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Spectral invariance and the scaling law with random electromagnetic fields
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We consider the far-zone spectrum generated by finite, statistically homogeneous, planar electromagnetic
sources having three electric field components. We introduce an electromagnetic scaling law which ensures
spectral invariance, i.e., that the normalized far-zone spectrum is the same in any paraxial or nonparaxial
direction and equal to that of the source. The scaling law for electromagnetic fields presented in this work
is more general than that put forward in a previous publication. In particular, we show paraxially that even
though the individual field components do not obey the scalar scaling law, spectral invariance may be achieved,
and conversely, that spectral invariance may not hold even if the field components separately follow the scalar
scaling law.
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I. INTRODUCTION

Spectroscopy is a standard tool in the characterization of
light sources, atomic particles, molecular clusters, material
media, and the like. In the 1980s a new aspect to that
topic was introduced when it was found that the normalized
spectrum of random light may change on propagation even
in free space [1] (for a review on the subject, see [2]). The
spectral changes originate from the partial spatial coherence
of the source. This fundamental finding indicates that the
measured far-zone spectrum may differ in shape from that
of the source, or it may vary as a function of direction.
Remarkable demonstrations of these effects were provided
with thermal sources supporting surface plasmon and phonon
polaritons [3], and containing surface gratings [4]. It was
shown theoretically that for finite, planar secondary sources
which are statistically homogeneous, the normalized far-zone
spectrum is the same in any direction and equals the source
spectrum (corresponding to spectral invariance) if the so-called
scaling law is satisfied [1]. Experimental demonstrations, using
both acoustic [5] and light waves [6], prove that the source
correlations may induce redshifts and blueshifts of spectral
lines. This phenomenon is known as the Wolf effect, and it has
been suggested to provide a possible, alternative explanation
for the spectral redshifts of stellar objects [7,8].

In the above treatments dealing with the scaling law, the
optical field is analyzed in terms of the scalar theory of light,
thereby excluding the situations of wide-angle emission from
partially polarized sources which necessitate three-component
electric fields. Recently, an electromagnetic extension was
considered restricting the analysis to the paraxial regime [9],
and the same scaling law was established for both transverse
components of the electric field. In this work, we reassess
the scaling law in the electromagnetic context by considering
nonparaxial random fields generated by finite, statistically
homogeneous, planar sources containing all three electric field
components. The spectral invariance and the associated scaling
law for such sources hold for the total spectral density, i.e.,
the sum of the spectral densities pertaining to the individual
components. Our results imply that spectral invariance may
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generally be achieved, even though none of the three electric
field components obey the scalar scaling law.

We demonstrate the electromagnetic scaling law estab-
lished here by considering the electric field emanating from an
aperture in a blackbody cavity. Further, we show two explicit
examples of converse nature in the paraxial regime. First, we
describe a practical source whose individual field components
violate the scaling law but the total normalized radiation
spectrum and source spectrum coincide. And second, we
analyze an electromagnetic planar source whose components
separately obey the scaling law but the spectrum is not invariant
in the far zone.

This work is organized as follows. In Sec. II the scalar
scaling law is recalled, and in Sec. III its electromagnetic
counterpart is established. Sections IV–VI illustrate the results
with the specific examples, and the main conclusions are
summarized in Sec. VII.

II. SPECTRAL INVARIANCE OF SCALAR FIELDS

In his pioneering paper [1] Wolf analyzed the invari-
ance of far-field spectra within the framework of scalar
coherence theory. In scalar analysis the electric field at a
point r and frequency ω is represented by E(r,ω), and
the correlations between the fields at two points in space
are described by the cross-spectral density (CSD) function
W (r1,r2,ω) = 〈E∗(r1,ω)E(r2,ω)〉, where the asterisk denotes
complex conjugation and the angle brackets stand for ensemble
averaging. The spectrum, or spectral density, of the field
is Ssc(r,ω) = W (r,r,ω), where the subscript sc is used to
distinguish the scalar spectral density from its electromagnetic
counterpart.

