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Suppression of directional light-wave mixing in normal and quantum gases
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We discuss nonlinear optical processes in the presence of quantum gases. We show that, in contrast to a
normal gas, where the medium “passively” participates in nonlinear optical processes, quantum gases “actively”
interact with the wave mixing process by enforcing the properties arising from condensed matter physics on
the generation and propagation of new light fields. This manifestation of condensed matter physics leads to
intriguing suppression and enhancement effects in directional wave generation and propagation processes that
have no counterpart in a normal gas. This opens a new chapter on light-matter-wave mixing and scattering:
nonlinear optics with quantum gases.
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I. INTRODUCTION

Quantum interference is one of the most fundamental
aspects and predictions of quantum mechanics. In the early
days of quantum mechanics the wave nature of the Schrodinger
equation inspired phrases such as “wave mechanics” and
“interference physics”, even though the term quantum me-
chanics is currently the widely accepted description of the
discipline [1].

In the field of nonlinear optics there is a class of novel effects
that is based on quantum interference between different exci-
tation pathways in an atomic or molecular medium resonantly
driven by external fields [2]. The key concept is that a particular
excited electronic state can be coupled simultaneously by
external fields and an internally generated field produced by
nonlinear optical-wave generation processes. The internally
generated field, which is usually much closer to the single-
photon electronic transition, can thus drive the system in
a more efficient manner, creating a different and yet very
effective excitation pathway which competes with the resonant
excitation by the external fields. The interference of these
different pathways can lead to profound quantum interference
effects that dominate the dynamics of the system response.

One of the most well-known interference effects is the
odd-photon destructive interference phenomenon discovered
in the early 1980s and extensively studied throughout the
80s and 90s. In a typical three-photon-assisted multiphoton
ionization (MPI) process in an inert gas, distinctive and sharp
ionization signals were clearly observable at low medium
concentrations. The researchers found [3], however, that the
resonantly enhanced MPI signal disappeared completely at
elevated medium concentrations. This observation, which is
contrary to the naive expectation of a higher ion yield with
elevated concentrations, was explained later by the quantum
destructive interference between the ionization pathway result-
ing from the external fields and the pathway from the internally
generated field. Payne et al. [4–6] showed analytically that
excitations to the MPI enhancement state by different pathways
are 180◦ out of phase, resulting in total cancellation of the
excitation of the state that is actively and dynamically accessed
by several strong light fields. Following these pioneering

works, quantum destructive interference in four-wave mix-
ing [7–11], forward hyper-Raman generation [12–14], and
optically pumped stimulated emission [15] have all been
observed. In addition, suppression of Autler-Townes splittings
and large optical shifts [16,17], destructive interference in
(2n + 1)–photon multicolor processes [18], and odd-photon
process with resonant even-photon intermediate couplings
were also demonstrated.

It should be noted, however, that the media in all of the
nonlinear optical processes described above share two features.
First, these are all single-specie atomic or molecular vapors
sometimes mixed with a foreign gas (when the detuning is
significantly larger than the resonance linewidth) in order
to compensate the large differential dispersion between the
pump and the generated fields. Second, Doppler broadenings
and thermal motion cannot be neglected. Media with these
properties can be collectively referred as to “normal gases”.

Over the past 15 years, a class of exotic media referred to as
“quantum gases” has been realized in laboratories worldwide,
bringing new and exciting research opportunities to disciplines
such as atomic, molecular, and optical physics and condensed
matter physics. One well-known example of a quantum gas is
the gaseous-phase Bose-Einstein condensate (BEC) [19–21]
produced using laser cooling and trapping techniques. Among
the various exotic properties of a quantum gas are its very high
degree of coherence and therefore extremely narrow motional-
state resonance linewidth. This critically important property of
the medium has fundamentally altered the field of nonlinear
optics and the physics of coherent generation and propagation
of new light fields upon which the quantum interference effects
described above rest. Given this paradigm shift, one naturally
asks if the well-known quantum destructive interference effect
observed in normal gases exists and, if so, how it manifests
itself in this new class of quantum gases. The purpose of this
paper is to answer these fundamental questions.

Recently light-wave mixing, the most widely studied
nonlinear optics process in normal gases, has been extended
to Bose-condensed media [22]. In this study, multidirectional
nonlinear optical processes were examined for the first
time, and both coherent wave propagation effects and the
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contribution from elementary excitations of condensed matter
physics were investigated. The most startling findings were
that there was pronounced enhancement or suppression of
multidirectional high-gain hyper-Raman emission processes
that are not possible in normal gases. This study represents the
first achievement that joins nonlinear optics with condensed
matter physics of quantum gases, opening a new research field
of nonlinear optics with quantum gases.

In the present work, we examine the well-known odd-
photon destructive interference discovered in the early 1980s
in the context of quantum gases. We reveal the fundamental
differences in nonlinear optical quantum destructive interfer-
ence effects in quantum versus normal gases. Our analysis and
results clearly indicate that most nonlinear optical processes
studied extensively in normal gases must be carefully re-
examined in the context of quantum gases which actively par-
ticipate in and dynamically affect nonlinear optical processes.

