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Controlling multimode coupling by boundary-wave scattering
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We show that coupling among multiple resonances can be conveniently introduced and controlled by boundary
wave scattering. This is demonstrated in optical microcavities of quasicircular shapes, where the couplings
of multiple modes are determined by the scattering from harmonic boundary deformations. We analyze these
couplings using a perturbation theory, which gives an intuitive understanding of the lowest-order and higher-order
scattering processes. Different scattering paths between two boundary waves can either enhance or reduce their
coupling strength. The effect of controlled multimode coupling is most pronounced in the direction of output
from an open cavity, as the coupling can cause a dramatic change of the external cavity field distribution.
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I. INTRODUCTION

Eigenmodes are fundamental in understanding all quantum
and wave phenomena. Take optical microcavities [1,2], for
example; the study of their eigenmodes has attracted con-
siderable interest in the pursuit of compact coherent light
sources [3–5], understanding quantum chaos in open systems
[6,7], and achieving strong light-matter interactions [8,9]. For
microdisk lasers in particular, one focus has been optimizing
their output directionality while maintaining a high quality (Q)
factor. One approach is deforming the circular cavity boundary
[6,7,10–12], which alters the dynamics of light trapped inside
the cavity. Its effect is depicted by the ray model for cavities
much larger than the laser wavelength, which, however, does
not apply to the cavities of the wavelength scale [13,14]; in
this regime the output directions of high-Q modes in a given
cavity are no longer universal or determined by the intracavity
ray dynamics. Instead, mode coupling plays an important role,
as found in previous studies, and it is important to understand
it beyond the usual phenomenological model [15].

Mode coupling in general occurs when the orthogonality
or biorthogonality in the system is modified, which can
be introduced, for example, by matter-mediated interaction
in cavity quantum electrodynamics [16], by nonlinearity in
multimode lasers [17], and by linear scattering from a local
defect or a gradual boundary deformation in waveguides [18]
and microcavities [19,20]. In the latter scenario, several of the
authors recently found that a minute boundary deformation can
lead to a drastic change of the outcoupling direction in an open
system, which was attributed to enhanced two-mode coupling
caused by quasidegeneracy in the unperturbed eigenmode
spectrum [21].

In this paper we show that multimode coupling can be
achieved and controlled by boundary wave scattering. This
applies to the general eigenvalue problem

[−∇2 + V (�r)]ψ(�r) = Eψ(�r), (1)

*li.ge@csi.cuny.edu
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which can be realized, for example, in a dielectric microcavity
[1,2], a vibrating membrane [22], an optical trap for exciton-
polariton condensate [23], and a quantum dot [24]. The
scalar eigenmodes ψ(�r) represent vibrational amplitudes, field
components of the electromagnetic waves, or probability wave
functions in the corresponding physical systems.

Below we exemplify the properties of boundary wave scat-
tering in open quasicircular cavities, with V (�r) = −(n2 − 1)E
inside and V (�r) = 0 outside. Equation (1) then becomes the
scalar two-dimensional Helmholtz equation, which describes,
for example, the propagation of transverse-electric (TE) or
transverse-magnetic (TM) waves in a dielectric microdisk
cavity of refractive index n. For simplicity, we assume the
cavity shape is nearly circular and symmetric along the
horizontal axis θ = 0◦,180◦, and we describe the cavity
boundary using harmonic series

ρ(θ ) ≡ R

[
1 +

∑
ν

εν cos(νθ )

]
(ν = 2,3, . . .), (2)

where R is the average radius of the cavity. The dipolar term
(ε1 cos θ ) is not included because it mostly leads to a lateral
shift of the cavity if |ε1| � 1 and can be eliminated by choosing
a proper origin. The harmonic boundary deformations in (2)
can be employed as individual turning knobs to introduce
and control couplings among multiple modes of different
angular momenta, which is a generalization of the procedure
introduced in Ref. [21]. Such a scheme can be utilized to alter
the outcoupling direction of an eigenmode deterministically,
through first-order and higher-order boundary wave scattering.

This paper is organized as follows. In Sec. II we review
the perturbation theory for the scalar Helmholtz equation in a
quasicircular cavity. We relate each perturbation contribution
in the presence of the harmonic deformations in (2) to
scattering strengths of different orders. In Sec. III we demon-
strate multimode coupling via a single harmonic boundary
deformation using TM modes. In Sec. IV we examine how
multiple harmonic boundary deformations can be introduced
to control couplings among TM modes. In Sec. V we apply this
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technique to control the emission directionality of microdisk
lasers. The summary is given in Sec. VI.

