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Input-output theory for waveguide QED with an ensemble of inhomogeneous atoms
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We study the collective effects that emerge in waveguide quantum electrodynamics where several (artificial)
atoms are coupled to a one-dimensional superconducting transmission line. Since single microwave photons
can travel without loss for a long distance along the line, real and virtual photons emitted by one atom can be
reabsorbed or scattered by a second atom. Depending on the distance between the atoms, this collective effect
can lead to super- and subradiance or to a coherent exchange-type interaction between the atoms. Changing the
artificial atoms transition frequencies, something which can be easily done with superconducting qubits (two
levels artificial atoms), is equivalent to changing the atom-atom separation and thereby opens the possibility to
study the characteristics of these collective effects. To study this waveguide quantum electrodynamics system, we
extend previous work and present an effective master equation valid for an ensemble of inhomogeneous atoms
driven by a coherent state. Using input-output theory, we compute analytically and numerically the elastic and
inelastic scattering and show how these quantities reveal information about collective effects. These theoretical
results are compatible with recent experimental results using transmon qubits coupled to a superconducting
one-dimensional transmission line [van Loo et al. (unpublished)].
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I. INTRODUCTION

By confining the electromagnetic field in space, cavity
quantum electrodynamics (QED), and more recently circuit
QED, have opened the opportunity to study the interaction
of light and matter in the strong-coupling regime where the
light-matter interaction strength overwhelms decay rates [1,2].
Strong interaction between matter and propagating photons is
of interest for applications such as quantum networks [3–5] and
single-photon transistors [6,7]. Strong light-matter interaction
in an open three-dimensional (3D) setting is made possible by
tightly focusing the optical field [8]. An important signature
of the interaction in this situation is the extinction of the
transmitted light field by a single atom or molecule. Indeed, the
light beam interferes destructively with the collinearly emitted
light from the atom or molecule, resulting ideally in 100%
reflection. However, because of poor spatial mode matching
(i.e., the atom or molecule emits light in all directions while the
incoming beam is tightly focused), only about 10% reflection
is currently observed with single atoms [4].

The situation can be very different with artificial atoms in a
circuit [9]. Indeed, as first shown experimentally by Astafiev
et al. [10], almost ideal mode matching can be realized with a
superconducting flux qubit coupled to a one-dimensional (1D)
transmission line. In that experiment, 94% extinction of the
transmitted signal was observed showing that a single qubit can
act as a near ideal mirror for (low-intensity) microwave light.
Deviation from the ideal result was caused by pure dephasing
and qubit decay into nonradiative channels. Although this extra
channel is present, the significant extinction of the transmitted
signal implies that nonradiative decay is overwhelmed by
radiative decay into the line. This is the signature of strong
coupling for such a system. Experiments with transmon qubits
[11] in the same regime have also been realized by the
Chalmers group [12–14]. Interaction of a superconducting
qubit with photons propagating in a 1D line has also been
studied theoretically [9,15–19].

In this paper, we study theoretically the situation where
several multilevel superconducting qubits (artificial atoms)
interact with the same 1D transmission line. Experimental
results on this waveguide QED system are presented in a
companion paper [20]. To understand the main results, it is
useful to first consider the well known and simpler case of
a single free atom in 3D space. There, interaction of the
atom with vacuum fluctuations leads to relaxation, due to
emission by the atom of a photon at the atomic transition
frequency, and to a Lamb shift of the atomic energy levels,
due to emission of virtual photons. In the presence of a second
atom, real and virtual photons emitted by the first atom can
be absorbed by the second, leading to a nontrivial interaction
between the two. Therefore, while a single atom acts as a
mirror reflecting incident light, two or more atoms will behave
in a more complex way [21,22]. However, because of poor
mode matching this interaction is rather weak in 3D.

With near-perfect mode matching, artificial atoms in a
1D transmission line provide an ideal system to study this
interaction. Indeed, a single microwave photon could, in
principle, travel for several kilometers along a superconducting
transmission line before being lost. In this setting the above-
mentioned qubit-qubit interaction is therefore long range and
emission of real photons modifies the single-qubit relaxation
time [23]. As a result, collective decay or, in other words, super-
and subradiance will be observed in the presence of several
atoms. On the other hand, emission of virtual photons leads to
exchange-type interactions between the qubits. Whereas these
interactions can be long range, their characteristics depend on
the distance between the qubits. The character of the qubit-
qubit interaction therefore changes with the distance between
them. To change the distance between the qubits in situ is not
feasible for a given sample, but changing the wavelength λ at
which the qubits emit has an equivalent effect. Consequently, it
is possible to study the distance dependence of the interaction
simply by tuning the qubit transitions frequencies.
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A system of two (artificial) atoms interacting via 3D [21,24–
30] and 1D [30–34] open space has been theoretically studied
previously. In particular, non-Markovian effects (which are
not relevant to the particular case of interest here) have been
studied [35]. Here, we adapt Lehmberg’s derivation for 3D
space [21] to an ensemble of inhomogeneous (artificial) atoms
coupled to a 1D transmission line. After eliminating the field
degrees of freedom, an effective master equation for the atoms
alone is obtained. Some approximations that were reasonable
for atoms in 3D [21] must be revisited. In order to model
reflection and transmission of an input beam by the system,
we use input-output theory [36]. This allows us to calculate
the elastic and inelastic scattering, which we show reveal the
effects mentioned above.

The paper is organized as follows. In Sec. II, we present
a theory of waveguide QED. We first present a reduced
master equation describing an arbitrary number of many-levels
(artificial) atoms coupled to the 1D line and driven by a
coherent state. We then apply input-output theory to this
system, thereby allowing us to compute elastic and inelastic
scattering. The dressed basis, which is useful for understanding
collective effects, is discussed. Focusing on the situation where
only two qubits are coupled to the line, we show how elastic
and inelastic spectra reveal information about collective effects
mediated by the open line. This is done in Sec. III considering
a λ/2 separation between the qubits and in Sec. IV a λ/4
separation. We summarize our work in Sec. V.

In all cases, details of the calculations are relegated to
the appendices. In Appendix A, we present a derivation of
the Hamiltonian for the cases of superconducting transmon
qubits coupled to a 1D transmission line. The reduced master
equation is derived in Appendix B and the input-output theory
is discussed in Appendix F. An in-depth discussion of the
various approximations, and their validity in the context of
waveguide QED with superconducting qubits, is presented
in Appendix C. Additional details on the derivation of the
reduced master equation can be found in Appendices D, E,
and G.

II. WAVEGUIDE QED

A. General effective master equation for the
inhomogeneous system

As illustrated in Fig. 1 with transmon qubits, we consider an
ensemble of N inhomogeneous (artificial) atoms, each with M

levels. They are dipole coupled to a 1D transmission line. The
electromagnetic field in the transmission line can be described
by the Hamiltonian [9]

HF =
∫ ∞

0
dω h̄ω[a†

R(ω)aR(ω) + a
†
L(ω)aL(ω)], (1)

where a
†
R(L)(ω) creates right- (left-) moving excitations at

frequency ω in the line. The Hamiltonian of the artificial atoms
is

HA =
N−1∑
j=0

M−1∑
m=0

Emj |mj 〉〈mj |, (2)

where Emj is the energy of the mth state of the j th atom. The
interaction Hamiltonian between the line’s electric field and
the electric dipole for the free artificial atoms can be described
as

HI =
N−1∑
j=0

M−1∑
m=0

h̄gj

√
m + 1(�j + �

†
j )σmj

x . (3)

In this expression, �j is related to the electric field at the
location xj of the j th artificial atom,

�j = −i

∫ ∞

0
dω

√
ω[aL(ω)e−iωxj /v + aR(ω)eiωxj /v], (4)

with v the speed of light in the transmission line. We define

σmj
x = σ

mj
− + σ

mj
+ , (5)

with

σ
mj
− = |mj 〉〈(m + 1)j | = (σmj

+ )†, (6)

the lowering operator for the (m + 1)th state of the j th atom.
The interaction only involves transitions between adjacent
states of the atoms, which is a valid approximation for
the transmon superconducting qubit behaving as a weakly
nonlinear oscillator [11]. Finally, gj is the (dimensionless)
coupling strength between atom j and the field. The expression
of gj for transmon qubits is given in Appendix C.