In [1] a finite planar source of area D radiating into the
half space z > 0 was considered (see Fig. 1). The source was
taken to have the same spectrum S(0)

sc (ω) at each point and the
complex degree of spectral coherence, defined as [10],

μ(0)(ρ1,ρ2,ω) = W (0)(ρ1,ρ2,ω)√
W (0)(ρ1,ρ1,ω)W (0)(ρ2,ρ2,ω)

, (1)

was assumed to be of the form μ(0)(�ρ,ω), where �ρ = ρ2 −
ρ1 is the difference of spatial coordinates, within the source
area. Here ρi = (xi,yi), with i ∈ (1,2), are two positions in

043804-11050-2947/2013/88(4)/043804(6) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.043804
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z

y

FIG. 1. (Color online) Geometry and notations. The homoge-
neous source of area D in plane z = 0 generates a field in half
space z > 0. Of interest is the frequency dependence of the optical
intensity at an arbitrary far-zone point r, i.e., the radiant intensity in
direction û.

D and the superscript (0) is used to emphasize functions
evaluated in the source plane z = 0. Moreover, the dimensions
of the source were assumed to be much larger than the spectral
correlation width. A source of this kind then has the CSD of
the form

W (0)(ρ1,ρ2,ω) = S(0)
sc (ω)μ(0)(�ρ,ω), (2)

and it is an example of a simple quasihomogeneous, planar,
scalar source [11].

The spectral radiant intensity Jsc(û,ω) is the power at
frequency ω radiated by the source into the far zone per
unit solid angle. It can be shown that the normalized far-field
spectrum, i.e., the spectral radiant intensity divided by the total
radiant intensity,

s(∞)
sc (û,ω) = Jsc(û,ω)∫ ∞

0 Jsc(û,ω) dω
, (3)

with û being the directional unit vector, generated by a source
obeying Eq. (2), is [1]

s(∞)
sc (û,ω) = k2S(0)

sc (ω)μ̃(0)(ku⊥,ω)∫ ∞
0 k2S

(0)
sc (ω)μ̃(0)(ku⊥,ω) dω

, (4)

where k = ω/c is the wave number and c is the speed of
light. Moreover, μ̃(0) denotes the two-dimensional (2D) spatial
Fourier transform of μ(0), and u⊥ = (ux,uy) is the transverse
part of û. For spectral invariance one demands that the
normalized spectrum in the far zone is uniform in all directions.
This is achieved when μ̃(0) factors as

μ̃(0)(ku⊥,ω) = F (ω)H̃ (u⊥), (5)

where F and H are arbitrary functions, resulting in directional
independence of the right-hand side of Eq. (4). Furthermore,
the normalized far-field spectrum must also be equal to the
normalized source spectrum, i.e., s(∞)

sc (ω) = s(0)
sc (ω). Taking

the inverse Fourier transform of Eq. (5) and using the fact
that the complex degree of spectral coherence is a correlation

function, whereby μ(0)(0,ω) = 1, one ends up with

F (ω) = [k2H (0)]−1, (6)

where H is the 2D inverse Fourier transform of H̃ . Thus,
Eq. (4) can now be written as

s(∞)
sc (û,ω) = s(∞)

sc (ω) = S(0)
sc (ω)∫ ∞

0 S
(0)
sc (ω) dω

= s(0)
sc (ω), (7)

and the condition for the invariance of the spectrum on
propagation is attained. By combining Eqs. (5) and (6)
one gets

μ(0)(�ρ,ω) = H (k�ρ)

H (0)
, (8)

which is called the scaling law by Wolf [1]. According to this
law, the complex degree of spectral coherence of the source
must depend only on the quantity k�ρ for the normalized
far-field spectrum to be independent of direction and equal
to the normalized source spectrum. Of course, this scaling
law necessarily holds only for sources of the type considered
in the analysis, i.e., homogeneous, planar, scalar sources.
An important class of sources that obey Eq. (8) are planar
Lambertian sources [12].

III. SPECTRAL INVARIANCE OF
ELECTROMAGNETIC FIELDS

We next extend Wolf’s scalar scaling law to electromagnetic
sources. In electromagnetic coherence theory, a realization of
the random electric field can be represented by the three-
component vector E(r,ω) = [Ex(r,ω),Ey(r,ω),Ez(r,ω)]T,
where the superscript T denotes the transpose. Correlations
between the electric field components at two spatial points
are given by the 3 × 3 CSD matrix [13,14] W(r1,r2,ω) =
〈E∗(r1,ω)ET(r2,ω)〉. As there now are multiple field com-
ponents, the spectral density of the field is a sum of
the spectral densities of the individual components, i.e.,
Sem(r,ω) = tr W(r,r,ω), where the subscript em refers to an
electromagnetic quantity and tr denotes the trace.

