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Principles of an atomtronic battery
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An asymmetric atom trap is investigated as a means to implement a “battery” that supplies ultracold atoms
to an atomtronic circuit. The battery model is derived from a scheme for continuous loading of a nondissipative
atom trap proposed by Roos et al. [C. F. Roos, P. Cren, D. Guery-Odelin, and J. Dalibard, Europhys. Lett. 61,
187 (2003)]. The trap is defined by longitudinal and transverse trap frequencies fz and f⊥ and corresponding trap
energy heights Uz and U⊥. The battery’s ability to supply power to a load is evaluated as a function of an input
atom flux and power, Iin and Pin = Iin(1 + ε)Uz, respectively, where ε is an excess fractional energy. For given
trap parameters, the battery is shown to have a resonantly optimum value of ε. The battery behavior can be cast in
terms of an equivalent circuit model; specifically, for fixed input flux and power the battery is modeled in terms of
a Thévenin equivalent chemical potential and internal resistance. The internal resistance establishes the maximum
power that can be supplied to a circuit, the heat that will be generated by the battery, and the noise that will be
imposed on the circuit. We argue that any means of implementing a battery for atomtronics can be represented
by a Thévenin equivalent and that its performance will likewise be determined by an internal resistance.
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I. INTRODUCTION

Atomtronics is an analog of electronics in which chemical
potential and atom flux are the duals to electric voltage and
current. Interest in atom-based devices and circuits is both
academic and practical. It is of fundamental interest, for
example, to study ideal atom-based semiconductor material
and device analogs that can be implemented using optical
lattices. On the practical side, atomtronics is of interest for
ultracold–atom-based systems for inertial and magnetic field
sensing and more generally for quantum signal processing. The
analogy between electronics and atomtronics is sufficiently
complete that it is reasonable to consider the development
of atomtronic circuits that resemble electronic versions but
operate with atoms and often in the quantum regime. In the past
few years there has been considerable interest in theoretical
analysis and experimental realization of elements of such
circuits, such as atom diodes, transistors, etc. [1–9].

Circuits require a supply of energy to operate, of course. Our
objective in this paper is to elucidate some fundamental aspects
of the atomtronic dual of an electronic power supply—call it
simply a “battery.” We think of a battery as a self-contained
component that supplies both power and particles to a load. In
our case, the particles are ultracold atoms.

From a physics perspective a battery can be assessed in
terms of its ability to perform work. An idealized electrical
battery maintains a voltage across its terminals, the value of
which is independent of the load attached to its terminals. A
real battery, however, has an internal resistance that causes the
voltage across the battery’s terminals to drop when current is
supplied to the load. Moreover, as the battery supplies current,
power is also dissipated as heat in the internal resistance. The
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notion of a battery as a component encapsulates its electrical
function without regard for the electrochemistry that takes
place “under the hood,” so to speak. An electronic battery
has some value of internal resistance no matter what the
details of its electrochemistry; in fact, so does any supply
of electrical power, chemically based or other. Knowing
enough about the underlying chemistry, physics, circuit design,
etc., one could determine the internal resistance, at least in
principle.

One should expect that, true to its electronic analog, an
atomtronic battery will necessarily have internal resistance,
and like the electronic case, the battery potential and internal
resistance determine the maximum power Pmax that can be
delivered to a load, the noise (the atomtronic equivalent of
Johnson noise [10]) generated by fluctuating current in the
internal resistance operating at finite temperature, and the
heat dissipated by the internal resistance. In the ultracold and
quantum realm of atomtronics, one can appreciate that these
aspects of the atomtronic battery and their impact on circuit
behavior are of considerable interest.

In the following section we analyze a specific physical
model for an atomtronic battery. Keeping in mind that the
battery’s job is to supply power, our nominal intent is to
characterize the dependence of chemical potential and the
ability to provide ultracold atom flux to a load on the model’s
parameters. As a circuit element we show that the battery
can indeed be represented in terms of a Thévenin equivalent
chemical potential and an internal series resistance, given a
fixed set of model parameters. While the analysis and results
are specific to our model, the general conclusion is not: an
element or subcircuit that supplies power to an atomtronic
circuit will be accompanied by an internal resistance that
generates heat, introduces noise, and limits the power available
to the load regardless of the operational physics.
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II. BATTERY MODEL