II. THEORETICAL CONSIDERATIONS

To illustrate a typical quantum destructive interference
effect in wave propagation we consider, without the loss of
generality, a third harmonic generation (THG) process [23]
with a single pump field EL(kL,ωL) in a two-level system
where the ground and the THG electronic states are referred
to as |1〉 and |4〉 (Fig. 1) [2], respectively. In a normal gas
[Fig. 1(a)] all of the fields propagate within the volume swept
out by the pump laser beam, however, the generated field
ETHG(kTHG,ωTHG) can propagate either parallel or antiparallel
to the pump beam. We further assume that pump laser fields
ELj (j = 1,2,3; for the THG process EL1 = EL2 = EL3 = EL)
are all linearly polarized along the x axis and that all pump
frequencies ωLj (j = 1,2,3) are sufficiently detuned from
any intermediate one-photon resonance so that the dominant
contribution is a three-photon excitation of the electronic state
|4〉 where a THG field ETHG(kTHG,ωTHG) is generated. In
general, the direction of the pump beam is taken to be the
z axis, and in a quantum gas [Fig. 1(b)] this pump propagation
direction is assumed to coincide with the long axis of the
condensate. In order to characterize the excitation of the THG
state |4〉, we now introduce an effective three-photon-coupling
Rabi frequency �

(3)
41 (ωL). It is also assumed that the one-

photon detuning for the THG field is sufficiently large so that
|δ4| � �4 and |δ4| � |�(3)

41 | [see Fig. 1(a)].
In order to fully appreciate the differences in the nonlinear

optical responses of quantum versus normal gases, we begin
by examining the wave mixing process in a normal gas.
It is well known that THG cannot be efficiently generated
in a single-component (pure) normal (non-Bose-condensed
or quantum degenerate) atomic gas because the differential
dispersion experienced by the pump and THG fields having
very different wavelengths quenches any efficient coherent
generation gain. Consequently, coherent propagation gain is
not supported in any direction. To compensate this differential
dispersion a foreign gas is usually added so that coherent
generation and propagation gain is supported in the forward
direction, where the THG field propagates in the direction
of the pump laser [24]. Due to the large optical-wave phase
mismatch, dispersion compensation provided by the foreign
gas is simply not sufficient to support backward THG. In a

FIG. 1. (Color online) Energy levels, laser couplings, and vector
diagrams for forward and backward THG processes in a normal
gas (a) and in a quantum gas (b). (a) The vertical dashed arrow
represents forward THG emission [ω(NG⇒)

THG ], which can be efficiently
generated and later leads to the odd-photon destructive interference
effect. The vertical dotted arrow with a large cross (X) denotes the
backward THG emission process [ω(NG⇐)

THG ], which is not supported
by propagation gain. (b) The dotted arrow with a large cross (X)
denotes the forward emission process [ω(QG⇒)

THG ], which is strongly
suppressed by the condensate structure factor because of the small
quasimomentum transfer. The dashed arrow represents a resonant
backward-emitted THG field [ω(QG⇐)

THG ], which benefits from extremely
efficient hyper-Raman propagation gain.

single-component quantum gas, however, no buffer gas can
be added without completely destroying the formation of the
quantum gas [25]. Thus, at first glance one would think that
THG processes with gain should not be present in quantum
gases in any direction.

However, in quantum gases there is a wavelength-
dependent differential dispersion compensation mechanism
that arises from the intrinsic condensed matter elementary
excitation spectrum. A recent study [22] has shown that
Bogoliubov dispersion may be able to compensate a residual
optical phase mismatch over a broad range of propagation
directions. Thus, coherent propagation gain can be achieved in
nearly all directions within the medium as long as the medium
is fully illuminated by the pump field. In other words, THG is
automatically optical-matter-wave phase matched in nearly all
directions. It is the condensate’s aspect ratio that determines
the most efficient propagation direction having maximum gain.
This is a very unique and remarkable feature that has no
correspondence in normal gases, where coherent propagation
gain, if allowed, can only occur efficiently in the direction that
achieves the maximum overlap with the pump fields. In the
following we examine propagation-based interference effects
in normal and quantum gases.
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A. The case of a normal gas

In a normal gas with the above-described two-level model,
the atomic response and THG wave equations can be expressed
as [2]

∂ρ41

∂t
= i�4ρ41 + i

(
�

(3)
41 ei3kLz + �41 eikTHGz

)
, (1a)

∂�41

∂z
= iκ14ρ41 e−ikTHGz, (1b)

where κ14 = ω2
THG|d14|2/(2ε0c

2kTHG), with d14 being the
dipole matrix element for the one-photon |4〉 ↔ |1〉 transition.
The complex THG detuning is �4 = δ4 + �D + i�4, with
δ4 = 3ωL − ω41 = ωTHG − ω41, �D , and �4 being the laser
detuning from the upper electronic state, the Doppler shift,
and the Doppler broadened resonance linewidth of the THG
state |4〉, respectively. We have also assumed that |δ4| � �4.
More rigorously, the right side of Eq. (1b) should be integrated
over a velocity distribution, but we have neglected this since it
does not affect the main conclusion of the simplified treatment
presented here. �41(ωTHG) is the one-photon-coupling Rabi
frequency by the THG field. The total momentum-energy
mismatch, with nonresonant contributions from a foreign gas
included, can be expressed as