We emphasize that in the following analysis we consider
all three Cartesian field components of the source and the far
field. Thus, we are not restricted to paraxial beams but can
deal with arbitrary wide-angle radiation. In line with the scalar
case, we take the source to be finite (area D), planar, located
in the plane z = 0, and radiating into the half space z > 0
(see Fig. 1). We also assume that the source correlations are
statistically homogeneous, i.e., W(0)(ρ1,ρ2,ω) = W(0)(�ρ,ω)
in D, which implies that the spectral density is uniform across
the source, S(0)

em(ρ,ω) = S(0)
em(ω). We can then write the CSD

matrix in the source plane as

W(0)(ρ1,ρ2,ω) = S(0)
em(ω)w(0)(�ρ,ω), (9)

where

w(0)(ρ1,ρ2,ω) = W(0)(ρ1,ρ2,ω)[
S

(0)
em(ρ1,ω)S(0)

em(ρ2,ω)
]1/2 (10)

is the CSD matrix normalized with the spectral densities.
The question now is whether it is possible to acquire

a scaling law on the basis of these assumptions also for
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random three-component electromagnetic sources. In other
words, can one find physical conditions for the normalized
far-zone spectrum to be independent of direction and equal
to the normalized source spectrum? As we show below, the
answer is affirmative.

We begin by considering the CSD matrix in the far field.
By using the method of stationary phase [13], the far-zone
CSD matrix at a pair of points ri = ri ûi , with i ∈ (1,2), can
be written as [15]

W(∞)(r1û1,r2û2,ω) = (2πk)2uz1uz2
eik(r2−r1)

r1r2

× T(ku⊥1,ku⊥2,ω), (11)

where uzi = (1 − u2
⊥i)

1/2 and

T(ku⊥1,ku⊥2,ω) = 1

(2π )4

∫∫ ∞

−∞
W(0)(ρ1,ρ2,ω)

× e−i(k⊥2·ρ2−k⊥1·ρ1) d2ρ1 d2ρ2 (12)

is the angular correlation matrix. Here k⊥i = ku⊥i = (kxi,kyi),
with i ∈ (1,2), are the transverse components (spatial-
frequency vectors) of the wave vectors corresponding to
propagating plane waves. The spectral radiant intensity of the
electric field characterizing the angular distribution of power
flow is given by

Jem(û,ω) = lim
r→∞[r2S(∞)(rû,ω)]

= (2πkuz)
2 tr T(ku⊥,ku⊥,ω). (13)

Inserting Eqs. (9) and (12) into Eq. (13) and expressing it in
terms of the average and difference spatial coordinates yields

Jem(û,ω) = (kuz)
2DS(0)

em(ω) tr w̃(0)(ku⊥,ω), (14)

where w̃(0) is the 2D spatial Fourier transform of w(0). The
normalized spectrum in the far field then takes on the form

s(∞)
em (û,ω) = Jem(û,ω)∫ ∞

0 Jem(û,ω) dω

= k2S(0)
em(ω) tr w̃(0)(ku⊥,ω)∫ ∞

0 k2S
(0)
em(ω) tr w̃(0)(ku⊥,ω) dω

, (15)

much as in the scalar case.
Equation (15) indicates that the normalized far-zone spec-

trum will be direction independent if the trace of the Fourier
transform of source’s normalized CSD matrix factors into
spectral and directional parts as

tr w̃(0)(ku⊥,ω) = F (ω)H̃ (u⊥). (16)

By taking the Fourier inverse of Eq. (16) and using the fact
that tr w(0)(0,ω) = 1, which follows from Eq. (10), we see that
the frequency dependence of F is of the form

F (ω) = [k2H (0)]−1, (17)

and the normalized far-zone spectrum is also equal to the
normalized source spectrum, i.e.,

s(∞)
em (û,ω) = S(0)

em(ω)∫ ∞
0 S

(0)
em(ω) dω

= s(0)
em(ω). (18)