Following Lehmberg [21], and as shown in Appendix B,
the effective master equation for the artificial atoms after
tracing out the field degrees of freedom can be expressed as

FIG. 1. (Color online) Waveguide QED realization with superconducting circuits: transmon qubits acting as artificial atoms (in green) are
coupled to a 1D superconducting transmission line (in blue).

043806-2



INPUT-OUTPUT THEORY FOR WAVEGUIDE QED WITH AN . . . PHYSICAL REVIEW A 88, 043806 (2013)

[21,24–30,32,33,35]

ρ̇ = − i

h̄
[H,ρ]

+
∑
mj,nk

γmj,nk

[
σ

mj
− ρσnk

+ − 1

2
{σnk

+ σ
mj
− ,ρ}

]
, (7)

with the effective Hamiltonian

H = HA + h̄
∑
mj

dmj (t)σmj
x + h̄

∑
mj,nk

Jmj,nkσ
mj
− σnk

+ . (8)

This effective Hamiltonian contains a drive on the atoms
proportional to dmj (t). For input coherent states incoming from
the left (right) and of frequency ωd , phase θL(R), and power
PL(R) we show in Appendix D that

dmj (t) = −2

√
γmj,mj

2

(√
PL

h̄ωmj

sin[ωd (t + tj + θL)]

+
√

PR

h̄ωmj

sin[ωd (t − tj + θR)]

)
(9)

with tj = xj/v.
Hamiltonian of Eq. (8) is Hermitian since Jmj,nk = J ∗

nk,mj .
As discussed in Appendix B, in obtaining this expression,
we have used the rotating-wave approximation, dropped small
nonpositive terms in the dissipators, and absorbed Lamb shifts
in the definition of HA (see Appendix B for the full expression).
As seen from Eq. (7), the effect of the interaction with the
transmission line is to damp atoms at the rate

γmj,nk = 2πgkgj

√
(m + 1)(n + 1)(χmjk + χ∗

nkj ), (10)

with

χmjk = ωmje
iωmj tkj , (11)

h̄ωmj = Em+1,j − Emj , (12)

and tkj = |xk − xj |/v the time it takes the signal to propagate
from atom k to atom j . For j = k, Eq. (10) corresponds to
standard relaxation rates of the atoms. As discussed below, for
j �= k this however corresponds to correlated decay.

The last term of Eq. (8) is an exchange interaction between
the atoms being mediated by virtual excitations in the line with
amplitude

Jmj,nk = −iπgkgj

√
(m + 1)(n + 1)(χmjk − χ∗

nkj ). (13)

For the particular case of a pair of levels in two atoms that
are tuned to resonance, ωmj = ωnk , the expressions for γmj,nk

and Jmj,nk take a simpler form [28–30,32,33]:

γmj,nk = 4πgkgjωmj

√
(m + 1)(n + 1) cos(ωmj tkj ) (14)

and

Jmj,nk = 2πgkgjωmj

√
(m + 1)(n + 1) sin(ωmj tkj ). (15)

This form makes it clear that the magnitude of these two quan-
tities has an oscillatory dependence on interatomic separation.

B. Input-output theory

To compare theoretical predictions to experiments mea-
suring reflection and transmission of light by the system, we

derive in Appendix F the input-output boundary condition
in the presence of artificial atoms coupled to the line. Only
the main results are presented in this section. Following the
standard prescription [36], we find

aR
out(t) = aR

in(t) +
∑
mj

e−iωmj tj

√
γmj,mj

2
σ

mj
− (16)

and

aL
out(t) = aL

in(t) +
∑
mj

eiωmj tj

√
γmj,mj

2
σ

mj
− , (17)

where

aR
in(t) =

∫ ∞

0

dω√
2π

aR(ω,t0)e−iωt (18)

represents the input field arriving at the atoms from the left
and

aR
out(t) =

∫ ∞

0

dω√
2π

aR(ω,t1)e−iωt (19)

the output field propagating to the right after interaction
with the system. As is standard in input-output formalism,
t0 < t and t1 > t refer to a time, respectively, before or after
interaction with the system. Similar expressions can be found
for the left-moving fields.

Assuming for example that the system is driven from the
left, it is possible to compute using Eqs. (16) and (17) the
transmission coefficient

|t |2 = ∣∣〈aL
out

〉/〈
aL

in

〉∣∣2
(20)

and the reflection coefficient

|r|2 = ∣∣〈aR
out

〉/〈
aL

in

〉∣∣2
(21)

corresponding to elastic scattering. Another useful quantity is
the power spectrum of the output field

Sα[ω] =
∫ ∞

−∞
dt eiωt

〈
a

α†
out(t)a

α
out(0)

〉
(22)

for α = R,L and which corresponds to inelastic scattering for
ω �= 0. Analytical or numerical predictions for both the elastic
and inelastic scattering will be presented below for two choices
of interatomic separations.

C. Dressed basis

Elsewhere [20], we report measurements of |t |2, |r|2, and
Sα[ω] for N = 2 transmons coupled to the line. There, quan-
titative agreement with numerical calculations is presented.
Here, we take M = N = 2 in the reduced master equation
(7) and focus on the analytical results. Quantitative agreement
between the theoretical description below and the experimental
results of Ref. [20] can be obtained.

In a frame rotating at drive frequency ωd , taking N = M =
2 leads to

ρ̇ = − i

h̄
[H,ρ] +

∑
jk

γjk

[
σ

j
−ρσ k

+ − 1

2
{σ k

+σ
j
−,ρ}

]
, (23)
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where

H/h̄ =
∑

j

�j |ej 〉〈ej | +
∑

j

(εjσ
j
+ + H.c.)

+ J (σ 1
−σ 2

+ + σ 1
+σ 2

−), (24)

with |ej 〉 the excited state of qubit j , �j = ω0j − ωd ,
J = J0j,0k , and γjk = γ0j,0k + γ

j
nrδjk . The rate γ

j
nr represents

nonradiative decay of qubit j . In practice, it is easy to realize a
situation where qubit decay will be dominated by emission into
the line, that is, γjj � γ

j
nr. In this open-line setting, satisfying

this inequality corresponds to the strong-coupling regime [37].
Assuming that the qubits are driven from the left only, Eq. (9)
for the drive amplitude now takes the simpler form

εj = −i

√
γ0j,0jωd

2ω0j

〈
aL

in

〉
e−iωd tj . (25)

To deal with correlated decay described by the last term
of Eq. (23), it is useful to move to a basis that diagonalizes
the dissipation matrix with components γj,k . As shown in
Appendix G, this leads to the more standard form for the
last term of Eq. (23), which now reads∑

μ=B,D

�μD[σμ
− ]ρ, (26)

where D[x]ρ = xρx† − {x†x,ρ}/2 is the standard dissipator
that is now acting on the dressed lowering operators

σ
μ
− = (�μ − γ11)σ 0

− + γ ∗
01σ

1
−√

(�μ − γ11)2 + |γ01|2
, (27)

with μ = B,D and with correlated decay rates

�B/D = γ00 + γ11

2
±

√(
γ00 − γ11

2

)2

+ |γ01|2. (28)

The subscripts B and D refer to bright and dark, respectively.
Due to dependence on the qubit separation, both the correlated
qubit decay �μ and exchange interaction J can be tuned by a
modification of the qubit’s transition frequency.

Below we consider the case of two qubits tuned in resonance
at a frequency ω0 such that the distance d between them
corresponds to λ0 or 3λ0/4, with λ0 = 2πv/ω0. In both cases,
reflection and transmission coefficients are calculated as well
as the corresponding power spectra.