�K = �k − n0(ωTHG)
ωTHG

c
, (2)

where n0(ωTHG) is the index due to the foreign gas at the THG
frequency. The optical phase mismatch between the THG field
and the pump laser fields is given by

�k = n(ωL)
3ωL

c
∓ n(ωTHG)

ωTHG

c
, (3)

where ∓ denote forward or backward propagation of the THG
field (i.e., the THG field either co- or counter-propagates
with respect to the pump laser field). Equation (2) clearly
shows that the purpose of the foreign gas is to provide
a dispersion compensation to the optical phase mismatch.
Indeed, in the forward direction this can lead to �K ≈ 0 so that
efficient propagation gain is supported in the forward direction
(see below).

In time-Fourier transform space, the THG field amplitude
can be obtained from Eqs. (1a) and (1b),

�41(z; ω) = −�
(3)
41 (0 ; ω)

[
ei�Kz − e−iκ14z/(�4+ω)

1 + �K(�4 + ω)/κ14

]
, (4)

where �41 and �
(3)
41 are the Fourier transforms of �41 and �

(3)
41 ,

respectively, and ω is the transform variable.

1. Forward generation

In the forward direction, phase-matched THG can be
achieved for |δ4| � �4, where |�k| 
 k, and the phase
mismatch can be compensated through the use of a foreign
buffer gas, resulting in �K ≈ 0. On the other hand, under
nearly resonant excitation (|δ4| ∼ �4) at elevated concen-
trations, or after a sufficient propagation distance z, the
dominant consequence of a Doppler broadened linewidth is
that Re[e−iκ14z/(�4+ω)] 
 1. This is the regime where [see
Eqs. (1a) and (4)]

�41 ≈ −�
(3)
41 , and ρ41 → 0, (5)

FIG. 2. (Color online) Top: Hydrogen gas. Plot of Eq. (4) for
forward emission (left), where optical phase matching �K ≈ 0 is
satisfied (by adding a foreign buffer gas), and backward emission
(right), where �K ≈ 6kL, which cannot be compensated with a
foreign buffer gas. The sample length is L = 1 cm and kL = 2π/λL,
with λL ≈ 363 nm. The density of the gas is about 1015 cm−3. Bottom:
Rubidium vapor. Plot of Eq. (4) for forward emission (left), where
optical phase matching �K ≈ 0 is satisfied through the use of a
foreign buffer gas, and backward emission (right), where �K ≈ 6kL,
which cannot be compensated with a foreign buffer gas. The sample
length is L = 1 cm and kL = 2π/λL, with λL ≈ 2340 nm. The density
of the vapor is 1013 cm−3.

indicating that a three-photon destructive interference has
occurred and the production of the forward THG field and
scattering cease to grow (Fig. 2).

2. Backward generation

In backward THG, �k is very large and it cannot be
compensated for by the dispersion contribution of the foreign
gas. This large �K leads to fast oscillations that preclude any
efficient THG. In other words, there is no efficient coherent
propagation gain for the backward THG process (Fig. 2).

B. The case of a quantum gas

As discussed in Sec. I, it has recently been shown
that Bogoliubov dispersion arising from condensed matter
physics can perfectly compensate the optical-matter-wave
phase mismatch in nearly all propagation directions even for
a single-component quantum gas. This may lead to the naive
conclusion that the above-described three-photon destructive
interference will also occur in quantum gases in both the
forward and the backward directions. However, as we show
below, the nature of fundamental excitations also brings a
detrimental impact to directional propagation gain through the
condensed matter structure factor. In fact, this structure factor
impacts the coherent propagation gain much more severely
than the requirement of optical-matter-wave phase matching.

There is an additional complexity in quantum gases of
the atomic center-of-mass (CM) motion, which is completely
negligible in a normal gas. In fact, the atomic CM motion plays
a critical role and fundamentally changes the characteristics of
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coherent propagation gain for the THG field [26]. In a normal
gas the CM motion of the atoms is completely negligible com-
pared to the large thermal velocity distribution. By contrast,
in quantum gases the atomic CM is the dominant feature and
therefore must be properly taken into consideration theoret-
ically. We show below mathematically that zero net atomic
momentum transfer (also referred to as zero quasimomentum
of elementary excitations), while ensuring perfect optical-
wave phase matching for forward THG, results in a strong
suppression of the forward wave mixing process because the
condensate structure factor directly enters the coherent prop-
agation gain coefficient. Thus, simply ensuring light-matter-
wave phase matching, as considered in typical nonlinear optics,
is no longer sufficient. Properties originating from condensed
matter physics now bring about new mechanisms that can
significantly impact the light generation process. Indeed, in a
quantum gas nonlinear optics and condensed matter physics
become intimately coupled and intriguingly intertwined.