Inserting Eq. (17) back to the Fourier inverse of Eq. (16) then
yields

tr w(0)(�ρ,ω) = H (k�ρ)

H (0)
. (19)

This equation constitutes the scaling law for electromagnetic
sources. It states that for a homogeneous source obeying
Eq. (19), the normalized far-field spectrum is independent
of (paraxial or nonparaxial) direction and equals that of the
source. In fact, within the accuracy of Fresnel’s diffraction
formula, the normalized spectrum remains invariant on prop-
agation from the source to the far field. The scaling law also
implies that the knowledge of the elements of the normalized
CSD matrix at a single frequency is sufficient to characterize
the normalized CSD matrix at all frequencies.

Although the electromagnetic scaling law of Eq. (19),
which holds for homogeneous, three-component, planar, sec-
ondary sources and the electric fields they produce, appears as
a straightforward generalization of the scalar scaling law, there
is one fundamental difference. In the electromagnetic case it
is the trace of w(0) that satisfies the scaling law; hence it is not
necessary that individual components of w(0) separately obey
the scalar scaling law. We point out that Eq. (19) is thus more
general than Eq. (24) in [9], established for paraxial fields. In
essence, the scaling law of [9] requires the normalized diagonal
components of the CSD matrix [16] to satisfy the scalar scaling
law, and so it is a special case of the three-component scaling
law derived in this work. Further, in the paraxial case Eq. (19)
can be expressed in the form

η
(0)
0 (�ρ,ω) = H (k�ρ)

H (0)
, (20)

where η0(r1,r2,ω) is a two-point Stokes parameter that corre-
sponds to the visibility of the intensity-interference fringes in
Young’s experiment [17,18]. Thus, even in the paraxial case,
the individual field components do not need to obey the scalar
scaling law, Eq. (8). On the other hand, even if the individual
components obey the scalar scaling law, it is not guaranteed
that the normalized far-zone spectrum is invariant on direction.

In the following three sections, we illustrate the physical
nature of the electromagnetic scaling law and its differences
to the scalar case. Section IV presents an example of a
highly nonparaxial field whose normalized far-zone spectrum
is invariant and equals that of the source. Furthermore, the same
holds for each Cartesian component individually. Section V
discusses a situation in which the spectrum of a paraxial field
is invariant and equals that of the source, but the x and y field
components do not obey the scalar law, Eq. (8). In Sec. VI
we discuss the opposite case in which the two components
of a paraxial field both obey the scalar scaling law, but their
superposition leads to a normalized far-zone spectrum that
varies upon the observation direction.

IV. EXAMPLE I: RADIATION EMANATING FROM
BLACKBODY CAVITY

As an example, we first consider the field emanating from a
circular opening in a blackbody cavity wall. The CSD matrix
of the aperture field has been analyzed previously [19,20],
and quite recently reassessed [21]. The aperture field has three
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electric field components and the diagonal elements of its CSD
matrix (in the z = 0 plane) are of the form

W (0)
xx (ρ1,ρ2,ω) = 2πa0(ω)

[
j0(k|�ρ|) − j1(k|�ρ|)

k|�ρ|

+ j2(k|�ρ|) (x2 − x1)2

|�ρ|2
]
, (21a)

W (0)
yy (ρ1,ρ2,ω) = 2πa0(ω)

[
j0(k|�ρ|) − j1(k|�ρ|)

k|�ρ|

+ j2(k|�ρ|) (y2 − y1)2

|�ρ|2
]
, (21b)

W (0)
zz (ρ1,ρ2,ω) = 2πa0(ω)

[
j0(k|�ρ|) − j1(k|�ρ|)

k|�ρ|
]
. (21c)

Here a0(ω) equals Planck’s spectrum divided by 4 [21],
and the functions ji , i = 0,1,2, are spherical Bessel functions
of order i. It is straightforward to show, using the identities
of spherical Bessel functions, that for the electric field in the
opening

tr w(0)(ρ1,ρ2,ω) = j0(k|�ρ|), (22)

which clearly satisfies the electromagnetic scaling law of
Eq. (19). The same result holds also for a true blackbody field
in a plane within the cavity [12]. Therefore, the normalized
far-field spectrum emanating from an aperture in a blackbody
cavity is in all directions the same as the normalized spectrum
of the aperture field. The normalized spectrum, in turn, is
specified by Planck’s law and is explicitly given by

s(∞)
em (ω) = s(0)

em(ω) = 15

(
h̄

πkBT

)4
ω3

eh̄ω/kBT − 1
, (23)

where h̄ is the reduced Planck constant, kB is the Boltzmann
constant, and T is the absolute temperature.