II. PERTURBATION THEORY

We begin by reviewing the perturbation theory for TM
[25,26] and TE modes [21] of the scalar Helmholtz equation
in a quasicircular system. In the absence of deformation, each
eigenmode ϕ of the circular system is characterized by its
angular momentum m and radial quantum number η. The latter
indicates the number of intensity peaks in the radial direction
inside the cavity, and we will refer to the modes with η � m

as the boundary waves since they are confined closely to the
inside of the cavity boundary. For convenience, we represent
their angular dependence by sine and cosine functions, i.e.,

ϕm,η(�r) ∝
{
Jm(nKm,ηr) cos(mθ ),
Jm(nKm,ηr) sin(mθ ),

(3)

inside the cavity, where Km,η is the complex resonant fre-
quency, corresponding to the square root of E in Eq. (1).
Outside the cavity ϕm,η(�r) are similarly defined, with the Bessel
functions Jm(nKm,ηr) replaced by the Hankel functions of the
first kind Hm(Km,ηr) and properly normalized to guarantee the
continuity of ϕm,η(�r) at the cavity boundary. The value of Km,η

is determined by the boundary condition

Sm(Z) ≡ n
J ′

m(nZ)

Jm(nZ)
− H ′

m(Z)

Hm(Z)
= 0 (4)

for TM modes and

Tm(Z) ≡ 1

n

J ′
m(nZ)

Jm(nZ)
− H ′

m(Z)

Hm(Z)
= 0 (5)

for TE modes, where Z ≡ KR.
The eigenmodes inside the cavity are slightly perturbed in

the presence of a minute boundary deformation. The perturbed
modes each have a dominant angular momentum m and
recognizable radial quantum number η, and they are still parity
eigenstates about the horizontal symmetry axis if the boundary
takes the form of Eq. (2). We denote them as ψm,η and their
resonant frequencies as km,η to distinguish them from the
unperturbed modes ϕm,η and their frequencies Km,η. Below
we focus on the even-parity modes, and the analysis for the
odd-parity modes is similar. We drop the indices of ψ , ϕ, k,
and K unless they are important. Using the ansatz

ψ(�r) =
{∑

p�0 ap
Jp(nkr)
Jp(nkR) cos(pθ ), r < ρ(θ ),∑

p�0(ap + bp) Hp(kr)
Hp(kR) cos(pθ ), r > ρ(θ ),

(6)

and am ≡ 1 for the dominant angular momentum, Dubertrand
et al. found that in a cavity with the boundary given by

ρ(θ ) = R[1 + εf (θ )], f (θ ) = f (−θ ), (7)

the perturbed quantities are

kR = Z

[
1 − εAmm − ε2

(
Z(n2 − 1)

∑
q 	=m

AmqAqm

1

Sq

− 3A2
mm − Bmm

2
− Z

(
A2

mm − Bmm

)H ′
m

Hm

)]
, (8)

ap = εZ(n2 − 1)
1

Sp

(
Apm + ε

{
ApmAmm

(
Z

Sp

S ′
p − 1

)

+ Bpm

2

[
1 + Z

(
H ′

m

Hm

+ H ′
p

Hp

)]

+Z(n2 − 1)
∑
q 	=m

ApqAqm

1

Sq

})
, (9)

bp = ε2Z2

2
(n2 − 1)Bpm (10)

up to order O(ε2) for TM modes [25]. We have dropped the
argument Z in S, H , and their derivatives S ′, H ′ with respect
to Z. The coefficients Apm,Bpm are given by

Apm ≡ cp

π

∫ π

0
f (θ ) cos(pθ ) cos(mθ )dθ, (11)

Bpm ≡ cp

π

∫ π

0
f 2(θ ) cos(pθ ) cos(mθ )dθ, (12)

with cp = 2(p > 0),1(p = 0).
The perturbation theory was extended to TE modes in

Ref. [21], which is more complicated due to the discontinuity
of the radial derivative of ψ at the cavity boundary. The results
up to the order O(ε) are given by

kR = Z[1 − εAmm], (13)

ap = εZ

[
Sm

(
H ′

p

Hp

− H ′
m

Hm

)
− T ′

m

]
1

Tp

Apm, (14)

bp = εZSmApm, (15)

and we note that bp now has a first-order term in ε and kR has
the same expression for TE and TM modes to the first order.

The creation of angular momentum sidebands ap 	=m inside
the cavity can be considered the result of boundary wave
scattering. The perturbation results above give an intuitive
understanding of these scattering processes. Take the TM
polarization as an example; ap given by Eq. (9) can be
rearranged as

ap = αpm +
∑
q 	=m

αpqαqm + (· · ·)Bpm + (· · ·)ApmAmm, (16)

where

αpm = εZ(n2 − 1)
1

Sp

Apm (17)

can be considered the scattering strength for the first-order
process m → p by the cos(m ± p)θ deformation in (2). In
our notation the angular momenta m,p of the boundary waves
are non-negative, representing the clockwise (CW) wave with
a positive sign and counterclockwise (CCW) wave with a
negative sign. For example, the cos(m − p)θ deformation can
scatter the CW (CCW) wave of angular momentum m (−m)
into the CW (CCW) wave of angular momentum p (−p), and
the cos(m + p)θ deformation can scatter the CW (CCW) wave
of angular momentum m (−m) into the CCW (CW) wave of
angular momentum p (−p).