Our battery model is derived from a scheme for continuous
loading of a nondissipative atom trap proposed by Roos
et al. in Ref. [11]. The work analyzes a highly asymmetric,
cigar-shaped trapping potential subject to an incoming beam
of cold atoms. Figure 1 provides a conceptual illustration of
the scheme. Atoms enter the trapping region from the −z

(longitudinal) direction. The height of the trapping potential
along this direction is Uz and the mean energy of the beam
is (1 + ε)Uz. A heightened potential at the far end prevents
atoms from escaping out the +z direction. Atoms from the
beam are captured by undergoing collisions with the atoms
already present in the trap. Cooling of the trapped atoms is
provided by their evaporation through the side walls and end
cap of the trapping potential. The heights of the trap along the
transverse and longitudinal directions are equal to U⊥ and Uz,
respectively, with U⊥ > Uz. The confinement frequency f⊥
along the two transverse dimensions x and y is much larger
than that along the z axis: f⊥ � fz. Since the beam enters the
trap along its longitudinal dimension, which has low frequency,
and, as a consequence, large size, it is completely absorbed in
the trap due to collisions with the atoms inside.

The trap is populated by a cloud of Nex thermal atoms
in contact with Na Bose-condensed atoms. The dynamics of
noncondensed atoms in the trap is described by the following
set of equations (cf. [11]):

dNex

dt
= Iin − (p⊥ + pz)γNex − Il, (1)

dEex

dt
= Iin(1 + ε)Uz − pz(Uz + κzkT )γNex

−p⊥(U⊥ + κ⊥kT )γNex − μaIl. (2)

Here Nex and Eex are the number and energy of the thermal
atoms in the trap, Iin is the flux of incident atoms, γ is the
average collision rate, and pz and p⊥ are the probabilities
of evaporating after collision through the side and end walls
of the trap. The quantity (1 + ε)Uz is the average energy per
incident atom; U⊥ and Uz are the evaporation thresholds for
the perpendicular and longitudinal direction, respectively, and

FIG. 1. (Color) The highly asymmetric battery potential, some-
what resembling a gravy bowl. Atoms enter along the longitudinal
direction into the pour spout of the bowl. They scatter from the
cloud of already trapped atoms, eventually reaching an equilibrium
distribution and number as they also escape out the sides and input
direction.

κ⊥kT and κzkT determine the excess average energy per atom
carried away during evaporation through the side or the z

direction. Finally, Il is the rate of decrease or increase of
the number of noncondensed atoms due to their interaction
with the Bose-Einstein condensate (BEC). It is given by the
expression [12]

Il = (8π )2m(askT )2

h3

μex − μa

kT
Na, (3)

where μa and μex are chemical potentials of the BEC and the
thermal atoms in the well, m is the atomic mass, and as is the
s-wave scattering length. Equation (3) is written in the limit
μa,μex � kT . In the steady-state analysis carried out below, Il

is the current supplied to a load attached to the battery. In other
words, we presume that the elements attached to the battery
extract condensed atoms at the rate Il . The outcoupling of BEC
atoms can be achieved, e.g., using radio-frequency-induced
[13] or stimulated Raman [14] transitions. Equation (3) can be
written in the form of an Ohm’s law:

Il = μex − μa

Ra

, (4)

where

Ra = h3

(8π )2ma2
s NakT

. (5)

We shall see that Ra contributes to the total internal
resistance of the battery.

The BEC in the well is in the Thomas-Fermi regime. In the
case of a parabolic well, its chemical potential is given by the
expression

μa = 152/5

2

(
Naas

ā

)2/5

hf̄ , (6)

where f̄ = (f 2
⊥fz)1/3 and a = (h/4π2mf̄ )1/2.