Comparing Eqs. (21) to the scalar scaling law, Eq. (8),
reveals that not only does the total field obey the electromag-
netic scaling law, but also the individual field components have
spectra that are invariant in the far zone.

V. EXAMPLE II: SPECTRAL COMPENSATION BETWEEN
THE FIELD COMPONENTS

Consider next the following example, shown in Fig. 2. A
paraxial electric field that is finite but statistically homoge-
neous within its cross section (area D) is split into the two
arms of a Mach-Zehnder interferometer. On recombination of
the two paths the last mirror is positioned such that the beam
from the first arm is shifted by distance a in the −x direction,
as illustrated in the figure. The shift a is taken to be much larger
than the transverse correlation length but much smaller than the
characteristic dimension of the field itself. In the second arm,
the y component of the electric field is delayed by �φ = π

radians with respect to the x component, for example, with an
achromatic half-wave plate (H in the figure). The path-length
difference due to a and the phase shift of the x component
in the half-wave plate is compensated, e.g., by an additional
delay line (C in the figure). The compensation is positioned in
one of the two arms, depending on the actual values of a and
the phase shift in H.

ρ + ax̂

ρ

ρ + ax̂

ρ

ρ − ax̂

a

a

A

BH

C

C

x

z

FIG. 2. (Color online) Modified Mach-Zehnder interferometer.
The axial displacement (by distance a) of the last mirror creates a
transverse shift a between the two replicas of the beam entering at
plane A. The shift produces an additional spatial correlation into the
recombined beam at plane B. Elements H (half-wave plate) and C
(compensator) are described in the text.

We assume that the input field is unpolarized, and that the x

and y components are uncorrelated at any two positions ρ1 and
ρ2 in the input plane A. In addition, we take the correlation
properties of both components to be equal and obey the scalar
scaling law, Eq. (8). Hence

Wxx(�ρ,ω) = Wyy(�ρ,ω) = Sem(ω)
H (k�ρ)

2H (0)
, (24)

where Sem(ω) is the spectrum in the plane A.
It follows from the geometry that the electric field realiza-

tions at any position ρ ′ in the output plane B are obtained from

Ei(ρ
′,ω) = β(ω)√

2
[Ei(ρ + ax̂,ω) ± Ei(ρ,ω)], (25)

where i ∈ (x,y), β(ω) represents the phase shifts and losses,
assumed to be equal along the two paths, and the + or −
sign is chosen for the x or y component, respectively. The −
sign associated with the y component is due to the π phase
shift in the second arm. The diagonal elements of the CSD
matrix in the output plane can now be expressed in terms of
the corresponding elements in the input plane:

Wii(�ρ ′,ω) = S ′
em(ω)

4H (0)
[2H (k�ρ ′,ω)

±H (k�ρ ′ + akx̂,ω)

±H (k�ρ ′ − akx̂,ω)], (26)

where S ′
em(ω) = |β(ω)|2Sem(ω) is the spectral density in plane

B, and the ± sign is chosen as above for i ∈ (x,y). Here we
have made use of the homogeneity of the input CSD matrix
and the fact that the shift a is small compared to the transverse
beam dimension.

If the output plane B of the Mach-Zehnder interferometer
acts as a secondary source and the field is diffracted from the
plane freely, we find that the far-zone radiation patterns of the
x and y components are characterized by the radiant intensities

Jx(û,ω) = u2
zDS ′

em(ω)
H̃ (u⊥)

H (0)
cos2(kxa/2), (27a)

Jy(û,ω) = u2
zDS ′

em(ω)
H̃ (u⊥)

H (0)
sin2(kxa/2). (27b)
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The sine and cosine terms in these expressions are due to
the interference between the beams from the two arms. The
total radiant intensity is of the form

Jem(û,ω) = u2
zDS ′

em(ω)
H̃ (u⊥)

H (0)
, (28)

i.e., because of the phase difference created in the second arm,
the interference patterns of x and y components compensate
each other and no intensity interference is observed.