We emphasize that the scattering strength αpm is mode
dependent; it is proportional to S−1

p (Km,ηR), which we will
refer as the spectral function. If there is another resonance

043801-2



CONTROLLING MULTIMODE COUPLING BY BOUNDARY- . . . PHYSICAL REVIEW A 88, 043801 (2013)

Kp,η′ in the vicinity of Km,η, we then find Sp(Km,ηR) ≈
Sp(Kp,η′R) = 0, and the scattering from m to p in mode ψm,η is
enhanced [21]. The scattering from p to m in mode ψp,η′ is also
enhanced. η′ is the radial quantum number of the second mode,
which is typically different from η for two quasidegenerate
modes. In the Appendix we show that for high-Q modes of
η = 1, this sensitivity due to a low-order harmonic boundary
deformation maximizes in the mesoscopic regime that lies in
the crossover between the microscopic regime (λ ∼ R) and
the macroscopic regime (semiclassical limit λ � R), where λ

is the wavelength.
The second term in Eq. (16) represents different paths

that consist of two successive first-order scattering processes,
i.e., m → q → p for all q 	= m. Such second-order processes
depend not only on the spectral function of the final state
[i.e., S−1

p (Km,ηR)] but also on the spectral function of the
intermediate state [i.e., S−1

q (Km,ηR)]. There is another type
of second-order processes in ap, which is represented by
the term proportional to Bpm in Eqs. (9) and (16). Their
scattering strengths do not depend on the spectral function
of the intermediate state; thus we will refer to them as
“virtual” processes. The last O(ε2) term in Eq. (16) has a
more complicated dependence on the spectral function of the
final state. Its scattering strength is proportional to Amm, which
represents the scattering of the CW and CCW waves of angular
momentum ±m into each other by the cos(2mθ ) deformation.

III. MULTIMODE COUPLING VIA A SINGLE
HARMONIC BOUNDARY DEFORMATION

In this section and the next section we exemplify multimode
coupling using the TM polarized modes. Let us first consider
a single harmonic perturbation cos(νθ ) with an amplitude
|εν | � 1. As we have discussed in the previous section, this
boundary deformation scatters the boundary wave of angular
momentum m into two sidebands m ± ν to the leading order,
whose amplitudes are given by

αm±ν,m = εν(n2 − 1)Z

2Sm±ν

(18)

from Eq. (17). This boundary wave scattering introduces
coupling between ϕm,η and two other modes, ϕm+ν,η′ and
ϕm−ν,η′′ , whose dominant angular momenta are m + ν and
m − ν, respectively.

Higher-order scattering processes create weaker sidebands
at m ± 2ν,m ± 3ν, . . . , coupling more modes with decreasing
strength in general. The strength βm±2ν,m of the second-order
scattering can be found in Eq. (16):

βm±2ν,m ≈ αm±2ν,m±ναm±ν,m. (19)

We have assumed ν < m, with which Amm and the last term in
Eq. (16) vanish. We have also neglected the “virtual” process
given by Bpm in Eq. (16); it is weak compared with the right-
hand side of Eq. (19) since it does not depend on the spectral
function S−1

m±ν of the intermediate state, which needs to be large
for the second-order scattering strength to be non-negligible.

In Fig. 1 we show one example with a cos(3θ ) boundary
deformation in a circular cavity of index n = 3.13. Near
KR = 4.6 there are three eigenmodes of angular momenta
m = 11,m′ = 8,m′′ = 5 and radial quantum numbers η = 1,

FIG. 1. (Color online) Mutual coupling of three TM modes in
a quasicircular cavity ρ(θ ) ≡ R[1 + 0.01 cos(3θ )]. (a) Intracavity
intensity distribution (left) and angular momentum components |ap|
(right) of mode 1 at k11,1R = 4.593 − 1.603 × 10−4i. Connected
crosses show the numerical values of |αp|, and black squares show the
perturbation results from Eqs. (18) and (19). (b) and (c) Same as (a) for
two nearby modes at k8,2R = 4.699 − 1.351 × 10−3i (mode 1′) and
k5,3R = 4.515 − 4.046 × 10−2i (mode 1′′). The dominant angular
momenta for modes 1, 1′, and 1′′ are 11, 8, and 5, respectively. Mode
1 (1′) has enhanced intensity near a triangular orbit � (�), which is
marked by the dashed line.