III. λ/2 SEPARATION: SUB- AND SUPERRADIANCE

A. Discussion

We first consider a pair of qubits tuned in resonance at a
frequency ω0, whose associated wavelength λ0 is equal to d =
λ0/2. To simplify the discussion, we let γnr ≡ γ 0

nr ∼ γ 1
nr. In the

strong-coupling regime, γ
j
nr � γ00,γ11, and the nonradiative

relaxation rate is a small perturbation. The above assumption
that the nonradiative rates are equivalent for both qubits will
therefore not affect the results much.

With this simplification and the choice d = λ0/2, the off-
diagonal decay rate γ01 defined in Eq. (10) can be written as

γ01 = ±
√

(γ00 − γnr)(γ11 − γnr). (29)

This leads to

�D = γnr � �B = γ00 + γ11 − γnr. (30)

In other words, for d = λ0/2 the state |D〉 defined by σD
− |D〉 =

0 is dark as its decay rate is purely nonradiative. On the
other hand, the state |B〉 defined by σB

− |B〉 = 0 is bright.
This corresponds, respectively, to sub- and superradiance
[25,28,29,38]. Moreover, for this half-wavelength setting, the
exchange interaction is absent with J = 0.

That |B〉 and |D〉 are bright and dark, respectively, can also
be seen from the Hamiltonian. Indeed, by inverting Eq. (27),
it is possible to rewrite the driving term in Eq. (24) as∑

μ=B,D

h̄(εμσ
μ
+ + H.c.). (31)

For |�j |/ω0 � 1, which is easily satisfied, the drive ampli-
tudes now take the forms

εD ≈ 0,
(32)

εB ≈ −i
〈
aL

in

〉
e−iωd t0

√
γ00 + γ11

2
− γnr.

Clearly, |D〉 cannot be driven from the ground state |gg〉.
This can be understood intuitively from Fig. 2 in the case
γ00 = γ11. First, only consider the two leftmost qubits, Q1

and Q2. As illustrated in Fig. 2, when driven on resonance,
Q1 and Q2 experience opposite phases of the driving field
as they are separated by d = λ0/2. In this case, transitions
between |gg〉 and |B〉 = (|ge〉 − |eg〉)/√2 are allowed while
transitions between |gg〉 and |D〉 = (|ge〉 + |eg〉)/√2 are
forbidden. These selection rules are captured by Eq. (32) and
are akin to what is observed in circuit QED in the presence of
two qubits in the same resonator [39,40]. As damping, just like
driving, is an interaction of the qubits with the line, we also find
in Eq. (30) that �D = γnr or, in other words, that |D〉 does not
decay radiatively. As expected from these simple arguments,
the situation is reversed for Q1 and Q3 in Fig. 2, which are
separated by d = λ0. In this case, |B〉 = (|ge〉 + |eg〉)/√2 and
|D〉 = (|ge〉 − |eg〉)/√2.

It is important to point out that, since [σB/D
± ,σ

B/D
∓ ] �= 0 and

[σB/D
± ,σ

D/B
∓ ] �= 0, |D〉 will not be completely dark in practice

and especially not in the presence of finite nonradiative decay

Q1

d

Q3Q2

FIG. 2. (Color online) Schematic representation of three trans-
mon qubits in a 1D transmission line. Qubits are considered as
point-like objects and their locations xj along the line are represented
by circles. Q1 and Q2 are separated by λ0/2 while Q1 and Q3 by λ0.
If Q1 and Q3 are identical, only symmetric superpositions of these
two qubits can be excited by an external drive of wavelength λ0. On
the other hand, since they are separated by λ0/2, only antisymmetric
superpositions of Q1 and Q2 can be excited.
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FIG. 3. (Color online) (a) Schematic energy level diagram for
two qubits in a transmission line. The dark state |D〉 cannot be driven
directly from the ground state |gg〉. If the qubits are identical, it can,
however, be excited by nonradiative relaxation γnr from |ee〉. In the
situation where the qubit relaxation rates are different (γ00 �= γ11), it
can be excited indirectly from |B〉 via |ee〉. Dephasing (γ2) can also
cause transition between |B〉 and |D〉. (b) Matrix elements of σB

− as
a function of the relaxation rate asymmetry (γ00 − γ11)/(γ00 + γ11).

γnr. Indeed, as illustrated in Fig. 3(a), the joint excited state |ee〉
can be reached from |B〉 by driving with σB

+ . From this state,
|D〉 can be populated with the action of σB

− when γ00 �= γ11.
This is because the matrix element of σB

− between |ee〉 and
|D〉 is proportional to the asymmetry (γ00 − γ11)/(γ00 + γ11),
as shown in Fig. 3(b). The dark state can also be populated
by nonradiative decay. It is interesting to point out that, while
nonradiative relaxation cannot be controlled in this system, the
indirect driving of |D〉 from |ee〉 can be tuned by controlling
the asymmetry between γ00 and γ11, something that can be
done by tuning the qubit frequency.

B. Elastic scattering

In this section, we compute the elastic scattering or,
more precisely, the transmission, Eq. (20), and reflection
coefficients, Eq. (21), assuming the two-qubit system to be
driven from the left. To simplify the discussion, as before we
take both qubits to have the same frequency, such that � = �j ,
and have the same total decay rate γ = γjj . It is also useful
to introduce γr = |γ01| = γ − γnr, the radiative contribution to
the decay rate. With these definitions and Eq. (16), we find for
the outgoing field that

a
R/L
out = a

R/L
in ± i

√
γrσ

B
− . (33)

Solving for 〈σB
− 〉 in steady state using the master equation (23),

we have, to first order in the drive amplitude 〈aL
in〉,〈

aR
out

〉 = 〈
aL

in

〉−i(�B − γnr)/2

� − i�B/2
, (34)

〈
aL

out

〉 = 〈
aL

in

〉 (
1 − −i(�B − γnr)/2

� − i�B/2

)
. (35)

These equations are expected for a single qubit with relaxation
rate �B [10]. Indeed, in the absence of nonradiative decay, there
is full extinction of the transmission and complete reflection
when driving (with low power) on resonance � = 0. While we
are dealing here with a four-level system, this simple behavior
is observed because, as illustrated in Fig. 3, at low irradiation
power and in the absence of nonradiative decay or additional
dephasing, only two levels are relevant, {|gg〉 , |B〉}. The two
qubits behave like a single two-level system coupled to the
line and with decay rate �B .

4 2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 4. (Color online) Transmission and reflection coefficients as
a function of normalized detuning �/γ between the qubits equal
transition frequencies and drive. The qubits are tuned such that they
are separated by d = λ0. There is full transmission extinction on
resonance. The width of both |t |2 and |r|2 is given by the superradiant
rate �B ∼ 2γ . Solid lines are obtained from analytical results,
whereas the dotted lines are obtained from numerical simulations of
the reduced master equation. The selected parameters are γr = 0.95γ

and γ /2π = 18.8 MHz.

The output fields can also be obtained exactly analytically,
but this leads to expressions that are too long to be worth repro-
ducing here. The transmission |t |2 and reflection coefficients
|r|2 obtained from these exact expressions are illustrated in
Fig. 4. These are in excellent agreement with results obtained
from numerical integration of the reduced master equation,
Eq. (7). As expected from the above discussion, the width of
the transmission dip is given by the superradiant rate �B ∼ 2γ .

C. Inelastic scattering

As argued above, for γnr/γr = 0 and in the absence of
pure dephasing, the state |D〉 is unpopulated and at low
enough power, we are left with an effective two-level system
{|gg〉 , |B〉}. In this case, the normalized power spectral density
takes the simple form [41]

SR/L[ω] = 8εeff
B

4

[(�B/2)2 + ω2]2
, (36)

with εeff
B the effective driving strength of the superradiant

state. Figure 5(a) plots this expression with εeff
B evaluated as

a fit parameter for results obtained from numerical integration
of the master equations (7) and (22) in the limit γnr/γr = 0.
As illustrated in Fig. 5(b), for γnr/γr finite but small, results
obtained from numerical integration deviate from the above
simple expression and show a sharp peak in the spectral density
centered at zero (solid blue line). This is a signature of the
subradiant state |D〉 that can become populated, as illustrated
schematically in Fig. 3, via |ee〉 by nonradiative decay γnr and
via |B〉 by dephasing γ2 = γnr/2 + γϕ . This peak should not be
confused with the Rayleigh-scattered radiation which results
in a δ peak at ω = 0 and which we have removed here.