In a quantum gas the material equation, corresponding to
Eq. (1a) in a normal gas, must be obtained from the Gross-
Pitaevskii equation [27] with material density fluctuations
included. Instead of the usual atomic wave function ψ =∑

j aj (t) e−iωj t |j 〉, the condensate atomic mean-field wave
function is given by [27–29]

�(r,t) = eiμt�0(r) + eiμt [u(r,t) ei(q·r−ωqt)

+ v∗(r,t) e−i(q·r−ωqt)].

Here, �0(r) is the ground-state condensate wave function
in the absence of external fields, and μ = g|�|2 is the
chemical potential. In addition, h̄ q and h̄ωq = h̄2q2/2M are
the quasimomentum and the corresponding atomic CM recoil
energy induced by the light scattering process, respectively.
This atomic wave function, when inserted into the Gross-
Pitaevskii equation, yields the following two material exci-
tation equations of motion that are equivalent to Eq. (1a), but
with u and v characterizing the material density fluctuations
induced by the light fields [22]:

∂u

∂t
= −γ0u + i(ωqu − Au − Bv − β∗�0e

−iξ ), (6a)

∂v

∂t
= −γ0v + i(ωqv + Av + Bu + β∗�0e

−iξ ). (6b)

In Eqs. (6a) and (6b) A= h̄q2/2M + VT (r) + 2g|�0|2/h̄ − μ,
B = g�2

0/h̄, and μ = g|�|2/h̄ is the system chemical poten-
tial. β = �THG�

(3)∗
P /�4 is the effective three-photon excita-

tion Rabi frequency, with �THG and �P being the generated
and pump-field Rabi frequencies [corresponds to �41(ωTHG)
and �

(3)
41 (ωL) in the normal gas section]. Furthermore, VT (r)

is the quantum gas trapping potential, g = 4πh̄2aS/M , with
aS and M being the s-wave scattering length and the atomic
mass, respectively. We have also introduced a multiphoton
motional-state resonance linewidth γ0 which characterizes
the damping of elementary excitations. This quantity plays a
critical role in high-efficiency wave generation in condensates.
For the case of the two-photon process this motion-state reso-
nance line width has already been measured experimentally
using the two-laser-beam, coherent motion-state excitation
method [30].

It is important to point out that ξ = (q − �k) · r + (�ω −
ωq) t , with �k = ∑3

j=1 kLj − kTHG and �ω = ∑3
j=1 ωLj −

ωTHG being the usual optical-wave phase mismatch. This is a
generalized phase-matching condition that encompasses both
optical waves and elementary excitations.

Before proceeding to the calculation of the coherent
propagation gain of the THG field, we briefly comment on
the approximations used in the above derivations. In general,
the Bogoliubov expansion contains a summation over all possi-
ble excitation modes, i.e., (u,v) → (un,vn). However, there are
several reasons why keeping only a dominant (fundamental)
excitation mode as we did is reasonable. First, there is a
dominant fundamental Bogoliubov mode that corresponds to
the most effective scattering as selected by the gain process
and momentum purification process [31]. Other modes do not
effectively utilize the high density near the axis and therefore
will have much smaller gains. Second, for a uniform gas the
dominant momentum transfer is along the long axis and the
lowest excitation treatment along this axis is sufficient from
both local density approximation and eikonal approximation
points of view [28]. Most importantly, however, is the fact
that with more quasiparticles included one arrives at a set
of linear equations similar to Eqs. (6a) and (6b), but this
does not introduce any substantial new physics that can alter
the conclusion of the treatment. Rather, it only obscures the
understanding of the fundamental physical principle. In fact,
in a first-order treatment of density fluctuation that is most
relevant to light scattering the inclusion of more quasiparticles
modes does not lead to any new physics except for an
effective correction to the Bogoliubov energy spectrum ωB

(see below) of the primary excitation. Because of the wave
propagation gain, this correction can be thought of as a narrow
distribution around the sharp fundamental excitation mode we
have treated. The key new finding of a resonant denominator
by the Bogoliubov excitation remains the same except now this
resonance has a small width due to a few nearby spectroscopic
excitations. In fact, the angular distribution shown in our work
partially reflects this perspective. Thus, it is very reasonable to
concentrate on only the most dominant excitation and include
a smaller distribution effect. This, by far, gives a clear picture
of the underlying physical principle of the process. That is,
the Bogoliubov excitation can compensate optical momentum
mismatch, leading to an efficient generation in directions that
are not possible in a normal gas.

We note that in all BEC studies where absorption imaging
is employed for state analysis, the trap is always turned off
right after the light is extinguished. There is a well-defined
momentum transfer in this trap-off BEC before the time
of flight method which allows momentum analysis can be
used.

To first order and within the local density approximation
[28] the transverse derivatives with respect to the radial
coordinates only result in a small shift in the Bogoliubov
energy spectrum and hence can be neglected. Furthermore,
the derivative along the long axis is also small since the
density distribution along the long axis is approximately
constant. This is also the case even with the eikonal
approximation [28].