The energy of the thermal atoms is given by the expression

Eex ≈ 3
(kT )4

(hf̄ )3

[
ζ (4) + 3

μex

kT
ζ (3)

]
, (7)

where μex is the chemical potential of the thermal atoms
determined by the expression

μex

kT
≈ 1

ζ (2)

[
Nex

(
hf̄

kT

)3

− ζ (3)

]
, (8)

and ζ is the Riemann ζ function.
Following Roos et al. [11], we are assuming that the

evaporation in the transverse direction takes place in the col-
lisionless (Knudsen) regime f⊥ � γ ; i.e., an atom emerging
after a collision with an energy E larger than the transverse
evaporation energy U⊥ leaves the trap without undergoing any
more collisions. The evaporation in the longitudinal direction
takes place in the opposite limit fz � γ . This considerably
reduces the evaporation rate along the z axis as compared with
the rate derived in the collisionless regime for the same ratio
U/kT . Roos et al. [11] discovered that the presence of the two
evaporation channels results in a resonance in the steady-state
phase-space density of the thermal atoms when the transverse
evaporation threshold U⊥ is close to the incident energy of the
atomic beam (1 + ε)Uz.
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We adopt the expressions for the probability of evaporation
in the transverse and longitudinal directions derived in [11]
from molecular-dynamics simulations. The probability of
evaporation in the transverse direction p⊥ is given by the
relations

p⊥ � 2e−η⊥ , κ⊥ � 2.0, (9)

where η⊥ = U⊥/kT . Equations (9) are valid in the range
8 < η⊥ < 13.

The probability of evaporation in the longitudinal direction
pz are given by the relations

pz � 0.14e−ηz
fz

γ
, κz � 2.9, (10)

where ηz = Uz/kT . Equations (10) assume fz � γ and hold
in the range 4 < ηz < 7.

In the presence of the BEC the density of the thermal atoms
above the BEC is fixed at the level

nex(r) = 1

�3
ζ

(
3

2

)
. (11)

where

� = (h2/2πmkT )1/2 (12)

is the thermal de Broglie wavelength.
The mean collision rate γ in this case can be evaluated by

the relation

γ = 32π2ζ (3/2)
m(askT )2

h3
. (13)

III. STEADY STATE

In the following we consider steady-state solutions of
Eqs. (1) and (2):

Iin = (p⊥ + pz) γNex + Il,

Iin(1 + ε)Uz = pz(Uz + κzkT )γNex

+p⊥(U⊥ + κ⊥kT )γNex. (14)

Solutions of Eqs. (14) are analyzed for both zero and nonzero
values of Il , the last situation corresponding to the case in
which the BEC is outcoupled from the trap at the rate Il =
const. Since Uz � μa , the term with Il in the right-hand side of
the second equation in the set of Eqs. (14) has been neglected.
The set of Eqs. (14) can be transformed to the form

Nex = Iin − Il

(p⊥ + pz)γ
, (15)

(1 + ε′)Uz = pz

p⊥ + pz

(Uz + κzkT )

+ p⊥
p⊥ + pz

(U⊥ + κ⊥kT ), (16)

where

ε′ = ε + Il/Iin

1 − Il/Iin
. (17)

Equations (15) and (16) show that the nonzero rate of
outcoupling Il is equivalent to the situation with Il = 0 but
for a reduced flux of incident atoms Iin − Il and an increased
mean energy of the incident beam. The changes are such

FIG. 2. (Color online) Normalized temperature T/T0 versus
transverse evaporation threshold U⊥/kT0. Parameters are ε = 0.7
and γ0/2πfz = 100.

that the input power is constant, i.e., (Iin − Il)(1 + ε′)Uz =
Pin≡Iin(1 + ε)Uz.

The steady-state values of T and Nex given by Eqs. (15)
and (16) depend on the ratio of the transverse and the
longitudinal evaporation energies U⊥/Uz.

A convenient reference point is given by the values of the
temperature T0 and the population N0 in the limit U⊥ � Uz

and for zero value of the load:

kT0 = εUz

κz

, (18)

N0 = Iin

pz(T0)γ (T0)
. (19)

In particular, if pz is given by Eq. (10), Eq. (19) can be written
as

N0 = 1.14
Iin

fz

exp(κz/ε). (20)

A typical dependence of T and Nex on U⊥ for all other
parameters fixed is illustrated by Figs. 2 and 3. The number
of thermal atoms and the temperature in Figs. 2 and 3 are
normalized to T0 and N0 given by the relations Eqs. (18)
and (20), respectively. The parameters for Figs. 2 and 3

FIG. 3. (Color online) Normalized number of thermal atoms
Nex/N0 versus transverse evaporation threshold U⊥/kT0. Parameters
are ε = 0.7 and γ0/2πfz = 100.
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FIG. 4. (Color online) Resonant enhancement factor Nmax/N0

versus ε.

are ε = 0.7 and γ0/2πfz = 100. The optimum value of the
transverse evaporation threshold U⊥ is equal to about 1.7Uz

(the optimums for the temperature and the number of atoms
are slightly different).