η′ = 2, η′′ = 3. They are calculated using a scattering-matrix
method similar to that described in Refs. [10,27]. We refer to
them as modes 1, 1′, and 1′′, and they have increasing cavity
decay rates, defined by κ = −2Im[KR] > 0. We first focus
on mode 1 (m = 11) and point out that the two first-order
sidebands of mode 1 at p = 8,14 do not have equal strength;
the presence of mode 1′ (m′ = 8) leads to a spectral function
S−1

8 > S−1
14 , and the sideband at p = 8 is about four times

stronger than that at p = 14. Similarly, the proximity of mode
1′′ (m′′ = 5) enhances the scattering into the second-order
sideband of mode 1 at p = 5, which is even stronger than
the first-order one at p = 14.

Figures 1(b) and 1(c) for modes 1′ and 1′′ further display
the mutual coupling between them and mode 1. The couplings,
however, affect these eigenmodes differently. For example,
their decay rates all vary on the scale of 10−4 when ε3, the
amplitude of the cos(3θ ) boundary deformation, changes from
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FIG. 2. (Color online) Effect of the cos(3θ ) deformation of the
cavity boundary on the complex frequencies of the three modes in
Fig. 1. Solid lines and black dashed lines show the numerical data and
the second-order perturbation result from Eq. (20), respectively. The
relative change of the decay rate of mode 1, which has the highest Q

factor, is much larger than for modes 1′ and 1′′.

0 to 0.01. This shift can be shown to be a quadratic function
of ε3,

k = K

(
1 − αm−3,m + αm+3,m

2
ε3

)
, (20)

where αm−3,m,αm+3,m are given by Eq. (18) and are linear in
ε3. Equation (20) is derived from Eq. (8) using the fact that
both Amm and Bmm vanish in this example. Such a variation
barely changes the cavity decay rates of modes 1′ and 1′′ but
increases that of mode 1 by more than two orders of magnitude
[see Fig. 2(b)].

Another example of the different effects of multimode
couplings on these modes is their intracavity field distribution.
Close to the cavity boundary the wave function (6) inside the
cavity can be approximated by

ψm(R,θ ) ≈ cos(mθ ) +
∑

p=m±ν

αpm cos(pθ ), (21)

with the higher-order sidebands neglected. The phases of αpm

determine the field distribution inside the cavity. For example,
we find that both α8,11 and α14,11 are almost real and positive
at a positive ε3 from Eq. (18). We then expect both sidebands
at p = 8,14 in mode 1 to interfere constructively with the
dominant angular component m = 11 at θ ≈ 0◦,120◦,240◦,
resulting in enhanced intensity near a triangular orbit (�).
Similarly, Eq. (18) predicts that α5,8,α11,8 are almost real but
negative at a positive ε3. The beating of the p = 11,5 sidebands
in mode 1′ with the dominant m′ = 8 component then leads
to an enhanced field intensity at θ ≈ 60◦,180◦,300◦, leading
to a triangle of opposite orientation (�). These predictions are
confirmed by the numerical calculations shown in Fig. 1.

IV. MULTIMODE COUPLING VIA MULTIPLE
HARMONIC BOUNDARY DEFORMATIONS

The above example illustrates how the boundary wave
scattering from a single harmonic boundary deformation
couples multiple eigenmodes. The couplings of mode 1′ to
modes 1 and 1′′ are of first order and are stronger than
that between modes 1 and 1′′, which is of second order.
To vary the latter without affecting the former, one can
introduce extra couplings by adding additional harmonic

FIG. 3. (Color online) Controlling the p = 5 component in mode
1 using the interference of multiple scattering paths, i.e., the second-
order scattering m = 11 → q = 8 → p = 6 by the cos(3θ ) defor-
mation discussed in Fig. 1 and the first-order scattering m = 11 →
p = 6 by an additional cos(6θ ) deformation. (a) Angular momentum
components |αp| of mode 1 inside the cavity at ε6 = −0.0023
(connected red crosses) and 0.006 (connected black triangles). (b)
|α5| and |α8| of mode 1 as a function of ε6. ε3 is fixed at 0.01. The
p = 5 component almost vanishes at ε6 = −0.0023 and is raised to
about the same height as the p = 8 component at ε6 = 0.007.

boundary deformations. For example, a cos(6θ ) deformation
adds first-order coupling between modes 1 and 1′′, which can
be tuned to reduce or enhance their existing coupling due to the
cos(3θ ) deformation. As shown in Fig. 3, the p = 5 sideband
in mode 1 is almost canceled completely at ε6 = −0.0023 and
is raised to about the same height of the p = 8 sideband at
ε6 = 0.007. All other angular components only have a minute
change with ε6 due to higher-order scattering processes.