As illustrated in Fig. 5(b), the signature of the dark state
disappears in the presence of large nonradiative decay. The
evolution of this feature as a function of γnr/γr is presented
in Fig. 5(c). Whereas a finite nonradiative decay rate is useful
to observe both the signature of super- and subradiance, it is
required for the system to be in the strong-coupling regime for

043806-5
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FIG. 5. (Color online) Power spectral density Sα[ω] as a function
of normalized frequency ω/γr and for a weak coherent tone
corresponding to an amplitude εB/γr = 0.005. The qubits are tuned
such that they are separated by d = λ0. In the absence of nonradiative
relaxation or asymmetry in the qubit decay rates, a squared Lorentzian
of width �B = 2γr is observed. In the presence of nonradiative
relaxation the dark state can be populated and a narrow peak appears in
the spectrum. (a) Analytical (solid blue line) and numerical (red dots)
power spectral densities for γnr = 0. (b) Numerical power spectral
density for γnr/γr = 0.1 (green dashed line) and γnr/γr = 0.01 (solid
blue line). (c) Log10 of the numerical power spectral density vs
frequency and as a function of nonradiative relaxation γnr/γr. γr/2π =
17.9 MHz.

both features to be observable. As shown in Ref. [20], this can
be achieved with transmon qubits.

The above results have been obtained in the idealized case
where γ00 = γ11. These decay rates, defined below Eq. (24),
contain both the radiative and the nonradiative contributions.
Some asymmetry in the decay rates is to be expected in
practice. As illustrated in Fig. 3, this leads to a finite transition
matrix element between |ee〉 and the dark state |D〉. The effect
of this asymmetry is illustrated in Fig. 6, which presents the
numerically computed power spectral density as a function of
both frequency and asymmetry (γ00 − γ11)/(γ00 + γ11). These
results are obtained for a constant γnr/γ11 = 0.01 correspond-
ing to the strong-coupling limit. This additional population
mechanism for the dark state leads to power broadening of
the sharp feature centered around ω = 0. However, with up to
10% asymmetry, this signature of superradiance is expected
to be clearly observable at low power. This is confirmed
experimentally [20].

-0.1

-0.05
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 0.05

 0.1

-1 -0.5  0  0.5  1

-12

-11.5

-11

-10.5
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FIG. 6. (Color online) Log10 of the numerical power spectral
density Sα[ω] as a function of normalized frequency ω/γ11 and
relaxation rate asymmetry (γ00 − γ11)/(γ00 + γ11). The drive power
and nonradiative decay are chosen such that εB/γ11 = 0.005 and
γnr/γ11 = 0.01, corresponding to a weak coherent drive tone in
the strong-coupling limit. The qubits are tuned such that they are
separated by d = λ0. Asymmetry between the relaxation rates opens
a new drive channel for the dark state |D〉, causing power broadening.
γ11/2π = 18.1 MHz.

IV. λ/4 SEPARATION: EXCHANGE INTERACTION

A. Discussion

We now consider the situation where the transition fre-
quency of both qubits is chosen such that the qubit separation
d is an odd multiple of λ0/4. This is illustrated in Fig. 7
where Q1 and Q3 are separated by 3λ/4. As can be seen
from Eqs. (14) and (15), in this case the correlated decay
rate γ01 ∝ cos(2πd/λ0) is zero and the exchange interaction
∝sin(2πd/λ0) takes its maximal value |J | = γr/2.

That this interaction is at a maximum for this separation
can be understood intuitively from Fig. 7 and by going back
to the origin of the virtual interaction term in the derivation
of the effective master equation. Indeed, as can be seen in

Q1 Q3Q2

FIG. 7. (Color online) Schematic representation of three trans-
mon qubits in a 1D transmission line. Qubits are considered as
pointlike objects and their location xj along the line is represented by
circles. As illustrated by the solid line, the distance between Q1 and
Q3 corresponds to 3λ0/4. At the location of Q3, modes of frequency
around 3λ0/4 have opposite signs (see dashed and dotted line). On
the other hand, for a separation corresponding to λ0/2 just like Q1

and Q2, all modes have the same sign around Q2.
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detailed calculation presented in Appendix B, the exchange
interaction J is a modification of the Lamb shift in the presence
of multiple qubits coupled to the line. Basically, virtual photons
emitted and reabsorbed by a given qubit contribute to the
qubit’s Lamb shift. In the presence of two (or more) qubits,
virtual photons can be emitted by one qubit and absorbed
by the other, leading to an effective qubit-qubit interaction.
This type of exchange interaction is well known in circuit
QED where the qubits interact strongly with a single mode
of a resonator leading to J = g1g2/δ, with δ the detuning of
both qubits to the resonator [39,40]. In the present open-line
context where the qubits interact with a continuum of modes,
J is of the same form but is now an integral over all continuous
modes except the continuous modes lying at qubit transition
frequency [42].

As illustrated in Fig. 7 for Q1 and Q3, the continuous
modes at longer wavelength than 3λ0/4 (dashed line) have
a phase of opposite sign at the location of the second qubit
with respect to continuous modes of shorter wavelength than
3λ0/4 (dotted line). Moreover, since these continuous modes
are, respectively, below and above the qubit frequency, their
respective detuning δ is also of opposite sign. This double
change of sign results in a finite exchange interaction because
the contribution to J of the modes around 3λ0/4 all have
the same overall (negative) sign. In contrast, for Q1 and
Q2 which are separated by λ0/2, the phases of all the
continuous modes at Q2 have the same sign while the detuning
δ changes sign. In this case, the exchange interaction van-
ishes when integrating over all continuous modes above and
below λ0/2.

Assuming that the qubits are in resonance, and taking γ =
γjj for simplicity, this discussion can be made more formal by
working in the dressed basis, which diagonalizes the effective
Hamiltonian, Eq. (24). In this situation, the dressed lowering
operators, Eq. (27), take the simple form

σ
B/D
− = σ 1

− ± σ 0
−√

2
. (37)

The master equation then reads

ρ̇ = − i

h̄
[H,ρ] + γ

∑
i=B,D

D[σ i
−]ρ, (38)

where

H =
∑

i=B,D

h̄ωiσ
i
+σ i

− +
∑

i=B,D

h̄(εiσ
i
+ + H.c.), (39)

and ωB/D = � ± J , εB/D = (ε1 ± ε0)/
√

2. As expected, in the
dressed basis, the system is described by two driven eigenstates
whose frequencies differ by 2J .

B. Elastic scattering

We now turn to elastic scattering. Using Eqs. (17) and (16),
the output fields can be expressed as

aR
out(t) =

√
γr

2
e−iω0t0 [σ 0

− − isgn(J )σ 1
−], (40)

aL
out(t) = aL

in +
√

γr

2 eiω0t0 [σ 0
− + isgn(J )σ 1

−]. (41)
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FIG. 8. (Color online) Transmission and reflection coefficients as
a function of normalized detuning �/γ between the qubits transition
frequencies and drive. The qubits are tuned such that d = 3λ0/4. Full
lines are analytical results while dotted lines are numerical results.
(a) |ε0|/γ = 0.005. At low power, |t |2 + |r|2 ∼ 1. (b) |ε0|/γ = 0.35.
At high power, inelastic scattering is more important so that |t |2 +
|r|2 < 1 around � = 0. Radiative decay γr = 0.95γ and γr/2π =
10.3 MHz in the numerical simulations.