Equation (18) shows that the temperature of thermal atoms
in the trap in the limit U⊥ � Uz is pretty much equal to the
excess energy εUz of the incident beam (the parameter κz is of
the order of 1). It seems that decreasing ε is the easiest way to
dramatically lower the temperature of the thermal atoms in the
trap, but the situation is not so simple. Atoms in the incident
beam have some characteristic thermal energy spread kTi. This
quantity should be of the order or smaller than the excess
energy εUz of the incident beam. In the opposite case kTi >

εUz, the excess energy of the beam entering the trap will be
determined not by εUz, but by the characteristic thermal width
of the beam kTi . The minimum temperature (optimized with
respect to U⊥) differs from its asymptotic value Eq. (18) by a
factor of 2, so the temperature of the atoms in the trap cannot be
significantly lower than the temperature of the incident atoms.
For example, in the analysis of Ref. [15], the temperature of
the incident atoms was 17 μK and that of the atoms in the trap
in the optimum regime was about 24 μK.

Changing ε has a much more dramatic effect on the number
of trapped atoms under the optimum conditions. Figure 4
shows the resonant enhancement factor Nmax/N0 for different

FIG. 5. (Color online) Normalized threshold incident flux
Ith/Ith,min versus transverse evaporation threshold U⊥/kT0.

FIG. 6. (Color online) Normalized minimum temperature
T (Il)/T0 versus load Il/Iin for a fixed value of U⊥.

values of ε. Here Nmax is the maximum number of atoms
corresponding to the optimum choice of ε. For example, Fig. 3
shows a resonant increase in the number of atoms of about 20
for ε = 0.7. Decreasing ε to 0.5 increases the ratio Nmax/N0

to 100 and decreasing ε to 0.3 increases Nmax/N0 to about
4 × 103. This behavior is explained by Eq. (15):

Nex = Iin

(p⊥ + pz) γ
.

The probabilities p⊥ and pz depend on the temperature
exponentially, and even, say, a two-fold decrease in the
asymptotic temperature T0 (due to a twofold decrease in
ε) strongly changes the number of atoms Nex and the
magnitude of the relative enhancement. Consider, for example,
pz ∝ exp(−Uz/kT ). Assume that the asymptotic value of
the temperature T0 and the optimum (i.e., the minimum)
temperature are different by about 2 times, i.e,. T = T0/2.
The asymptotic value of pz is proportional to exp(−Uz/kT0)
and the value at the optimum temperature is proportional to
exp(−2Uz/kT0). The ratio of these two exp(Uz/kT0) gives the
resonant enhancement in the number of atoms in the optimum
regime. This enhancement increases with a decrease in the
temperature T0.

FIG. 7. (Color online) Normalized maximum number of thermal
atoms N (Il)/N0 versus load Il/Iin for a fixed value of U⊥.
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FIG. 8. (Color online) Threshold incident flux Ith(Il)/Ith(0)
versus normalized load Il/Ith(0).

IV. CHEMICAL POTENTIALS

Above the BEC threshold, the chemical potential of the
thermal atoms is described by the expression Eq. (8), which
can be rewritten as

μex

kT0
= ζ (3)

ζ (2)

T

T0

[
Nex

N0

(
T0

T

)3
N0

ζ (3)

(
h̄f

kT0

)3

− 1

]
. (21)

In the presence of the BEC, the average collision frequency γ ,
Eq. (13), is a function of temperature only and, consequently,
so are the probabilities pz and p⊥ given by Eqs. (10) and (9).
Thus, the temperature depends on the parameters of the trap
but not on the number of atoms. For fixed parameters of the
trap, the number of thermal atoms Nex is directly proportional
to the flux of incident atoms,

Nex = Iin − Il

(p⊥ + pz)γ
, (22)

allowing us to write Eq. (21) as

μex

kT0
= ζ (3)

ζ (2)

T

T0

×
[

Iin − Il

(p⊥ + pz)γ

(
T0

T

)3 1

ζ (3)

(
h̄f

kT0

)3

− 1

]
. (23)

FIG. 9. (Color online) Chemical potential of thermal atoms μex

(solid line) and the condensate μa (dashed line) versus load Il for
Iin/Ith = 1.1.