The tunability of the total coupling between two modes
depends on the phases of individual couplings from different
scattering paths. To find the general requirement that a first-
order scattering m → p cancels a second-order scattering
m → q → p, we again turn to Eq. (16) and employ the same
approximation used in deriving Eq. (19), which leads to

ap ≈ αpm + αpqαqm. (22)

From Eqs. (9) and (18) we know that αpm and αpq above are
proportional to the same spectral function of the final state,
i.e., S−1

p . αpm and αpq are then in phase (π out of phase) if
the amplitudes εm−p and εq−p of the harmonic modulations
cos(m − p)θ and cos(q − p)θ have the same sign (opposite
signs). Therefore the requirement for the aforementioned
cancellation at some value of εm−p is to have a real αqm. Indeed,
we find Arg[α8,11] = 0.008 in the example given above, where
m = 11, q = 8, and p = 5, and a negative ε6 = −0.0023 is
needed to cancel the p = 5 sideband at a positive ε3 = 0.01.
We also note that the phase of ap changes by about π across
ε6 = −0.0023 as a result.

The effect of controlled multimode coupling is most
pronounced in the outcoupling of the high-Q modes. Recent
studies [13,19] show that the output direction of a high-Q mode
can be completely overwhelmed by that of a lower-Q mode
to which it couples. The situation becomes more interesting
if the high-Q mode couples to more than one lower-Q mode,
such as the case in Fig. 1. Unlike the intracavity intensity
distribution, which is largely determined by the dominant
angular momentum and the strong first-order sidebands [see
Eq. (21) and its discussion], the weaker sidebands of lower
angular momenta can also have a strong influence on the
outcoupling due to their stronger leakiness. More specifically,
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the wave function (6) in the far field becomes

ψ(r → ∞) ∝
∑

p

(ap + bp)
e−ipπ/2

Hp(kR)
cos(pθ )

≡
∑

p

Wp cos(pθ ), (23)

using the large-argument asymptotic form of the Hankel
function of the first kind

Hp(z → ∞) →
√

2

πz
ei(z−pπ/2−π/4). (24)

We note that the amplitude of Hp(kR) in the denominator
of Eq. (23), evaluated at the average radius of the cavity,
reduces dramatically for a smaller angular momentum p,
which represents the stronger leakiness mentioned above.

Now let us examine how the outcoupling direction of mode
1 changes with ε6 in the example shown in Fig. 3. At ε6 =
−0.0023 the p = 5 sideband outside the cavity is very small,
similar to what happens inside the cavity. The outcoupling of
mode 1 is then dominated by the p = 8 sideband, which leads
to an approximate angular dependence of cos(16θ ) for the
far-field intensity [Fig. 4(a)]. As ε6 changes from −0.0023,
the cancellation of the two scattering paths is removed, and
the coupling between modes 1 and 1′′ increases rapidly; the

FIG. 4. (Color online) Far-field intensity pattern (left column)
of mode 1 at ε6 = −0.0023, −0.004, −0.001 in (a), (b), and (c),
respectively. The angular components of mode 1 are shown in the
right column. ε3 is fixed at 0.01. The output directionality changes
dramatically by varying the p = 5 component as discussed in Fig. 3.

FIG. 5. (Color online) Analysis of the far-field change shown in
Fig. 4. (a) Angular components |W5| and |W8| for the cos(5θ ) and
cos(8θ ) terms of mode 1 outside the cavity as a function of ε6. (b)
π -phase jump of W5 near ε6 = −0.0023. The two dashed lines are
separated by π and are used as references. The far-field pattern of
mode 1 is determined mostly by the interference of the W5 and W8

terms. The strong variation of the magnitude of W5 with ε6 and
the phase jump result in a dramatic change of the far-field pattern
in Fig. 4.

p = 5 sideband outside the cavity becomes comparable to
the p = 8 sideband at ε6 ≈ −0.004,−0.001 [see Fig. 5(a)],
which are about ten times larger than the m = 11 component,
the dominant one inside the cavity. Depending on the relative
phase and amplitude of W5 and W8 in Eq. (23), the beating
of these two largest angular components can lead to a quite
different outcoupling direction. For example, using Eqs. (9)
and (10), we find that W5 and W8 are approximately π out
of phase at ε6 ≈ −0.004, and the outcoupling is enhanced in
the θ ≈ 60◦,180◦,300◦ directions [Fig. 4(b)]. At ε6 ≈ −0.001,
however, the phase of W5 changes roughly by π [see Fig. 5(b)].
This is because W5 is approximately proportional to a5 since
|a5| � |b5| in expression (23) for the far field, and we know
from our discussion of Eq. (22) that the phase of a5 jumps
by about π across ε6 = −0.0023. Meanwhile, W8 varies little
for such a small change of the minute ε6 since it depends on
ε6 only through a second-order scattering path 11 → 5 → 8.
As a result, W5 and W8 are now approximately in phase,
and the outcoupling is enhanced in the θ ≈ 0◦,120◦,240◦
directions instead [Fig. 4(c)], which is flipped vertically from
that at ε6 ≈ −0.004. In this process the intracavity intensity
distribution of mode 1 barely changes from the � pattern
shown in Fig. 1(a) since the modified p = 5 sideband inside
the cavity is very weak [see Fig. 3(b)]. Thus the flipping of the
outcoupling direction with ε6 is different from that reported in
Ref. [21], which involves the flipping of the intracavity field
pattern as well. As ε6 moves farther away from −0.0023, the
p = 5 sideband in mode 1 gradually becomes the dominant
angular momentum outside the cavity [Fig. 5(a)], and the
angular dependence of the outcoupling approaches cos(10θ )
(not shown).