To first order in the drive amplitude 〈aL
in〉, we then find the

expectation values of these two quantities:

〈
aL

out

〉 = 〈
aL

in

〉J 2 − [� − iγ /2][� + i(γr − γ /2)]

J 2 − (� − iγ /2)2
, (42)

〈
aR

out

〉 = 〈
aL

in

〉 −|J |γr

J 2 − (� − iγ /2)2
. (43)

As |J | = γr/2, we expect transmission extinction if γnr/γ � 1
as in the λ/2 case. However, here the width of the extinction
is given by γ , whereas this width was superradiant (�B = 2γ )
in the λ/2 case.

Using these expressions, we plot in Fig. 8(a) the reflec-
tion |r|2 and transmission |t |2 coefficients along with the
corresponding results obtained from numerical simulations of
the reduced master equation (7). The agreement is excellent,
with transmission extinction at � = 0. It is also interesting to
observe that these coefficients do not have a Lorentzian profile
when nonradiative decay is weak. Indeed, in this situation both
|r|2 and |t |2 are rather flat around � = 0. This is a consequence
of the coupling J . Since the maximal magnitude of J is γr/2
and the width is γ � γr, a double peak structure is never
resolved and instead leads to the non-Lorentzian profile seen
in panel (a).

In Fig. 8(b), we show results obtained from numerical
simulations of the reduced master equation (7) at a larger
power. Because of the increased power broadening, the
transmission dip is more Lorentzian-like than in panel (a).
Interestingly, at this higher power we find that |t |2 + |r|2 < 1
for |�| � γ . This is because at these powers the effective
two-level system becomes strongly dressed by the incoming
light, leading to significant inelastic scattering. As expected,
in this situation the power spectrum shows a Mollow triplet
structure [10,14,20]. A signature of this dressing can be found
in the reflection coefficient which shows two small peaks
whose separation is tuned by the input power. For even larger
power, the effective two-level system becomes saturated and
|t |2 → 1 for all values of � (not shown). This is also observed
experimentally [20].
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FIG. 9. (Color online) Spectral density as a function of normal-
ized frequency ω/γr1, where γrj = γjj − γnr. The qubits are tuned
such that d = 3λ0/4. The spectral density of the transmitted power
SL(ω) shows a signature of the exchange interaction J , while it is less
obvious in reflection SR(ω). The spectral density of the total signal
S[ω] shows a splitting of 2J (indicated by the vertical dashed lines)
(a) γnr = 0. (b) (γ00 − γ11)/(γ00 + γ11) = (0.9,1.1) for the solid red
line and the long-dashed green line, respectively. γnr/γr1 = 0.1 for the
dashed yellow line. (c) S[ω,φ] as a function of ω and φ with γnr = 0
and γr0 = γr1. In all cases, γr1/2π = 10.3 MHz.

C. Inelastic scattering

Taking γ = γjj as in the previous section, the power
spectrum, Eq. (22), vanishes to second order in εB/�D , where
εB is the drive amplitude. In this section, we therefore rely on
numerical integration of the master equation (7). Figure 9(a)
shows the simulated power spectrum in transmission SL[ω]
(red dashed line) and in reflection SR[ω] (green dashed line)
in the absence of nonradiative damping. The yellow dashed
line corresponds to the power spectrum S[ω] obtained by
combining the transmitted and reflected components of the
output fields with a phase shift of π/2. In all cases, a clear
signature of the exchange interaction J can be seen in the
form of a doublet feature in the spectrum. The splitting of
this doublet is exactly 2J for S[ω], while it is larger than
2J when measured only in transmission and smaller than 2J

in reflection. In the presence of nonradiative damping, we
thus expect the doublet structure to be easier to resolve in
transmission.

To understand the differences between SR[ω], SL[ω], and
S[ω], it is useful to consider the expected spectrum as a
function of an additional phase shift. For this reason, we

introduce

S[ω,φ] = γr

2

∫ ∞

−∞
dt eiωt 〈A†(t,φ)A(0,φ)〉, (44)

where we have defined

A(t,φ) = σB
− (t) + eiφσD

− (t). (45)

This spectrum is plotted as a function of frequency and phase
in Fig. 9(c). As noted earlier, the transmitted signal SL[ω] =
S[ω,π/2] shows a splitting larger than 2J , the reflected signal
SR[ω] = S[ω,3π/2] a splitting smaller than 2J , while the
splitting of 2J is recovered for S[ω] = S[ω,π ]. We note that
in the above expression for S[ω,φ] we have removed the
contribution of the in-field for clarity [see Eq. (22) for the
full expression].

We explore in Fig. 9(b) the effect of asymmetry between
relaxation rates and of nonradiative decay on S[ω]. The only
significant contribution is a rescaling of the power spectral
density. In the case of asymmetry, this rescaling occurs because
the coupling γr0 = γ00 − γnr between the qubits and the line
is changing, whereas in the case of nonradiative decay the
rescaling is due to the increased losses.

V. CONCLUSION

Based on Lehmberg’s work [21], we have obtained an
effective master equation describing an arbitrary number of
inhomogeneous many-level (artificial) atoms coupled to a
1D transmission line and driven by a coherent state. Elastic
and inelastic scattering of an input beam are calculated for
two qubits using input-output theory. While individual atoms
act as simple mirrors at low power, reflecting incident light,
collective effects emerge in the presence of several atoms
coupled to the same line. The nature of these effects changes
with qubit separation or equivalently with the qubit transition
frequency. When the qubits are separated by λ0, elastic and
inelastic scattering show signatures of super- and subradiance.
The dark state associated with subradiance can be made
not completely dark by changing the asymmetry between
the qubits’ relaxation rates. This can be done by tuning
the qubits’ transition frequencies. On the other hand, for a
separation corresponding to 3λ0/4, the inelastic scattering
shows a doublet structure. This is a signature of the coherent
exchange of virtual photons between the atoms. These results
are in excellent agreement with experimental results [20].

Interesting directions for future work include exploring
interaction of atoms with a squeezed electromagnetic field in a
transmission line [43], studying correlation function measure-
ments of the transmitted or reflected fields, and considering a
network of atoms in a one-dimensional waveguide.
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APPENDIX A: DERIVATION OF THE WAVEGUIDE QED
HAMILTONIAN WITH SUPERCONDUCTING QUBITS

In this Appendix, we derive the Hamiltonian for an
ensemble of N transmon qubits capacitively coupled to an
open transmission line. A similar calculation for a single qubit
can be found in Ref. [17]. As illustrated in Fig. 10, we use a
lumped element description of the line, which is characterized
by a capacitance per unit length c and inductance per unit
length l, with x0 the length of a single LC unit which will
be taken to zero below. The j th qubit, of Josephson energy
EJj and capacitance CJj , is coupled to the line at positions xj

through a gate capacitor CGj . The corresponding Lagrangian is

L =
∑

n

⎡
⎣cx0

2
φ̇(nx0)2 +

∑
j

CGjδnx0,xj

2
[φ̇(nx0) − φ̇j ]2

− {φ [(n + 1)x0] − φ(nx0)}2

2lx0

⎤
⎦

+
N−1∑
j=0

[
CJj

2
φ̇2

j + EJj cos

(
2π

�0
φj

)]
, (A1)

where φ(x) and φj are the generalized fluxes, as defined in
Ref. [44]. �0 is the magnetic flux quantum. Introducing the
charges p(xj ) and pj conjugate to the generalized fluxes, the
Hamiltonian takes the form

HT = HA + HF +
∑

j

pjp(xj ) + H.c.