We see at once that the normalized far-field spectra of the
x and y components are

s(∞)
x (û,ω) = S ′

em(ω) cos2(kxa/2)∫ ∞
0 S ′

em(ω) cos2(kxa/2) dω
, (29a)

s(∞)
y (û,ω) = S ′

em(ω) sin2(kxa/2)∫ ∞
0 S ′

em(ω) sin2(kxa/2) dω
. (29b)

The total normalized electric field spectrum in the far zone is

s(∞)
em (û,ω) = S ′

em(ω)∫ ∞
0 S ′

em(ω) dω
. (30)

Thus, the normalized far-zone spectrum of the whole field
is independent of direction, even though the same is not
generally true for the individual field components.

This example is analogous to a Young’s interferometer
with a coherent field, but with orthogonal polarization states
at the two pinholes [17,22,23]. If, for example, the field
in the first pinhole is linearly polarized at 45 degrees from
the x direction towards the y direction and the field in the
second pinhole is linearly polarized at −45 degrees, and if
the intensities at the two pinholes are equal, the x component
creates a cosinusoidal intensity pattern on the observation
screen, whereas the y component creates a sinusoidal one.
Also, in that case the two patterns compensate each other so
that the total intensity is not modulated at all, even though the
correlation at the pinholes is perfect.

VI. EXAMPLE III: FIELD WHOSE INDIVIDUAL
COMPONENTS OBEY THE SCALING LAW, BUT THE
SPECTRUM IS NOT INVARIANT IN THE FAR ZONE

Assume again that we are dealing with a paraxial field
whose uncorrelated x and y components obey the scalar
scaling law, Eq. (8). However, now we do not demand that
the components are identical, but just require that

W (0)
xx (�ρ,ω) = S(0)

x (ω)
Hx(k�ρ)

Hx(0)
, (31a)

W (0)
yy (�ρ,ω) = S(0)

y (ω)
Hy(k�ρ)

Hy(0)
, (31b)

where S(0)
x (ω) and S(0)

y (ω) are the spectral densities of x and
y components within the cross section of the field at the
source plane. Further, Hx(k�ρ) and Hy(k�ρ) are, in general,
different functions. Now

η
(0)
0 (�ρ,ω) = W (0)

xx (�ρ,ω) + W (0)
yy (�ρ,ω)

S
(0)
x (ω) + S

(0)
y (ω)

= 1

S
(0)
x (ω) + S

(0)
y (ω)

[
S(0)

x (ω)
Hx(k�ρ)

Hx(0)

+ S(0)
y (ω)

Hy(k�ρ)

Hy(0)

]
, (32)

which is not of the form of Eq. (20), unless Hx(k�ρ) =
Hy(k�ρ) or S(0)

x (ω) = S(0)
y (ω).

Consider, for example, an electric field with

S(0)
x (ω) = S0 exp

[ − (ω − ω0x)2/�2
x

]
, (33a)

S(0)
y (ω) = S0 exp

[ − (ω − ω0y)2/�2
y

]
, (33b)

Hx(k�ρ) = exp
[ − k2(�ρ)2/σ 2

x

]
, (33c)

Hy(k�ρ) = exp
[ − k2(�ρ)2/σ 2

y

]
, (33d)

where S0 is a real positive constant, ω0i > 0, i ∈ (x,y), are
the central frequencies of the components, and �i and σi/k

are their spectral widths and transverse correlation lengths,
respectively. To ensure that we are dealing with a valid
complex-analytic signal, we demand that �i � ω0i . Further,
to ensure that the field is paraxial, we also require that σi is
much greater than the wavelength. Making use of Eqs. (12)
and (13), and the identity [24]∫ ∞

−∞
exp(−p2x2 ± qx) dx = exp

(
q2

4p2

)√
π

p
, p > 0, (34)

we find that the radiant intensities of the components are

Jx(û,ω) = u2
zDS(0)

x (ω)
σ 2

x

4π
exp

[ − (
u2

x + u2
y

)
σ 2

x /4
]
, (35a)

