-n junction, which is simulated here by a change
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FIG. 6. (Color online) Exciton occupation for a system of
four QDs placed at the vertices of a square of side length
r = 30 nm and prepared initially in a single-exciton subradiant
state ∼(

√
	22	33	44|1〉 + √

	11	33	44|2〉 + √
	11	22	44|3〉 −

3
√

	11	22	33|4〉). In regions I and III the decay rates are the same as
in Fig. 5, i.e., selected such that the system interacts collectively with
the radiative surrounding. The red solid line corresponds to changes
of the decay rates of individual QDs, and the blue dotted line to the
same changes plus changes of the relative angular orientation of the
dipoles. In region II the decay rates and angles have been modified
such that the ensemble does not interact collectively with its photon
environment (see text).

of the decay rates of each single dot, and shown by the red solid
line in Fig. 6. The decay rates have been changed as follows:
	11 → 1.4	11, 	22 → 1.3	22, 	33 → 1.2	33, 	44 → 1.1	11.

In this case the quenching is relatively weak because of a small
change in the ratio of the decay rates but the effect is visible.
At time 7.5 ns the parameters of each dot are changed back
and the system population is again stable.

The decay may be enhanced by changing the orientation
of the dipoles as shown by the blue dotted line in Fig. 6. All
dipoles are parallel in the regions I and III, i.e., all angles
θij = 0. But now, in addition to the previous variations of 	ij ,
the angles are also modified in region II: θ12 = 0.1, θ13 =
0.11, θ14 = 0.2, θ23 = 0.105, θ24 = 0.2, θ34 = 0.1 rad. The
misalignment of the dipole moments creates thus a stronger
decay. The initial conditions may be restored at any time,
which may result in the trapping of a desired fraction of the
initial occupation.

IV. CONCLUSIONS

We have studied the optical collective effects due to
interaction of multiple quantum dots built of three and four
emitters with radiative surroundings. Ensembles of three
and more emitters allow spanning of many subradiant states
which facilitate preparation of the system in optically inactive
single-exciton states and for ensembles of four emitters also
in the biexciton subspace.

We specified the conditions which allow the super-radiance
phenomena to occur in coupled inhomogeneous systems with
different fundamental transition energies and dipole moments
(and thus decay rates). We discussed the dynamics of single
electron-hole pairs and biexcitons. Although many features
typical for identical atoms, such as spontaneous trapping of
excitation, may also occur in inhomogeneous QDs there are
differences in the dynamics of these systems. In principle,
coupling between the dots induces excitation transfer between
the dots which together with the possibility to define many
dark states in ensembles of three and more dots leads to
oscillations in the occupation of single dots. The amplitudes of
these oscillations may be considerably reduced if the system
is prepared initially in an appropriate biexction state which
allows for trapping of one electron-hole pair.

We envision that the presented collective effects may be
controlled if the ensemble of dots is placed in the intrinsic
region of a p-i-n junction with contacts constructed over the
dots which due to sufficiently weak electric fields allows
control of the dynamics of excitons and thus super-radiant
effects.
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APPENDIX: DERIVATION OF EQ. (6)

To express an arbitrary single-exciton state in terms of the
super-radiant state (4) and a subradiant state (5) we begin with a
derivation of a formula for a localized state |i〉. The subradiant
state which allows canceling out all localized contributions
different from the state |i〉 to the super-radiant state has the
form

|SUB〉i =
∑N

j �=i 	jj |i〉 − √
	ii

∑N
j �=i

√
	jj |j 〉√∑N

j �=i 	jj

∑N
i=1 	ii

(A1)

and is orthogonal to the super-radiant state for an arbitrarily
chosen state |i〉. Therefore the localized single-exciton states
may be decomposed into a superposition of the super-radiant
(4) and subradiant state defined in the formula (A1) according
to the equation

|i〉 =
√

	ii |SUPER〉 +
√∑N

k �=i 	kk|SUB〉i√∑N
i=1 	ii

. (A2)

The above formula allows definition of a sub- and super-radiant
component in every single-exciton state,

|s〉 =
N∑

i=1

ci |i〉 = |SUPER〉′ + |SUB〉′.

Since there is only one super-radiant state in any system of N

QDs, the short-living contribution

|SUPER〉′ =
∑N

i=1 ci

√
	ii√∑N

i=1 	ii

|SUPER〉

is proportional to the state (4) with a weight factor∑N
i=1 ci

√
	ii√∑N

i=1 	ii

,

while the stable part

|SUB〉′ =
∑N

i=1 ci

√∑N
k �=i 	kk√∑N

i=1 	ii

|SUB〉i

=
∑N

i=1 ci

( ∑N
j �=i 	jj |i〉 − ∑N

j �=i

√
	ii	jj |j 〉)∑N

i=1 	ii

is a combination of N subradiant states (A1), which as a sum
of dark states remains optically inactive irrespective of the
number of emitters. The component |SUB〉′ is proportional
to the subradiant state defined by the formula (7) with an
amplitude √√√√√1 −

⎛
⎝ N∑

i=1

ci

√
	ii

/ √√√√ N∑
i=1

	ii

⎞
⎠

2
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