2cgj

. (A2)

In this expression,

HA =
∑

j

[
p2

j

2Cj

− EJj cos

(
2π

�0
φj

)]
(A3)

is the free-transmon Hamiltonian with

Cj = (CGj + CJj )cx0 + CGjCJj

CGj + cx0
. (A4)

The transmission line Hamiltonian reads

HF =
∑

n

(
x0p(nx0)2

2cL(nx0)
+ {φ[(n + 1)x0)] − φ(nx0)}2

2lx0

)
,

(A5)

where we have defined the effective transmission line
capacitance per unit of length

cL(nx0) = c +
∑

j

CGjCJj

CGj + CJj

δnx0,xj

x0
, (A6)

and the effective coupling capacitance per unit of length

cgj = (CGj + CJj )c + CGjCJj/x0

CGj

. (A7)

Letting x0 → 0, we obtain

HF =
∫

dx

(
p(x)2

2cL(x)
+ [∂xφ(x)]2

2l

)
, (A8)

with

Cj = (CGj + CJj )cLA + CGjCJj

CGj + cLA

, (A9)

cL(x) = c +
∑

j

CGjCJj

CGj + CJj

δ(x − xj ), (A10)

cgj = (CGj + CJj )c + CGjCJj/LA

CGj

, (A11)

with LA the length of the Josephson junctions.
Using the expression for cL(x) above, the average capaci-

tance of the transmission line over a length d extending over
all of the qubits is

c̄L = 1

d

∫ d

0
dx

⎛
⎝c +

∑
j

CGjCJj

CGj + CJj

δ(x − xj )

⎞
⎠

= c + 1

d

∑
j

CGjCJj

CGj + CJj

. (A12)

In practice, cd � ∑
j CGjCJj/(CGj + CJj ) and the qubit’s

capacitances are small perturbations on the transmission line.
In other words, cL(x) ∼ c and the standard quantization
procedure leads to the Hamiltonians of Eqs. (1)–(3) in the
main text [45].

APPENDIX B: MASTER EQUATION FOR ENSEMBLE OF
INHOMOGENEOUS ATOMS IN OPEN 1D SPACE

For completeness, we derive in this appendix the master
equation presented in Eq. (7) of the main text. The different
approximations used in obtaining this result are mentioned
here, but discussed in more detail in Appendix C. As discussed
in Sec. II, we consider an ensemble of N multilevel (artificial)
atoms dipole coupled to a 1D transmission line. The total
Hamiltonian takes the form HT = HF + HA + HI, where the
field Hamiltonian HF is given in Eq. (1), the artificial atom
Hamiltonian HA in Eq. (2), and their interaction HI in Eq. (3).

Following Lehmberg [21], to obtain an effective master
equation for the artificial atoms we first move to the Heisenberg
picture where the field operator ȧR(ω) obeys the equation

ȧR(ω) = −iωaR(ω) +
∑
mj

gj

√
m + 1

√
ωe−iωxj /vσmj

x . (B1)
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Integrating from an initial time t0 = 0 before the interaction,
the above equation yields

aR(ω,t) = aR(ω,0)e−iωt

+
∑
mj

gj

√
m + 1

√
ω

∫ t

0
dτ e−iω(t−τ+tj )σmj

x (τ ),

(B2)

with tj = xj/v. The expression for aL(ω,t) is obtained with
the replacement tj → −tj . Using these results we can express
�j (t) defined in Eq. (4) as

�j (t) = �in
j (t)

− i
∑
nk

∑
σ=±1

gk

√
n + 1

∫ t

0
dτ Ink(t,τ,σ tkj ), (B3)

with tkj = |xk − xj |/v the time a signal takes to propagate
from atom k to atom j and where we have defined

�in
j (t) = −i

∫ ∞

0
dω

√
ω[aL(ω,0)e−iω(t+tj )

+ aR(ω,0)e−iω(t−tj )] (B4)

and

Ink(t,τ,tkj ) =
∫ ∞

0
dω ωeiω(τ−t−tkj )σnk

x (τ ). (B5)

Since the integrand of Ink(t,τ,tkj ) is proportional to ω,
the integral is dominated by high frequencies where the
exponential is, however, oscillating rapidly. As argued in
Appendix C, it is then reasonable to take

σnk
− (τ ) ≈ σnk

− (t)e−iωnk(τ−t), (B6)

and ωnkt → ∞, where

ωnk = (E(n+1)k − Enk)/h̄ (B7)

is the transition frequency between levels n + 1 and n of
atom k.

Using the standard identity∫ ∞

0
dx e−ikx = πδ(k) − iP

(
1

k

)
, (B8)

with P the Cauchy principal value, we obtain

�j (t) = �in
j (t)

− 1

gj

∑
nk

[
�n+

kj σ nk
+ + (

�n−
kj + iγ n

kj /2
)
σnk

−
]
. (B9)

In this expression, we have defined

�n±
kj = 2gkgj

√
n + 1 P

∫ ∞

0

ω cos[ωtkj ]

ω ± ωnk

dω (B10)

and

γ n
kj = 4πgkgjωnk

√
n + 1 cos[ωnktkj ]. (B11)

Again following Lehmberg [21], a reduced master equation
for the atoms is obtained by first considering the Heisenberg
equation of motion of an arbitrary operator Q acting on the

atoms only. Given that [Q(t),�j (t)] = 0 at all times [this is
more clearly seen from the form of Eq. (4) of �j (t)], we find

Q̇(t) = i

h̄

⎡
⎣HA + h̄

∑
mj

√
m + 1gj

(
�in

j + H.c.
)
σmj

x ,Q

⎤
⎦

+
∑
mj

∑
nk

√
m + 1

×
[

−i�n+
kj

(
σmj

x Qσnk
+ − Qσmj

x σ nk
+ − H.c.

)
− i�n−

kj

(
σmj

x Qσnk
− − Qσmj

x σ nk
− − H.c.

)
+ γ n

kj

2

(
σmj

x Qσnk
− − Qσmj

x σ nk
− + H.c.

)]
. (B12)

With Tr(Q̇ρT ) = TrA(Qρ̇), where ρ = TrR(ρT ) is the reduced
master equation of the atoms, we finally obtain after using the
rotating-wave approximation,

ρ̇ = −i

⎡
⎣HA

h̄
+

∑
mj

Lmj |mj 〉〈mj |,ρ
⎤
⎦

− i

⎡
⎣∑

mj

dmj (t)σmj
x +

∑
mj

∑
nk

Jmj,nkσ
nk
+ σ

mj
− ,ρ

⎤
⎦

+
∑
mj

∑
nk

[
γmj,nk

(
σ

mj
− ρσnk

+ − 1

2
{σnk

+ σ
mj
− ,ρ}

)

+�mj,nk(σmj
+ ρσnk

− + σnk
− ρσ

mj
+ − {σnk

− σ
mj
+ ,ρ})

]
.

(B13)

To obtain this expression, we have assumed that the system
is driven from the left and the right by coherent fields of
frequency ωd , phase θL(R) and power PL(R). As shown in
Appendix D, the resulting amplitude of the qubit driving term
in the above master equation takes the form

dmj (t) = −2

√
γmj,mj

2

(√
PL

h̄ωmj

sin[ωd (t + tj + θL)]

+
√

PR

h̄ωmj

sin[ωd (t − tj + θR)]

)
. (B14)

We have also defined the Lamb shift

Lmj = −(√
m + 1�m+

jj − a�
(m−1)−
jj

)
, (B15)

the (joint) decay rate

γmj,nk

2π
= gkgj

√
(m + 1)(n + 1)(χmkj + χ∗

nkj ), (B16)

with χmjk = ωmje
iωmj tkj , the atom-atom exchange interaction

amplitude

Jmj,nk

2π
= −i

gkgj

2

√
(m + 1)(n + 1)(χnjk − χ∗

mkj ), (B17)

and

�mj,nk = −i
(√

n + 1�m+
jk − √

m + 1�n+
kj

)
. (B18)
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The reader interested in (even) more details will find the
evaluation of the integrals needed to find these coefficients
in Appendix E.

In the main text, we absorb the Lamb shift Lmj into
the definition of the atomic transition frequency. As usual
for pointlike atoms, this contribution is formally infinite. A
nondiverging result can be obtained by taking into account the
finite size of the atoms [46]. In any case, experimentally, the
Lamb shift is always present in the evaluation of the various
transition frequencies and absorbing it in the definition here
does not cause any problems.