V. CONTROL OF MICROCAVITY EMISSION PATTERN
VIA MULTIMODE COUPLING

To demonstrate potential applications of the presented
theory, we will show in this section that the boundary
wave scattering can be used to control the directions of
microcavity emission. Previously, we fabricated semiconduc-
tor microcavities of various shapes and obtained directional
emissions [13,14]. Since the laser emission is predominantly
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FIG. 6. (Color online) Mutual coupling of three TE modes in a
quasicircular cavity with ε2 = −0.07 and ε3 = 0.008. (a) Intracavity
intensity distribution (left) and far-field intensity pattern (right) of
mode 1 at kR = 4.895 − 7.272 × 10−4i. (b) and (c) The same for
two nearby modes at kR = 4.991 − 2.230 × 10−2i (mode 1′) and
kR = 4.866 − 0.1018i (mode 1′′).

TE polarized, we consider here the TE modes and introduce
multiple harmonic terms in the boundary deformation to
control the output directions.

We start with ε2 = −0.07 and ε3 = 0.008, and three nearby
modes with m = 11,m′ = 8,m′′ = 5 can be found around
kR = 4.9 (see Fig. 6); they are the TE correspondence of
the TM modes we have discussed in Figs. 1–4, albeit the
deformations are different. We find that mode 1 couples
strongly to mode 1′, with similar Wp’s outside the cavity.
Consequently, the output directionality of mode 1 is almost
identical to that of mode 1′ [Figs. 6(a) and 6(b)].

To enhance the coupling between modes 1 and 1′′, we
introduce a cos(6θ ) perturbation, similar to what is done in
Figs. 3 and 4. We again find that the output directionality of
mode 1, here indicated by

U ≡
∫ 2π

0 I (θ ) cos θdθ∫ 2π

0 I (θ )dθ
(25)

(b)

(a)

FIG. 7. (Color online) The main output direction of mode 1 in
Fig. 6 is switched via the first-order scattering caused by the cos(6θ )
deformation of the cavity boundary. (a) plots its intracavity intensity
distribution at ε6 = −0.008 (left) and 0.004 (right). (b) shows the
corresponding far-field intensity patterns. (c) plots the measure of the
output directionality U for all three modes in Fig. 6 as a function
of ε6. The dash-dotted line shows the result of classical ray-tracing
simulation as a comparison, which is obtained by following 50 000
initial rays uniformly distributed in the Poincaré surface of section
[6,11,28] for each value of ε6. The switching of the main output
direction is not captured by the ray model, confirming that it is a
wave effect.

to measure its “skewness” along the horizontal direction,
changes dramatically from left pointing (U < 0) to right
pointing (U > 0), while the output directionality of modes 1′
and 1′′ barely changes [Figs. 7(b) and 7(c)]. We also perform
a classical ray-tracing calculation of U for various cavity
deformations; Fig. 7(c) [6,11,28] shows clearly that it does
not capture the correct deformation dependence of the output
directionality of mode 1, which is a wave-interference effect
not taken into account in the classical ray dynamics. As shown
in Fig. 7(a), the weak intensity of mode 1 near the cavity center
at ε6 = −0.008 is similar to that of mode 1′′ in Fig. 6(c), which
is already a hint that the aforementioned change of mode 1 is
indeed caused by the newly introduced first-order coupling to
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FIG. 8. (Color online) Analysis of the far-field change of mode
1 shown in Fig. 7. (a) Amplitude change of the angular components
Wp in mode 1 outside the cavity as a function of ε6. The black solid
line and red dashed line represent W5 and W3, and low-lying dotted
lines show the rest of Wp up to p = 12. W6 is normalized to be 1.
|W5(ε6) − W5(0)| indicates the strength of the first-order scattering
11 → 5, which varies significantly with ε6. (b) Phase change of W5

in mode 1 as a function of ε6. It is nearly constant on both sides
of ε6 = 0 and jumps by π across ε6 = 0. The two dashed lines are
separated by π and are used as references. These results show that
the switching of the output direction of mode 1 in Fig. 7 is due to the
ε6-dependent coupling to mode 1′′.

mode 1′′. To further confirm this relation, we note that the
amplitudes of W5,W3 in mode 1 vary most noticeably and
linearly with ε6 [see Fig. 8(a)], which are exactly the two
most significant components in mode 1′′ outside the cavity.
In addition, the change of W5 from its value at ε6 = 0 has
almost fixed phases for ε6 < 0 and ε6 > 0, which differ by π

[Fig. 8(b)]. These observations indicate that the change of W5 is
of first order in ε6, which is what we expect from the first-order
scattering amplitude a5 due to the cos(6θ ) deformation, given
by the TE perturbation result from Eq. (14).