Jy(û,ω) = u2
zDS(0)

y (ω)
σ 2

y

4π
exp

[ − (
u2

x + u2
y

)
σ 2

y /4
]
, (35b)

and, as expected, the normalized spectral densities of the
components are invariant in the far zone:

s(∞)
x (û,ω) = S(0)

x (ω)∫ ∞
0 S

(0)
x (ω) dω

= s(0)
x (ω), (36a)

s(∞)
y (û,ω) = S(0)

y (ω)∫ ∞
0 S

(0)
y (ω) dω

= s(0)
y (ω). (36b)

However, the normalized spectral density of the total field
is now given by

s(∞)
em (û,ω) = σ 2

x exp
[− (ω − ω0x)2/�2

x

]
exp

[− (
u2

x + u2
y

)
σ 2

x /4
] + σ 2

y exp
[−(ω − ω0y)2/�2

y

]
exp

[−(
u2

x + u2
y

)
σ 2

y /4
]

√
π

{
�xσ 2

x exp
[ − (

u2
x + u2

y

)
σ 2

x /4
] + �yσ 2

y exp
[ − (

u2
x + u2

y

)
σ 2

y /4
]} , (37)

where we have again made use of Eq. (34) and our assump-
tion �i � ω0. We observe at once from Eq. (37) that the

normalized far-zone spectrum varies upon the direction of
observation, unless either �x = �y and ω0x = ω0y or σx = σy .
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FIG. 3. (Color online) Normalized spectra of the x (red) and
y (green) source components, as well as the normalized far-zone
spectrum of the total field for ux = 0 (solid blue), ux = 0.014 (dashed
blue), and ux = 0.02 (dash-dotted blue). The other parameters are
uy = 0, ω0x = 4 × 1015 rad/s, ω0y = 4.1 × 1015 rad/s, �x = �y =
4 × 1013 rad/s, σx = 100, and σy = 200.

Figure 3 illustrates an example of the normalized spectral
densities as a function of ω for three different values of ux .
We see from the figure that on the z axis the contribution to
the normalized spectrum from the y component is dominant,
and the significance of the x component increases when ux

becomes larger. This is due to the smaller transverse correlation
length (∼7.5 μm) of the x component compared to that of y

(∼15 μm).
The physical reason for this result, that may appear

counterintuitive at first, is after all quite simple: Since the
far-zone diffraction patterns of the individual field components
are different, as are their spectra, the total spectrum and its
normalized version vary as a function of the direction in the far

zone. The fact that the normalized spectra of the components
are invariant does not affect the situation, since the normalized
spectrum of the total field is not a direct sum of the normalized
spectra of the components.

VII. CONCLUSIONS

In this work we considered spectral invariance on radiation
and formulated an electromagnetic scaling law that is valid for
finite planar, statistically homogeneous sources. Such sources
may, in general, contain all three electric field components,
as they must in the case of wide-angle radiation. When the
source obeys the scaling law, the normalized far-zone spectrum
is the same in every direction, paraxial or nonparaxial, and
equal to the normalized source spectrum. The scaling law
in its three-component form was assessed for wide-angle
radiation emanating from an opening in a blackbody cavity
wall. Furthermore, we found in general that the individual
source-field components do not need to satisfy the scalar
scaling law in order to achieve spectral invariance for the total
electric field. On the other hand, we also showed that the
normalized far-zone spectrum may not remain invariant even
if the source-field components individually obey the scaling
law. Explicit examples of both of these circumstances were
given in the paraxial electromagnetic regime. The results of
this research can find applications in the spectroscopy of light
sources, characterization of material objects, and in modeling
the transport of radiation from sources.
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[14] J. Tervo, T. Setälä, and A. T. Friberg, J. Opt. Soc. Am. A 21,
2205 (2004).

[15] J. Tervo and J. Turunen, Opt. Commun. 209, 7 (2002).
[16] In [9] the elements of the CSD matrix were normalized by

the spectral densities of individual field components, whereas
in the present work we normalize the CSD matrix by the
electromagnetic spectral densities.
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