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Condensation of quasiparticles and density modulation beyond the superfluid critical velocity
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We extend our earlier study of the ground state of a bosonic quasiparticle Hamiltonian by investigating the
effect of a constant external velocity field. Below a critical velocity the ground state is a quasiparticle vacuum,
corresponding to a pure superfluid phase at zero temperature. Beyond the critical velocity energy minimization
leads to a macroscopic condensation of quasiparticles at a nonzero wave vector kv parallel to the velocity v.
Simultaneously, physical particles also undergo a condensation at kv and, to a smaller extent, at −kv. Together
with the Bose-Einstein condensation at k = 0, the three coexisting condensates give rise to density modulations
of wave vectors kv and 2kv. For larger |v| our model predicts a bifurcation of kv with corresponding two pure
condensates and no density modulation.
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I. INTRODUCTION

Superfluid flow in systems of Bose-Einstein condensation
(BEC) has been of great interest for a long time. Among the
most interesting features is the existence of a critical velocity
beyond which the motion is accompanied by dissipation even
at zero temperature. The two main suggested mechanisms for
the occurrence of a critical velocity have been the creation
of quasiparticles (QPs) (Landau; cf. Ref. [1]) and that of
vortices (Feynman [2]). Interestingly, it is possible to separate
the contribution of QPs even if the true critical velocity due
to vortex shedding is smaller than the Landau value [3]. The
Landau criterion is relevant in case of channels of nanometer
size (see, e.g., Ref. [4]) and also for experiments where ions are
dragged in liquid helium [5]. The observed value of the critical
velocity [6,7] has been attributed to vortex nucleation. It has
been pointed out, however, that density inhomogeneity in a
trapped Bose gas can also reduce considerably the Landau
critical velocity as compared to that of the homogeneous
gas [8]. A subsonic critical velocity has been derived in
Ref. [9] using field theoretic methods. It is to be noted that
a critical velocity in a trapped Fermi gas was also measured
throughout the BEC-BCS crossover, and compared with the
Landau criterion [10].

An interesting question is the structure of the fluid at
velocities greater than the critical one. Within the Landau
theory it was proposed that a roton condensate is created
[11,12], which leads to a density modulation. The existence of
density modulation was shown later also within the framework
of Density Functional Theory [4].

The purpose of the present work is to study QP condensation
in a model, termed the Nozières-Saint James-Araki-Woods
(NStJAW) scheme, and investigated earlier by us at v = 0
flow velocity [13]. At v = 0 the ground state of the NStJAW
quasiparticle Hamiltonian describes a superfluid at zero tem-
perature. This is a QP vacuum state built up from a BEC of
real particles in the k = 0 one-particle state and from pairs
of real particles in plane wave states of opposite nonzero
momenta. In Sec. II we discuss the effect of an external
velocity field on the ground state of this model. We find that
for small velocities the ground state remains an unperturbed

superfluid. When |v| exceeds the Landau critical value, the
velocity field excites a macroscopic number of QPs of a single
wave vector kv which is parallel to v and is determined by
the energy minimum. The total momentum is carried by these
QPs. The QP condensation at kv leads to the condensation of
physical particles at kv and, to a smaller extent, at −kv. The
coexistence of the three condensates, those at k = ±kv and
the original one at k = 0, gives rise to a density modulation
of wave vector kv and another one of 2kv. As the velocity
increases, the condensate densities n0 and n−kv decay to zero,
and this may happen at different finite velocities. The kv and
2kv density waves vanish with n0 and n−kv , respectively. Our
model predicts a second critical velocity at which the solution
for kv bifurcates. One of the solutions grows as |v|, and the
other one decays as 1/|v| when |v| tends to infinity. A general
ground state is a superposition of the corresponding two pure
condensates. In Sec. III the density of the QP condensate is
calculated in different approximations, for velocities close to
the critical values. Section IV summarizes the results.

II. QUASIPARTICLE CONDENSATION

Recall our earlier definition [13] of a quasiparticle
Hamiltonian,

HQP = w0 +
∑

k

ekMk +
∑

k

wkk(M2
k − Mk)

+
∑
k �=k′

wkk′MkMk′ . (2.1)

The summations run over k = 2π
L

(n1,n2,n3), where L is the
side length of a cube of volume V = L3 and ni are integers.
Mk = b∗

kbk, and Bogoliubov’s canonical transformation is
applied in the form [14]

bk = 1√
1 − g2

k

(ak − gka
∗
−k) (k �= 0) (2.2)

with gk = g−k real, −1 < gk � 0 (needed to minimize the
vacuum energy); ak,a

∗
k annihilate and create “real” bosons,

and b∗
k is the adjoint of bk. For k = 0 a shift replaces the
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Bogoliubov transformation, b0 = a0 − z, where z is a real
positive number of order

√
V [15].

The eigenstates of HQP are eigenstates of the operators Mk
of the form

�(jk) =
∏

k

1√
jk!

(b∗
k)jk�0, (2.3)

(jk) being any terminating sequence of nonnegative integers.
�0 is the common vacuum of all bk,

�0 = eza∗
0 |0〉 ⊗ [⊗{k,−k}

(
1 − g2

k

)1/2
egka∗

ka∗
−k |0〉], (2.4)

where |0〉 is the physical vacuum and the second product runs
over nonzero pairs.