To calculate coherent THG propagation effects in a quan-
tum gas, we consider the Maxwell equation governing the
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coherent propagation growth of the THG field [23]:

i

(
∂

∂z
+ 1

c

∂

∂t

)
ETHG + 1

2kTHG
∇2

⊥ETHG = PTHG. (7)

In this case the polarization source term now includes
electronic contributions [the right-hand side of Eq. (1b)] and
atomic CM contributions from the quantum gas:

PTHG = SNG + SQG,

= −h̄

(
κ14

d41

)[
�

(3)
41 ei�kz−i�ωt + �41

�4

]
|�0|2

− h̄

(
κ14

d41

)[
�

(3)
41

�4

]
(u∗ + v∗)�0e

−iξ . (8)

Here �4 = δ4 + iγ4, with γ4 being the natural linewidth of
state |4〉 (no Doppler broadening is present in a quantum
gas). Typically, |δ4| � γ4, so that γ4 can be neglected.
Equations (6)–(8) correspond to Eqs. (1a) and (1b).

Following steps similar to those used in deriving
Eqs. (1)–(4) for the normal gas and substituting Eq. (8) into
Eq. (7), we obtain the total THG in the time–Fourier transform
domain as

�41(z; ω) = �41(z; ω)NG + �41(z; ω)QG

≈ −�
(3)
41 (0; ω)

[
ei�kz − e−iκ14z/(�4+ω)

1 + �k(�4 + ω)/κ14

]

+�
(0)
41 exp

[
i

κ|�0|2S(q)z

ωB − �ω + ω + iγ0

]
. (9)

Here �
(0)
41 is the initial vacuum photon at the THG frequency

propagating along the direction of highest optical density. In
addition, κ = κ14|�(3)

41 |2/|δ4|2 [32].
Under the lowest-order approximation with a uniform total

trapping potential (sum of magnetic trapping and mean-field
potentials), where VT = 0 and g|�0|2/h̄ = μ [see Eq. (6)], the
condensate structure factor S(q) and Bogoliubov elementary
excitation spectrum ωB are given by the Feynman relation
[28,33–35]:

S(q) = h̄q2

2MωB(q)
, ωB(q) =

√
h̄q2

2M

(
h̄q2

2M
+ 2g|�0|2

h̄

)
.

The first term in Eq. (9) is exactly Eq. (4) for a normal
gas with an added linear absorption but, without any buffer
gas, represents the usual electronic contribution. Note that
�k = 3kL − kTHG and �ω = 3ωL − ωTHG represent the usual
optical-wave phase mismatch for the THG process in the
absence of a foreign buffer gas. Without any buffer gas
to assure optical phase matching, �kz is large even for a
condensate only 100 μm in length. This results in a fast
oscillation that diminishes contributions of electronic origin
regardless of whether the THG is colinear or anticolinear with
respect to the pump field. Thus, the first term is negligibly
small and can be neglected.

The second term in Eq. (9) arises from the condensed matter
physics of quantum gases and it is this term that gives rise
to new physics. We note that mathematically the generalized
phase-matching condition, ξ = (q − �k) · r + (�ω − ωq) t ,
cancels out identically, indicative of automatic phase match-
ing, which is a well-known feature of Raman and hyper-Raman

wave mixing processes. We further point out that there is a
resonance denominator that relates the Bogoliubov elementary
excitation of condensed matter physics and the energy relation
of the optical fields. This feature is the foundation of the new
physics that we refer to as light-wave mixing with quantum
gases. The physical meaning of this contribution from the
quantum gas is that the quasimomentum transfer q and
associated elementary excitations will lead to a Bogoliubov
dispersion that compensates the energy deficit between the
fields involved, resulting in ωB = �ω and, thus, a resonance
in the THG gain. While this new Bogoliubov-excitation-based
resonance appears to support highly efficient THG gain in any
direction, limited only by the optical depth, we show below
that the properties arise from condensed matter physics also
significantly impact the wave mixing and propagation process,
resulting in efficient coherent gain of the THG field only in the
backward direction, which, in the case of a normal gas, is not
allowed even in the presence of a dispersion-compensating
foreign buffer gas. This fascinating physics has no counterpart
in a normal gas.

Contrary to the diminished electronic contribution (i.e.,
normal gas part), the contribution from the quantum gas has
a very different nature. Because of the lack of a foreign gas,
a finite CM quasimomentum transfer to the atom is required
so that Bogoliubov elementary excitations lead to ωB = �ω.
Thus, Eq. (9) gives

�41(z; ω) ≈ �
(0)
41 exp

[
κ|�0|2S(q)z

γ0

(
1 + i

ω

γ0

)]
, (10)

where we have assumed a long pump pulse length τ so that
γ0τ � 1. It is important to point out that when S(q) → 1
and γ0 → γ2ph (where γ2ph is the two-photon motional state
resonance line width), Eq. (10) reduces exactly to the result
derived in [36] and [37] for the case of two-photon backward
scattering, as it should. Equation (10) is profoundly different
from that of a normal gas [see Eq. (4)] in two aspects:

(1) The THG field increases linearly in a normal gas,
whereas in a quantum gas it grows exponentially. In fact,
in quantum gases, where atomic CM recoil motion is a
pronounced feature, all wave mixing processes become Raman
or hyper-Raman in nature [2,12–15].