FIG. 10. Equivalent circuit model of the atomtronic battery.

It is convenient to introduce the threshold flux for zero load
defined by the relation

Ith = ζ (3)[p⊥(0) + pz(0)]γ (0)

(
kT (0)

h̄f

)3

, (24)

where T (0) = T (Il = 0) is the temperature of the thermal
atoms at zero load and so are γ (0) = γ (T (0)), p⊥(0), and
pz(0). The threshold flux Ith normalized to its minimum value
as a function of the transverse trap height U⊥ for all other
parameters fixed (and the same as in Figs. 2 and 3) is shown
in Fig. 5. The minimum value of the flux corresponds to the
same value of U⊥ that provides the lowest temperature and the
largest number of atoms in Figs. 2 and 3.

Equation (23) in terms of the threshold flux Eq. (24) can be
rewritten as

μex

kT (0)
= ζ (3)

ζ (2)

T

T (0)

×
[

Iin − Il

Ith

(
T (0)

T

)3 [p⊥(0) + pz(0)]γ (0)

(p⊥ + pz)γ
− 1

]
.

(25)

Equation (3) can be rewritten in the form

Il = (16π )2
√

2masā

15h3
(kT )2 μex − μa

kT

(
μa

hf̄

)5/2

. (26)

With the help of expression Eq. (13), this equation can be
expressed as

μex − μa

kT

( μa

kT

)5/2
= 15ζ (3/2)

8
√

2

as

ā

Il

γ

(
hf̄

kT

)5/2

. (27)

FIG. 11. (Color online) Resistance Rp versus load Il for
Iin/Ith = 1.1.
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FIG. 12. (Color online) Resistance Rs versus load Il for
Iin/Ith = 1.1.

From Eq. (13),

f̄

kT
= as

ā

(
f̄

γ

)1/2

[8ζ (3/2)]1/2, (28)

allowing us to rewrite Eq. (27) in the form

μex − μa

kT

( μa

kT

)5/2
= 15ζ (3)

16

(
ζ 3(3/2)

4π

)1/4(as

ā

)1/2
(

γ

f̄

)1/2

× [p⊥(0) + pz(0)]
Il

Ith

(
T (0)

T

)5

. (29)

The numerical coefficient (15ζ (3)/16)[πζ 3(3/2)]1/4 ≈ 1.2.

Finally, the number of the BEC atoms follows from Eq. (6):

Na = ā

as

25/2

15

( μa

kT

)5/2
(

kT

h̄f

)5/2

. (30)

V. INFLUENCE OF THE LOAD

The nonzero load Il decreases the maximum value of the
thermal atoms and increases the minimum temperature that
can be achieved for a given level of external pumping Iin as
illustrated by Figs. 6 and 7. Figure 6 shows the minimum value
of the temperature T (Il) that can be achieved for a nonzero load
normalized to its asymptotic value T0 versus the normalized

FIG. 13. (Color online) Bias potential μb versus load Il for
Iin/Ith = 1.1.

FIG. 14. (Color online) Inverse of the resistance Ra versus load
Il for Iin/Ith = 1.1.

load Il/Iin. Figure 7 shows the maximum number of the
thermal atoms N (Il) normalized to N0 versus the normalized
load Il/Iin. For both graphs the values of Uz, U⊥, and ε are
kept constant. The value of U⊥ corresponds to the optimum
value in the case of zero load Il = 0, i.e., to the value giving
the minimum temperature and the maximum number of atoms
in Figs. 2 and 3. An increase in the temperature and a decrease
in the number of atoms translate to an increase in the threshold
flux Ith(Il) as compared to its value for zero load Ith(0) for all
other parameters fixed. This is illustrated by Fig. 8.

An increase in the temperature and a decrease in the number
of atoms seen in Eqs. (6) and (7) are partially due to the fact that
the optimum value of U⊥ depends on the load. To investigate
this circumstance we have also carried out calculations where,
for each given value of the load Il , the values of T and N have
been optimized with respect to the value of U⊥. In other words,
T (Il) and N (Il) were chosen to correspond to the minimum
of the temperature and the maximum of the number of atoms
on graphs analogous to Figs. 2 and 3. The results were very
similar to those shown in Figs. 6 and 7, but changes were
somewhat less pronounced.