The coupling between modes 1 and 1′′ can also be enhanced
via a second-order scattering process. By introducing a

FIG. 9. (Color online) Controlling the far-field intensity pattern
of mode 1 in Fig. 6 using the second-order scattering caused by the
cos(2θ ) and cos(4θ ) deformations. (a) shows the switching of the
main output direction from ε4 = −0.01 (left) to 0.008 (right). (b)
plots the measure of the output directionality U for all three modes
in Fig. 6 as a function of ε4.

cos(4θ ) boundary deformation and utilizing the large cos(2θ )
deformation, the scattering from m = 11 to p = 5 is efficiently
enhanced from the two paths 11 → 9 → 5 and 11 → 7 → 5,
while the coupling between modes 1 and 1′ is still barely
affected. As we show in Fig. 9, a similar flipping of the
outcoupling direction of mode 1 is observed when ε4 varies
from −0.01 to 0.01, while those of modes 1′ and 1′′ stay
roughly the same.

VI. DISCUSSION AND CONCLUSION

Finally, we compare our study to previous works on
surface scattering. Light scattering from a rough surface or
inside a corrugated waveguide has been studied extensively
[29–36]. For example, Ref. [33] studied the higher-order effect
of longitudinal surface roughness in the direction of wave
propagation in quasi-one-dimensional waveguides. Although
the examples in our paper are for planar systems, the governing
equation (1) is equivalent to steady-state wave propagation in
quasi-two-dimensional waveguides. In this waveguide analog
the surface roughness we consider is transverse instead, with
no variation in the longitudinal direction of the waveguide.
We also note that Ref. [33] considered a closed (i.e., Dirichlet)
boundary condition in the cross section of the waveguide,
while we consider an open (i.e., outgoing) boundary condition.
Despite the different scattering geometries, there are some
similar features in both systems. Reference [33] found the
crossover of the first- and second-order terms in the longitudi-
nal scattering mean free path, while we discuss how the first-
and second-order scatterings can have comparable amplitudes
and interfere destructively or constructively. A key difference
lies in the physical factors that influence the relative amplitudes
of these terms. One dominant factor shown in our work is the
spectral overlap of adjacent resonances or quantized modes of
the cross section, which is absent in Ref. [33] given that the
one-dimensional cross section considered leads to an equally
spaced and nonoverlapping transverse mode spectrum.

In summary, we have shown a convenient approach to
achieve and control multimode coupling using boundary wave
scattering. The examples given are for solutions of the scalar
Helmholtz equation with two types of open boundary condi-
tions in quasicircular systems. Fine-tuning of the harmonic
boundary deformation has been demonstrated, for example, in
a liquid-jet column [37], and the general principle should also
apply for a wide variety of Hamiltonians in other geometries,
unless the scattering is prohibited by a topological property of
the material [38–40]. The boundary wave scattering presented
is a linear and elastic analog of Brillouin scattering [41] in a
circular geometry [42], where the angular momentum plays
the roles of frequency. The boundary wave scattering can also
couple modes within the cavity plane to propagating modes
in the free space [43]. The cancellation of the scattering from
m = 11 to p = 5 by the destructive interference of two scatter-
ing paths shown in Fig. 3 closely resembles the vanishing of
absorption in electromagnetically induced transparency [44].
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APPENDIX: QUASIDEGENERACY
AND THE SPECTRAL FUNCTION

In the appendix we discuss how the boundary wave
scattering of high-Q modes depends on the frequency regime.
We are most interested in the η = 1 modes, which have the
smallest cavity decay rates and thus the lowest thresholds once
optical gain is introduced to the cavity. In Ref. [21] it has
been observed numerically that for these modes, the effect of
boundary wave scattering from a minute low-order harmonic
boundary deformation is most dramatic in the mesoscopic
regime, i.e., the crossover regime between the microscopic
regime (λ ∼ R) and the macroscopic regime (semiclassical
limit λ � R), where λ = 2π/Re[k] is the wavelength; the
effect becomes very weak in the semiclassical limit. Below
we point out that the key to understanding this phenomenon
lies in the spectral function S−1

p (Km,1R) for TM waves [or
T −1

p (Km,1R) for TE waves; see Eq. (14)], which in turn
depends on the frequency spacing between Km,1 and the
nearest resonance of angular momentum p, as mentioned in
Sec. II. We denote this distance �m,p, i.e.,

�m,p = min|Km,1 − Kp,η| ∀ η, (A1)

and note that it is determined mostly by the real part of
the high-Q resonant frequencies we are interested in, whose
|Im[KR]| � Re[KR]. Thus Re[�m,p] ≈ �m,p is the quantity
we will focus on here.