We also note that the matrix of components �mj,nk is trace-
less, Hermitian, and nonzero. As a result, it is not semipositive
as is required to express the master equation in Lindbladian
form. Fortunately, and as discussed in Appendix C, the various
�mj,nk are in practice small and can safely be neglected. Doing
so, we finally arrive at the the master equation, Eq. (7), with
an effective Hamiltonian given in Eq. (8).

APPENDIX C: DISCUSSION OF THE APPROXIMATIONS

In this Appendix, we discuss in more detail the main ap-
proximations that have been used to obtain the reduced master
equation. These approximations are certainly not original to
this work and this discussion is added for completeness.

1. Markov approximation

We first start with Ink(t,τ,tkj ) defined in Eq. (B5). The
complexity in this expression is the dependence of the
integrand σnk

x on the integration variable τ . This can be
simplified by rewriting Ink(t,τ,tkj ) as

Ink(t,τ,tkj ) =
∫ ∞

0
dω ωeiω(τ−t−tkj )σnk

x (τ )

=
∫ ∞

0
dω ωe−iω(τ−t−tkj )

× [
eiHT(τ−t)/h̄σ nk

− (t)e−iHT(τ−t)/h̄ + H.c.
]
,

with HT = HA + HI + HF. Since the integrand is proportional
to ω, high frequencies contribute most. However, at high
frequency, the exponential is oscillating rapidly and the
contribution averages out to zero. The only situation where
the exponential does not oscillate is when τ = t + tkj and this
is the only value of τ that we retain.

To simplify this expression further, we neglect the interac-
tion Hamiltonian HI compared to the free Hamiltonian HA.
More formally, the error E that is made in neglecting the
interaction goes as [47]

E ∼
〈
H 2

I

HA

〉
tkj

h
. (C1)

Evaluating the expectation value of the field operators appear-
ing in HI by assuming a coherent drive of power P , this error
can be expressed as

E ∼ 32πg2
kL

vωnk

P

h
, (C2)

with L is the maximum distance between two atoms.

For waveguide QED with transmon qubits, we find

gk =
(√

e2c

2h̄πvc2
gk

)(
EJk

8ECk

)(1/4)

, (C3)

with EJk and ECk the Josephson and charging energy of the
kth transmon [11], c the capacitance per unit length of the
transmission line, and where cgk is defined in Eq. (A11).
Using typical experimental values for these parameters [48],
we find that gk ∼ 0.02. The numerical value of gk can also
be estimated from the experimentally measured value of the
relaxation rate γnk,nk . Doing so using recent experimental
results [10,13,20] gives consistent results. Now, given that
the speed of light in the transmission line is v ∼ 108 m/s and
assuming a separation L ∼ 1 cm between two transmons of
transition frequency ωnk ∼ 2π × 6 GHz, we find E ∼ 0.02
for P ∼ −100 dBm. Since this power is large in practice [20],
dropping the contribution of HI from Eq. (C1) is reasonable.
Doing so we can rewrite σnk

− (τ ) in Ink(t,τ,tkj ) as

σnk
− (τ ) ≈ σnk

− (t)e−iωnk(τ−t). (C4)

This corresponds to a Markov approximation. It breaks down
for larger separation, i.e., for ωnktkj /(2π ) ∼ 10, something that
was studied in Ref. [35].

It is interesting to note that, even if we recover a result sim-
ilar to Lehmberg’s [21], here we used a different justification.
Indeed, Lehmberg assumed that the atoms are close enough
such that the time it takes for a signal to propagate from one
atom to the other is small compared to the Larmor frequencies,
L � v/ωnk . This is inapplicable in a waveguide QED setup
with superconducting qubits.

2. Long-time approximation and causality

The identity (B8) is essential in deriving the master
equation (7). To use this identity, we need the upper bound
of the time integral in Eq. (B3) to go to infinity. Using
approximation (B6),∫ t

0
dτ Ink(t,τ,tkj ) =

∫ t

0
dτ

∫ ∞

0
dω ωe−iω(τ−t−tkj )

× (σnk
− e−iωnk (τ−t) + H.c.), (C5)

and with a change of variable x = ωnk(t − τ ),∫ t

0
dτ Ink(t,τ,tkj )

=
∫ ∞

0
dω

∫ ωnkt

0
dx

ωe−iωtkj

ωnk

× [σnk
− e−i(ω−ωnk )x/ωnk + σnk

+ e−i(ωnk+ω)x/ωnk ]. (C6)

The integrand of x is an oscillating function. If ωnkt � 1, the
integration is already over many periods of this function, so
it is a good approximation to let ωnkt → ∞. For waveguide
QED with superconducting qubits, this condition requires that
t � 0.02 ns. Since we are not interested in dynamics at this
very fast time scale, this approximation holds here. In fact,
the electronics in typical experiments have a bandwidth of
less than ∼1 GHz [48]. The same argument justifies taking
ωmj (t − tf ) → −∞.
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With this approximation, the atoms are treated as interacting
instantaneously. This is not a major problem because the
phase shift associated with the delays it takes for light to
travel from one atom to another is taken into account by the
factor exp(−iωtkj ). Hence, interaction between two atoms at
time t is mediated through light that has been emitted by the
atoms at an earlier time t − tkj ∼ t − L/v. A more important
problem arises during transients. For example, assume a drive
is suddenly turned on such that it affects a first atom at time
t . Our model causes the drive to affect the second atom at this
very time t with a phase delay exp(−iωtkj ) rather than at a
time t + tkj . As a result, we do not expect transient effects on
a time scale smaller than L/v to be correctly captured. This is
not an issue for the steady-state quantities that are computed
here and measured in Ref. [20].

3. RWA, infinite terms, and Lindblad form

In this section, we justify the approximations that were
made in going from the Heisenberg equation of motion (B12)
to the master equation (7). The error made by making the
rotating-wave approximation can be expressed as [49]

E ∼ 8M2
[(

γ n
kj

)2 + (
�n+

kj

)2 + (
�n−

kj

)2]
3(ωmj + ωnk)2

. (C7)

This error is formally infinitely large simply because �n±
jj →

∞ as shown in Appendix E. This divergence is present because
we did not take into account the physical dimensions of the
artificial atoms (either explicitly or with a cut-off frequency).
Ignoring this unphysical problem and using typical circuit
QED parameters yields E ∼ 0.001. Considering this, we can
safely make the rotating-wave approximation.

To go from Eq. (B13) to its Lindblad form, Eq. (7), we also
need to neglect terms proportional to �mj,nk since this matrix
is not semipositive. These terms are either small or quickly
rotating. The error made by dropping them is, considering that
the relevant time scale goes as γ −1

mj,mj [49],

E ∼ 8M2|�mj,nk|2
3(γmj,mj )2

(C8)

so that E ∼ 0.002. Hence, once more, it is a very good
approximation to neglect these terms.

APPENDIX D: DRIVING TERM

To proceed from Eqs. (B12) to (B13), we need to take care
of the terms proportional to �in

j and �in
j
† since these operators

contain contributions from the field operator aR/L
in . We regroup

these terms under what we call the drive superoperator D

acting on ρ in the master equation such that

TrA[QDρ] = i
∑
mj

gj

√
m + 1

× TrA
[
TrR

[([
σmj

x ,Q
]
�in

j − H.c.
)
ρT

]]
=

〈
i
∑
mj

gj

√
m + 1

([
σmj

x ,Q
]
�in

j − H.c.
)〉

.

(D1)

Here, all operators are evaluated at time t . Because of causality,
the input field operator �in

j cannot be correlated with any
atomic operator when they are both evaluated at the same
time. Therefore,

TrA[QDρ] =
∑
mj

〈
igj

√
m + 1

([
σmj

x ,Q
]
�in

j − H.c.
)〉

= i
∑
mj

gj

√
m + 1

(〈[
σmj

x ,Q
]〉 〈

�in
j

〉 − H.c.
)

= i
∑
mj

gj

√
m + 1

× TrA
[[(〈

�in
j

〉 + c.c.
)
σmj

x ,Q
]
ρ
]
, (D2)

which leads to

ρ̇ = −i

⎡
⎣HA

h̄
+

∑
mj

dmj (t)σmj
x ,ρ

⎤
⎦ +

∑
mj

∑
nk

√
m + 1

×
[

− i�n+
kj

(
σnk

+ ρσmj
x − σmj

x σ nk
+ ρ − H.c.