(2) In the case of |δ4| � �4, the THG field can only be
efficiently generated in the forward direction in a normal gas
with a dispersion compensating foreign gas. In a quantum
gas, however, phase matching is automatically satisfied as
a consequence of the hyper-Raman gain described above,
and the condensed matter Bogoliubov dispersion leads to
a resonant denominator that allows efficient generation in
nearly all directions, limited only by the condensate structure
factor (see discussion below) and consideration of the optical
depth.

While the first aspect above can be easily understood
from the leading term in Eq. (10), the second aspect requires
understanding features rooted in condensed matter physics.
On the surface, it appears that forward generation should be
favored in a quantum gas. However, closer study reveals that
condensed matter physics plays a unique role and significantly
impacts this nonlinear optical process. We show here that
although forward scattering is automatically phase matched
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FIG. 3. (Color online) (a) Plot of condensate structure factor for
H and Rb (at two densities). (b) Derivatives of the structure factor
as a function of quasimomentum transfer. The solid curve is for
hydrogen at a density of about 1015 cm−3. The dash-dotted curve is
the structure factor of a rubidium condensate having the same density
as the hydrogen condensate. The dashed curve is the structure factor
of a rubidium condensate with a density of 1013 cm−3.

and propagates in the direction of greatest optical depth, it
is actually strongly suppressed by the condensate’s structure
factor S(q), which appears in the coherent propagation gain
coefficient seen in Eq. (10). From condensed matter physics, it
is known that the structure factor changes dramatically when
the quasimomentum transfer of the elementary excitation is
significantly reduced (see Fig. 3).

C. Forward generation

When the THG field propagates colinearly with respect
to the pump field, q ≈ �k = ∑3

j kLj − kTHG �= 0, but it is
small. This residual momentum transfer arises because of
the differential dispersion between the pump and the THG
fields (the actual size of this quasimomentum depends on
the THG detuning). For the very small q in Fig. 3, it is
shown that this small residual quasimomentum by photon
exchange during the THG process leads to a drastic reduction
in S(q), which significantly quenches the gain coefficient. In
this regime of small quasimomentum transfer the scattering
is not free-particle-like and the dramatic reduction of S(q)
directly impacts the new optical-field generation and coherent
propagation processes.

It can also be seen that the structure factor of a hydrogen
BEC rises much more rapidly than a rubidium BEC as a
function of q. In addition, for high harmonic generation, the
residual quasimomentum transfer is dictated by the energy
of the mixing wave photons. Consequently, one expects
that forward suppression in a hydrogen BEC is much less
pronounced than in a rubidium BEC because eventually there
will be small fraction of forward emission that becomes
amplified. This is one of the many unique aspects of quantum
gases that has no correspondence in a normal gas.

We further point out that in the forward direction S(q)
also significantly affects the ultraslow group velocity of the

THG field. This results in a rapid increase in group velocity as
the momentum transfer decreases, and this further reduces
the gain. This negative feedback in the forward emission
process vividly demonstrates the important dynamic role
played by the SFG field. We emphasize, however, that the
forward suppression described here is fundamentally different
from the forward THG suppression shown in Eq. (5) or the
hyper-Raman suppression in a normal gas [2,12–15]. The
former requires a foreign gas for dispersion compensation to
achieve dynamic excitation suppression, whereas the latter
requires a separate wave mixing channel (different excitation
pathway) for destructive interference. Both, however, do not
invoke condensed matter physics. In the case of a quantum gas
the suppression arises solely because of the condensed matter
properties of the medium.

D. Backward generation

When the THG field propagates anticolinearly with re-
spect to the pump fields, q ≈ �k = ∑3

j=1 kLj + kTHG is very
large. The corresponding Bogoliubov energy is predominately
h̄ωB ≈ h̄2q2/2M , and this renders the scattering process free-
particle-like. Under this condition S(q) → 1, and maximum
light-wave gain and collective atomic recoil motion are
achieved [see the limit of large q in Fig. 3(a)]. Thus, contrary
to a normal gas, where backward generation is not supported
even in the presence of a foreign gas, backward generation in
a quantum gas is the most efficient process and it even benefits
by propagating along the largest optical depth of the systems
studied in this work.