To find the frequency dependence of �m,p, we first note
that all K’s of the same η form a band in the {m,Re[KR]}
plane [see Fig. 10(a)]. These η bands do not cross, and the
slope of the η = 1 band is well approximated by Re[KR]/
m ≈ 1/n [45]. It is straightforward to find that �m,p is capped
at about |m − p|/n for a given m and p, which is the distance
between Km,1 and Kp,1. For p > m, this is in fact the value
of �m,p since Kp,η>1 are farther away from Km,1, as can be
seen in Fig. 10(a). For such a relatively large �m,p, the spectral
function S−1

p (Km,ηR) is typically subunitary [see Fig. 10(b)],
and the associated scattering processes, such as the first-order
scattering m → p, are very weak. For p < m, however, Kp,η>1

can be much closer to Km,1 when compared with Kp,1, which
then leads to a very large spectral function and a very strong
scattering strength. To find out when this situation occurs, we
employ the approximation for Re[KR] given in Ref. [25],
which applies to both TM and TE modes of a small η:

Re[KR] = m

n
+ βη

n

(
m

2

)1/3

− 1

τ
√

n2 − 1
+ O

(
1

m

)1/3

.

(A2)

Here τ = 1 for TM modes and n2 for TE modes, and βη is the
ηth zero of the Airy function, the first three of which are 2.34,

FIG. 10. (Color online) (a) TM spectrum of a circular cavity
with refractive index n = 3.13 near Re[KR] = 27. Dashed boxes
indicate the first three bands with radial quantum number η = 1,2,3.
Km=76,η=1 and Km=70,η=2 are marked by the horizontal arrows.
They are the closest quasidegenerate pair in the frequency range.
(b) Spectral function |S−1

m±ν(Km,1R)| for the first-order scattering
m → m ± ν as a function of m for ν = 3 and 6. The peak of
S−1

m−6(Km,1R) at m = 76 is due to the quasidegeneracy shown in (a).
Its other peak at m = 12 is due to another pair of quasidegenerate
modes K12,1 and K6,3. The single peak of S−1

m−3(Km,1R) at m = 9 is
due to the quasidegeneracy between K9,1 and K6,2.

4.09, and 5.52. �m,p can then be approximated by

�m,p ≈ min

∣∣∣∣m − p

n
+ 1

n

[
β1

(
m

2

)1/3

− βη

(
p

2

)1/3]∣∣∣∣
= min

∣∣∣∣m − p

n
+ 1

n

[
βη2−1/3(m − p)

m2/3 + m1/3p1/3 + p2/3

− (βη − β1)

(
m

2

)1/3]∣∣∣∣
≈ 1

n
min

∣∣∣∣(m − p) − (βη − β1)

(
m

2

)1/3∣∣∣∣ (A3)

for m − p � m2/3. Therefore we see that whenever

L ≡ m − p(
m
2

)1/3 + β1 (A4)

approaches one βη>1, �m,p approaches zero, and the spectral
function enhances the scattering strength. From this expres-
sion, we can then estimate the upper bound of m for this to
occur at a given ν ≡ m − p > 0, i.e.,

mmax ≈ 2

[
ν

β2 − β1

]3

≈ 0.37ν3, (A5)

which is independent of the polarization and the refractive
index. For example, mmax from Eq. (A5) is 10 and 81 for
ν = 3,6, respectively, which agrees qualitatively with the
numerical value of 12 and 76 shown in Fig. 10(b). For
m > mmax, the spectral function S−1

m−ν(Km,1R) tails off and
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eventually becomes comparable to the small S−1
m+ν(Km,1R) we

have discussed since now Km−ν,1 is the closest resonance of
angular momentum m − ν to Km,1 and �m,m−ν ≈ ν/n, just as
Km+ν,1 is the closest resonance of angular momentum m + ν

to Km,1 and �m,m+ν ≈ ν/n.
Equation (A5) explains why the sensitivity of the high-Q

modes of η = 1 on a low-order harmonic boundary deforma-
tion maximizes in the mesoscopic regime and becomes weak
in the semiclassical limit. We note that quasidegeneracy also

occurs among modes of much larger η’s, such as the TM
resonances K50,10 = 30.187 − 9.6157 × 10−6i and K47,11 =
30.186 − 9.6122 × 10−6i in a circular cavity of n = 3.13.
We do not study them here because their relatively low
quality factors make them difficult to observe experimentally.
Their coupling, nevertheless, gives an alternative explanation
to the contrasting intracavity and far-field intensity patterns
found in Ref. [46], similar to what we have shown in
Figs. 4 and 7.
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