)
− i�n−

kj

(
σnk

− ρσmj
x − σmj

x σ nk
− ρ − H.c.

)
+ γ n

kj

2

(
σnk

− ρσmj
x − σmj

x σ nk
− ρ − H.c.

) ]
, (D3)

with

dmj (t) = gj

√
m + 1

(〈
�in

j (t)
〉 + 〈

�in
j (t)

〉∗)
. (D4)

We make the assumption that we are driving at frequency ωd

with a coherent state |{α}〉 such that [50]

aL(R)(ω,0) |{α}〉 =
√

PL(R)

h̄ωd

e−iωdθL(R)δ(ω − ωd ) |{α}〉 , (D5)

with PL(R) and θL(R), respectively, the power and phase of left
(right) movers. Using this, we have〈

�in
j (t)

〉 = 〈{α}| �in
j |{α}〉

= −i[e−iωd (t+tj +θL)
√

2πPL/h̄

+ e−iωd (t−tj +θR)
√

2πPR/h̄]. (D6)

Finally, the drive rate can be written as

dmj (t) = −2

√
γmj,mj

2

(√
PL

h̄ωmj

sin[ωd (t + tj + θL)]

+
√

PR

h̄ωmj

sin[ωd (t − tj + θR)]

)
. (D7)

APPENDIX E: EVALUATION OF �n±
k j

In this section, we present details of the integration of
Eq. (B10). With the change of variables x = (ω ± ωnk)/ωnk

and y = x ∓ 1, Eq. (B10) can be expressed as

�n±
kj = 2gkgjωnk

√
n + 1

(∫ ∞

0
dy cos(ωnktkj y)

∓ P
∫ ∞

±1
dx

cos[ωnktkj (x ∓ 1)]

x

)
. (E1)
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To deal with the first term of the right-hand side, we add a
converging factor. This reflects the fact that the system stops
to respond at infinite frequencies. In this way, we find that this
first term vanishes,

lim
η→0+

∫ ∞

0
dy cos(ωnktkj y)e−ηy

= lim
η→0+

η

(ωnktkj )2 + η2
= 0. (E2)

On the other hand, for the second term, which we denote I±,
we find

I± = P
∫ ∞

±1
dx

cos[ωnktkj (x ∓ 1)]

x

= cos(ωnktkj )P
∫ ∞

±1
dx

cos(ωnktkj x)

x

± sin(ωnktkj )P
∫ ∞

±1
dx

sin(ωnktkj x)

x

= − cos(ωnktkj )Ci(|ωnktkj |)
+ sin(ωnktkj )

2
[±πsgn(ωnktkj ) − 2Si(ωnktkj )], (E3)

where Ci (x) and Si (x) are the cosine and sine integral
functions:

Ci(x) = −
∫ ∞

x

dt
cos t

t
, Si(x) =

∫ x

0
dt

sin t

t
. (E4)

Using these results, we finally obtain

�n±
kj = 2πgkgjωnk

√
n + 1

×
[
∓p(ωnktkj ) + sin(ωnktkj )

(±1 − 1

2

)]
, (E5)

where we have defined a “proximity” function

p(x) ≡ sin(|x|)[π − 2 Si(|x|)] − 2 cos(x)Ci(|x|)
2π

. (E6)

This choice of name reflects the fact p(x) goes to ∞ as x → 0,
and rapidly approaches 0 as x → 1.

APPENDIX F: INPUT-OUTPUT THEORY

In this section, we derive the input-output boundary
condition in the presence of the artificial atoms in the line.
This will allow us to compare the theoretical predictions to
experiments measuring reflection and transmission. To derive
the reduced master equation, we used the formal solution to
the Heisenberg equation of motion for aR/L(ω,t). In Eq. (B2),
this solution was given for the case where the equation of
motion is integrated starting from a time t0 = 0 < t before the
interaction. Following the standard input-output prescription
[36], it is also useful to obtain this solution by integrating up
to a time tf > t after the interaction:

aR(ω,t) = aR(ω,tf )e−iωt

−
∑
mj

gj

√
m + 1

√
ω

∫ tf

t

dτ e−iω(t−τ+xj /v)σmj
x (τ ).

(F1)

Adding this expression to Eq. (B2) and integrating over ω, we
arrive at the input-output boundary condition

aR
out(t) = aR

in(t) +
∑
mj

gj

√
m + 1

×
∫ ∞

0

dω√
2π

√
ω

∫ tf

0
dτ e−iω(t−τ+xj /v)σmj

x (τ ),

(F2)

where, similarly to Eq. (B4), we have defined the input field

aR
in(t) =

∫ ∞

0

dω√
2π

aR(ω,0)e−iωt , (F3)

and the output field

aR
out(t) =

∫ ∞

0

dω√
2π

aR(ω,tf )e−iωt . (F4)

While aR
in(t) can be interpreted as the field incident on the

system from the left, aR
out(t) represents the field propagating to

the right after interaction with the system.
It is possible to express the boundary condition in a more

useful form by using the approximation of Eq. (B6). Indeed,
making the change of variable y = ωmj (t − τ ) and taking
ωmj (t − tf ) → −∞, we find the simpler form

aR
out(t) = aR

in(t) +
∑
mj

e−iωmj tj

√
γmj,mj

2
σ

mj
− . (F5)

In the same way, we find

aL
out(t) = aL

in(t) +
∑
mj

e+iωmj tj

√
γmj,mj

2
σ

mj
− (F6)

for the output field propagating to the left.

APPENDIX G: RELAXATION DIAGONALIZATION

In Sec. II C of the main text we have shown that for a pair
of qubits the master equation in its Lindblad form is

ρ̇ = −i

h̄
[H,ρ] +

∑
j,k=0,1

γjk

[
σ

j
−ρσ k

+ − 1

2
{σ k

+σ
j
−,ρ}

]

≡ −i

h̄
[H,ρ] + Lγ ρ, (G1)

where H is given in Eq. (24). In this appendix, we diagonalize
the dissipator Lγ in order to find the dressed basis.

Diagonalization is achieved by using the standard approach
of expressing the density matrix ρ as a column vector in which
case the dissipator takes the form

Lγ �ρ =
∑
kj

γk,j

[
σ k

b−σ
Tj

f + − 1

2
σ

j

b+σ k
b− − 1

2
σ

Tj

f +σT k
f −

]
�ρ,

(G2)

with

Aρ → 1 ⊗ A �ρ = Ab �ρ,
(G3)

ρA → AT ⊗ 1 �ρ = AT
f �ρ,

where T refers to matrix transposition. In this way, the
dissipator can be expressed as

Lγ �ρ = [
σb−ϒσT

f + − 1
2σb+ϒσT

b− − 1
2σf +ϒσT

f −
] �ρ, (G4)
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with the Hermitian relaxation rate matrix

ϒ =
(

γ00 γ01

γ ∗
01 γ11

)
, (G5)

and where we have defined

σb± = (
σ 0

b± σ 1
b±

)
, σf ± = (

σT 0
f ± σT 1

f ±
)
. (G6)

After diagonalizing ϒ and going back to matrix form of the
density matrix we find

Lγ ρ =
∑

i=B,D

�iD[σ i
−]ρ, (G7)

with the rates

�B/D = γ00 + γ11

2
±

√(
γ00 − γ11

2

)2

+ |γ01|2, (G8)

and dressed operators

σ
μ
− = (�μ − γ11)σ 0

− + γ ∗
01σ

1
−√

(�μ − γ11)2 + |γ01|2
, (G9)

for μ = B,D.
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