Above the condensation threshold, increasing the load
causes an increase in the temperature and a decrease in the
number of thermal atoms. At some maximum value of the

FIG. 15. (Color online) Chemical potential of thermal atoms μex

(solid line) and the condensate μa (dashed line) versus load Il for
Iin/Ith = 2.2.
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FIG. 16. (Color online) Resistance Rp versus load Il for
Iin/Ith = 2.2.

load the system goes below the threshold. Figure 9 shows the
chemical potentials μex and μa versus the load Il . The calcu-
lations have been carried out for the trap with fz = 100 Hz,
f⊥ = 2 kHz, and ε = 0.7 and for the zero-load input flux
Iin ≈ 6.7 × 104atoms/s. This value of the flux is 10% above
the threshold of formation of the BEC, i.e., Iin/Ith = 1.1 and
corresponds to the threshold number of thermal atoms for zero
load Nex ≈ 106. The results are presented in frequency units
obtained by dividing the chemical potentials by h, where h

is Planck’s constant. The chemical potential of the condensate
lies slightly below that of the thermal atoms and closely follows
it for most values of the load. The difference between μa and
μth increases with larger loads. In a narrow region around the
maximum load above the condensation threshold, stationary
solutions of Eqs. (15) and (16) do not exist, as is indicated by a
gap in the graph of μa . The stationary solutions disappear when
the difference μex − μa reaches (2/7)μex. While the presence
of the gap is interesting, we do not address it further here.

VI. EQUIVALENT CIRCUITS

Having established the physics of its behavior we are now
in a position to construct an equivalent circuit for the battery.
Given a fixed trap potential there are three adjustable circuit
operating parameters: the input flux Iin, the excess energy ε (or
input power), and the load current Il . It is natural to associate

FIG. 17. (Color online) Resistance Rs versus load for Il for
Iin/Ith = 2.2.

FIG. 18. (Color online) Bias potential μb versus load Il for
Iin/Ith = 2.2.

the input atom flux with a current source, and from there the
behavior of the system can be cast in terms of the five-element
circuit shown in Fig. 10. While our analysis is valid under
certain assumptions, such as a small normalized chemical
potential, the equivalent circuit more generally describes the
small-signal behavior of the battery about any operating point
{Ĩin,Ĩl ,μ̃ex}. The shunt resistance Rp is determined by the
dependence of the thermal chemical potential on the input
current,

Rp = ∂μex

∂Iin

∣∣∣∣
{Ĩin,Ĩl ,μ̃ex}

, (31)

while the series resistance is determined by the dependence of
the thermal chemical potential on the load current,

Rs = −
(

∂μex

∂Il

+ Rp

)∣∣∣∣
{Ĩin,Ĩl ,μ̃ex}

. (32)

The bias chemical potential is determined from

μb = ĨinRp − ĨlRs − μ̃ex. (33)

Near the threshold input current the bias can be determined
simply by μb = IthRp.

Figures 11–13 show the graphs of Rp, Rs , and μb defined
by the relations Eqs. (31)–(33), respectively, versus the load
Il . All parameters are the same as for Fig. 9. With the

FIG. 19. (Color online) Inverse of the resistance Ra versus load
Il for Iin/Ith = 2.2.
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FIG. 20. Thévenin equivalent voltage source with typical element
values based on this work.

chemical potentials reported in frequency units, resistance
is dimensionless. The circuit parameters vary about 6%,
relatively little over the span of output currents, indicating
that the circuit model accurately reflects the analytical model
to this level. The chemical potential μex becomes zero for
Il = 310 Hz.

The series resistance Rs should nominally be followed by
the resistance Ra defined by the relation Eq. (5) to account for
the drop between the chemical potential of the thermal atoms
and that of the condensate. Figure 14 shows the graph of R−1

a

versus the normalized load for the same parameters as those
of Fig. 9. At low values of load current the conductance is
large and the resistance is small compared with Rs . As the
load current approaches the point for which the condensate
ceases to exist, the resistance increases rapidly. In the circuit
model we have chosen to represent the role of the resistance Ra

with a diode. At finite temperature a diode, like the resistance
Ra , presents a conductivity that is a strong function of the
forward-biased potential across it; for reverse bias it presents
zero conductivity.