III. COMMENT ON THE TWO-PHOTON
RAMAN-RAYLEIGH SCATTERING PROCESS

Before presenting numerical examples of THG in quantum
gases, we comment on two-photon Raman-Rayleigh scattering
processes, which have been widely studied over the past
15 years. Generally speaking, these studies can be classified
into two categories, based on the methodologies used. The
first class includes studies where light-matter interactions are
considered from a nonlinear optics viewpoint [36–53]. In such
treatments the dipole approximation in the light-matter inter-
action Hamiltonian is widely used, and the atomic mean-field
wave function is described by the Gross-Pitaevskii equation.
The propagation of the scattered field is treated by Maxwell’s
equation analytically [36,37] and numerically [45,50–53].
While these theories can correctly predict the momentum
components of the scattered atoms [36–53], the overall time
gain [38–53], and the scattered-photon propagation gain
[36,37], they completely neglect fundamentally important
contributions by condensed matter physics. Indeed, none of
these theories can predict the suppression of the forward-
scattered field precisely because such prominent features of
the process originate from condensed matter physics.

The second class of studies focuses primarily on the con-
densed matter physics of the atomic response [28,29,33,34,49].
In these treatments the condensate structure factor and related
condensed matter quantities are studied from a fundamental
excitation viewpoint, but the generation and propagation of
the electric field are neglected. Although these theories have
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provided important understandings of the light-matter interac-
tion from the perspective of condensed matter physics, they
cannot explain very important features of the scattered light
field, simply because they do not treat coherent propagation
growth of the scattered field. One primary example of the
pitfalls of such a condensed matter treatment is its failure to
explain the underlying physics behind the forward-scattering
process. Even though q �= 0 in the forward direction in a
multiphoton wave mixing process such as THG because of
the differential dispersion, q ≡ 0 does occur in the case of a
two-photon Raman scattering process since both the photon
momentum and the dispersion relation are automatically
conserved and phase matched. We emphasize, however, that
the simple hand-waving argument of zero quasimomentum
transfer to atoms in such a superinelastic scattering process,
while resulting in a reduction in atom scattering (i.e., no atomic
CM motion) by the reduced condensate structure factor, is not
a sufficient argument [33]—nor is any condensed matter argu-
ment that is solely based on momentum-energy conservation
[49] for the suppression of forward light generation. In fact, in
a normal gas in such a geometry where negligible atomic CM
motion occurs, the wave generation and propagation process
shows the highest efficiency. Suppression of the scattered field
by the structure factor arising from Bogoliubov excitations in
such a perfect photon momentum conservation case can only
be obtained by solving Maxwell’s equation for the scattered
field with the explicit atomic density treatment as demonstrated
by Eqs. (6)–(10) and, also, in Ref. [22]. Only this theory, which
combines nonlinear optics with condensed matter physics,
can provide an accurate description of the underlying physics
of light-matter interactions in the context of quantum gases.
Indeed, it is this combined new theory that underscores the im-
portance of the term “nonlinear optics ‘with’ quantum gases”.

IV. NUMERICAL EXAMPLES

The rest of this work focuses on presenting two numerical
examples. First, we consider a hydrogen condensate of length
L = 5 mm with a transverse Thomas-Fermi radius of r0 =
10 μm containing of the order of 109 atoms [54]. We take
g/h̄ = 1.64 × 10−17 m3 s−1 (corresponding to a scattering
length of aS = 0.41a0), γ0/2π = 6 kHz, and d14 = 6.38 ×
10−30 C m. The pump laser power is chosen such that the
three-photon pump rate R(3)/2π = γ4|�(3)

L |2/[4(δ2
4 + γ 2

4 )] ≈
45 Hz. Accordingly, the pump laser wavelength should be
λL1 = λL2 = λL3 = λL ≈ 363 nm. In Figs. 4(a) and 4(b) we
show forward and backward THG in a hydrogen condensate.
In this case the 2P -state linewidth is about γ2/2π = 625 MHz,
and we have chosen δ4/2π ≈ −2 GHz. This leads to a small
nonlinear index change which results in a much smaller
q ≈ 3kL − kTHG in the forward direction. Correspondingly,
S(q) 
 1 for hydrogen condensates, and therefore a very
strong suppression of forward THG [Fig. 4(a)] is expected.
In the backward direction q is necessarily large, resulting in
S(q) →1 and maximum THG [Fig. 4(b)].

It is interesting to point out the substantially narrowed
THG-field transverse spread. Initially, the THG transverse dis-
tribution is dictated by the initial Thomas-Fermi distribution,
which was numerically evaluated by solving the stationary
Gross-Pitaevskii equation (solid line in Fig. 4). As the THG

FIG. 4. (Color online) Plot of forward (a) and backward
(b) emissions in a hydrogen condensate and forward (c) and backward
(d) emissions in a rubidium condensate. The vertical axis denotes the
photon numbers of the THG normalized with respect to the backward
generation of the corresponding condensate. The curves represent
the initial field distribution, which mimics the initial distribution
of the condensate obtained by numerical solution of the stationary
Gross-Pitaevskii equation. The significant narrowing of the THG
transverse distribution in both backward emission processes signifies
the hyper-Raman gain an with inhomogeneous density distribution.

propagates in a condensate which has an inhomogeneous
density distribution, the THG field grows more rapidly than a
simple exponential gain, causing significant narrowing of the
THG-field transverse distribution. This is unique to gaseous
phase BECs since the atomic CM motion is a dominant feature.
Indeed, it has been shown that the rapid narrowing, and
therefore faster-than-exponential-gain growth characteristics,
of the THG field leads to a significant transverse compression
for red-detuned, long-pulsed pump fields. Under such a strong
compression effect atoms can move appreciable distances
during the duration of the pump pulse, resulting in further
increase in the density near the center along the long axis
where THG is most intense. Consequently, the THG field
grows even more rapidly where the density is highest. This
positive-feedback mechanism for THG production is unique
to quantum gases such as a BEC, and it has no counterpart in
nonlinear wave generation processes in normal gases.