Figures 15–19 show the graphs of μex, μa , Rp, Rs , μb,
and R−1

a , versus the load Il . These graphs present the same
quantities as Figs. 9 and 11–13, but for the value of the incident
flux that is twice larger, i.e., Iin/Ith = 2.2. Since our model
is valid in the limit μex,μa � kT , only the region of large
loads when the system is not too far away from the threshold
is shown. In this case the circuit element values vary as much
as about 20% over the range of output currents. The resistance
Ra will have a still smaller impact on the effective series
resistance. We note that the chemical potential at zero load
significantly increases and the series resistance significantly
decreases with twice the input power. As discussed below, this
means that both the maximum output power and the efficiency
of the battery improve with increased input flux.

A Thévenin equivalent circuit hides the complexity and
extracts the essence of the battery as a self-contained source of
power. Figure 20 shows a Thévenin equivalent voltage source
with values typical of this work. Referencing the equivalent
circuit (Fig. 10) and Eqs. (31)–(33) the potential is given by
μ = ĨinRp − μb and the internal resistance Rint = Rs . The
simple diagram elegantly encapsulates the performance one
can expect from the battery, namely, that it will supply a
maximum power of Pmax = (hμ)2/4Rint to the load through
a flux of atoms Il = μ/2Rint = 250 Hz having energy E =
hμ/2 per atom. As it delivers the maximum power it will
produce heat at a rate at least equal to the maximum power.
At finite temperature, the internal resistance will also impose
noise on the output flux, although a discussion of this
atomtronic equivalent of Johnson noise is beyond what we
address here.

VII. CONCLUSIONS

This work has considered the behavior of a highly asymmet-
ric trap as a means of supplying power to an atomtronic circuit.
The trap potential is characterized by four parameters: its lon-
gitudinal and transverse frequencies, fz and f⊥, and the corre-
sponding trap heights, Uz and U⊥. The battery operating point
is set by the input flux Iin and power, Pin = Iin(1 + ε)U⊥, as
well as the load flux Il . Among the set points the battery perfor-
mance is most strongly affected by the excess energy ε, which
exhibits a resonant optimum for a given set of trap parameters.

We have shown that the battery can be modeled in terms
of an equivalent circuit. In particular, for a specific operating
point the battery can be modeled with its Thévenin equivalent
chemical potential and finite internal resistance. As is true of
its electrical counterpart the battery is ideally designed with its
intended load in mind, i.e., that the trap parameters are chosen
such that power is optimally transferred from the input flux
to the output flux. Our analysis reveals that the ratio of input
to output flux is in the range of a few hundred to one and
generally improves with larger excess energy ε. One is often
more interested in the power efficiency: the validity of our
analysis is restricted to parameter regimes outlined in Sec. II
and therefore so are there limitations on the prediction of
power optimization. In the context of the Thévenin equivalent
circuit, maximum power efficiency is obtained by matching
the internal resistance to the load resistance.

The ability of the battery to supply condensed atoms to a
load has been analyzed here without specifying how the load
is implemented: it is effectively treated in terms of a lumped
resistance. It is worth keeping in mind that in general a load
will present a complex impedance to the battery and that the
reactive components will impact battery behavior. Along the
same lines, although we depict circuits with lumped elements,
the de Broglie wavelength of the atoms is on the order of or
smaller than the physical dimensions of the circuits. Circuits
are therefore more aptly described in terms of transmission
lines and waveguides, linear and nonlinear, than they are in
terms of lumped elements. Atomtronic circuitry is thus more
akin to the microwave domain of electronics than it is to the
audio domain.

We have focused on a particular means of implementing
a battery for atomtronics, yet it will be true that any means
of supplying power to a circuit can be modeled in terms of
a Thévenin equivalent source, at least over some small signal
regime around a quiescent point. The significant conclusion,
then, is that any power source will internally dissipate heat in
its internal resistance, deliver a certain maximum amount of
power to a load, and impose noise onto the circuit. Equivalent
circuits place a possibly diverse set of battery implementations
on an equal footing in terms of their ability to drive a circuit.
In general it may be difficult to predict the parameters of an
equivalent circuit, but it should be possible to measure them
for any specific realization of a battery.
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