In the second example we consider a rubidium condensate
of length L = 140 μm, with a transverse Thomas-Fermi radius
of r0 = 10 μm, containing about 106 atoms. Here, we take
g/h̄ = 4.85 × 10−17 m3 s−1 (corresponding to a scattering
length of aS = 100a0), with d14 = 3.4 × 10−29 C m. The
pump laser power is chosen so that the three-photon pump rate
is R(3)/2π = γ4|�(3)

L |2/[4(δ2
4 + γ 2

4 )] ≈ 20 Hz. Accordingly,
the pump laser wavelength should be λL1 = λL2 = λL3 =
λL ≈ 2340 nm. In Figs. 4(c) and 4(d) we show forward and
backward THG in such a rubidium condensate. In this case the
5P -state linewidth is about a factor of 100 times narrower than
the 2P state of hydrogen. This permit the significantly smaller
THG detuning of δ4/2π ≈ −30 MHz (γ4/2π ≈ 6 MHz). The
corresponding nonlinear index change is fairly large, and this
results in a quasimomentum change that is larger than in
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the case of hydrogen in the forward direction. However, the
suppression due to the corresponding S(q) is still substantial
[Fig. 4(c)]. Using the above parameters, we found that there
are about 500 times fewer photons generated in the forward
direction compared to the number of THG photons generated
in the backward direction, where q is very large and S(q) →1
results in the highest gain [Fig. 4(d)]. Note that the THG
transverse distribution is again narrowed significantly, but it
is still a bit broader than in the case of hydrogen. This occurs
because the density of the rubidium condensate is lower than
that of the hydrogen condensate.

Before we present our conclusions, two important aspects
must be pointed out and addressed. First, the “backward”
emission and generation discussed in this work are the result
of the chosen pumping geometry, in which the pump laser
propagates colinearly with respect to the condensate’s long
axis. In general, the direction of the enhanced emission of
Raman or THG is determined by the orientation of the
condensate’s long (high-gain) axis, even if the pump laser
propagation direction is not aligned with the long axis. In such
cases the maximum gain direction is not in the “backward”
direction with respect to the pump laser but, rather, along the
long axis of the condensate. However, without a large aspect
ratio, and therefore an advantageous direction for maximum
gain, the new field will be generated in all directions without
the advantage of a momentum-state purification process [31].
In such cases, the generated light will have the full randomness
and fluctuations of a spontaneous Raman or hyper-Raman
radiation process.

Second, there is a view point that attempts to argue that
the treatment presented here, and its two-photon analog,
are just simply Bragg scattering. This viewpoint which is
often put forth to support the concept of “matter-wave
superradiance” [31], first artificially renames (EL)3 as Eeff

and then argues that, because the Hamiltonian of the THG
process can be simplified into a bilinear product of two
electric fields as (EL)3E∗

TH = EeffE
∗
TH, therefore the process

is just Bragg scattering. We emphasize that such arguments are
fundamentally incorrect: (a) traditional Bragg scattering does
not invoke coherent propagation growth, nor does it include
the initial quantum fluctuations of the system; and (b) the
bilinear field operator format appears in many disciplines of
physics such as optical physics, condensed matter physics,
high-energy physics, and even astrophysics. Even in the optical
field, according to this superficial Bragg-scattering-for-all
“classification”, Raman scattering and a four-wave mixing
process appear to have the “same” bilinear electric-field
format, i.e., E1E

∗
R and E1E2E3E

∗
TH = EeffE

∗
TH. However, it

is well known that these two processes have very different
quantum fluctuation, coherence, and even propagation gain
characteristics. It is incorrect to claim that Raman scattering
and four-wave mixing are just Bragg scattering processes, and
it is false to claim that if Hamiltonians share a similar format
after some meaningless operator regrouping, they therefore
represent the same physics.

V. CONCLUSION

In conclusion, we have presented a detailed study of
nonlinear optical processes in the presence of a quantum gas.
We have shown that, unlike the case of a normal gas, where
the medium passively participates in the nonlinear optical
process, a quantum gas actively interacts with the light-field
generation and propagation process by exerting and enforcing
effects arising from condensed matter physics. This leads to
intriguing new features, such as suppression or enhancement
of directional wave generation processes, which have no
correspondence in a normal gas. This opens a new chapter
on light-matter interactions that we refer to as nonlinear optics
with quantum gases. Indeed, most nonlinear optical effects
with normal gases must be re-examined in the context of
quantum gases, where condensed matter physics can lead to
novel effects never before realized.
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