In Ref. [13] we gave the expressions entering (2.1). They
depend on gk via

hk = g2
k

1 − g2
k

= 〈�0|a∗
kak|�0〉,

(2.5)
χk = gk

1 − g2
k

= 〈�0|aka−k|�0〉,

so that χk = −
√

h2
k + hk. The energies ek,wkk,wkk′ are

positive, and we will not need the precise form of the vacuum
energy w0. In what follows, we approximate v(k), the Fourier
transform of the pair potential, by ν = v(0); the convergence
of the infinite sums which appear in w0 and ek and involve
v(k) will be ensured by the fast decay of hk and χk. With
this approximation, minimization of the vacuum energy with
respect to z and {gk} results in

e2
k = ε(k)2 + 2ν(n0 + na) ε(k) + 4ν2n0na. (2.6)

Here ε(k) = h̄2k2/2m, and

n0 = 1

V
〈�0|a∗

0a0|�0〉 = z2

V
, na = 1

V

∑
k �=0

|χk|. (2.7)

We will also need

n′ = 1

V

∑
k �=0

〈�0|a∗
kak|�0〉 = 1

V

∑
k �=0

hk, (2.8)

which is somewhat smaller than the density na of the
anomalous averages; however, na goes to zero with n′ going
to zero. From (2.6), Bogoliubov’s dispersion relation,

e2
k = ε(k)2 + 2νn0 ε(k), (2.9)

is obtained by assuming that 2νn0na 	 ε(k)(n0 + na) for
the relevant values of k, and na 	 n0. We shall check the
consistency of these assumptions. From Eqs. (3.6) and (3.7)
of Ref. [13],

wkk = ν

2V

(
1 + 6hk + 6h2

k

) = ν

2V

(
1 + 6χ2

k

)
, (2.10)

and for k �= k′,

wkk′ = ν

V
(1 + 2hk + 2hk′ + 4hkhk′ + 2χkχk′). (2.11)

Thus,

2 min{wkk,wk′k′ } � wkk′ � 2 max{wkk,wk′k′ }. (2.12)

Note that ε(k) and v(k) depend only on k = |k|. The same
holds for gk and, hence, for hk and χk, if they are chosen so as

to minimize the vacuum energy, and the minimizer is unique.
Therefore, in Eqs. (2.5)–(2.11) we have functions of k and
modify the notations accordingly.

Now we introduce a constant velocity field in the quasipar-
ticle Hamiltonian,

HQP(v) = w0 +
∑

k

(ek − h̄v · k)Mk +
∑

k

wkk

(
M2

k − Mk
)

+
∑
k �=k′

wkk′MkMk′ (2.13)

and look for the ground state of HQP(v). Let

sk = h̄v · k − ek + wkk. (2.14)

The eigenvalues of HQP(v) − w0 are

Ev{jk} = −
∑

k

skjk +
∑

k

wkkj
2
k +

∑
k �=k′

wkk′jkjk′ . (2.15)

Because ek starts with a constant [in (2.6)] or linearly [in (2.9)]
at k = 0, if |v| is small, then sk < 0 for each k �= 0 (note:
wkk ∼ L−3); as a consequence, �0 remains the ground state
(jk ≡ 0). Even if |v| is large, sk is negative except for a finite
number of k: because ek grows quadratically with k, for any
v ∈ R3 the number of k vectors such that sk > 0 is at most
proportional to the volume. The eigenvalues with a single
nonzero jk have the form

Ev(k,jk) = −skjk + wkkj
2
k . (2.16)

Supposing sk > 0 and of order L0, this can be negative, and
its minimum is attained at jk = mk, where

mk = sk

2wkk

∼ L3 (2.17)

(more precisely, the closest integer to the value on the right).
The corresponding eigenvalue is

Ev(k,mk) = − s2
k

4wkk

< 0; (2.18)

it is also of the order of V and still can be minimized with
respect to k. Because mk is an integer and k also takes values
on a lattice, the minimum may not be unique for all v. To avoid
this problem, we choose v parallel to a side of the cube and
exclude a discrete set of v = |v|. Then the unique minimum is
attained at a kv parallel to v:

Ev(kv,mkv ) = −1

4

[
max

k

h̄vk − ek + wkk√
wkk

]2

. (2.19)

The corresponding eigenstate is

�mkv
= 1√

mkv !

(
b∗

kv

)mkv �0. (2.20)

Below we show that this is actually the ground state of HQP(v).
For a given v letK′ denote the set of k vectors such that sk > 0.
We will suppose that

max
k∈K′

wkk < 2 min
k∈K′

wkk ≡ 2wK′ (2.21)

which trivially holds in Bogoliubov’s approximation. From
(2.12), for any k,k′ ∈ K′, k �= k′,

wkk′ � 2wK′ . (2.22)
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In our search for the minimum of Ev{jk} we can set jk = 0 for
k outside K′. We have

Ev{jk} � EK′ {jk}, (2.23)

where

EK′ {jk} = −
∑

k

skjk +
∑

k

wkkj
2
k + 2wK′

∑
k �=k′

jkjk′ , (2.24)

with summations over K′. Define

tk = wK′

2wK′ − wkk

. (2.25)

With the assumption (2.21), 1 � tk < ∞ for each k ∈ K′.
Minimization of (2.24) w.r.t. each jk yields

jk = 2tk
∑
q∈K′

jq − sktk

2wK′
, k ∈ K′. (2.26)

This set of equations has a unique solution for jk, and some of
them may be negative. If this is the case, the set of k vectors
must be restricted to a subset K′′ of K′, wK′ replaced by wK′′

and the minimization restarted. [Equations (2.21)–(2.22) are
valid for K′′ ⊂ K′.] Let K be (any of) the largest subset(s) of
K′ such that for each k ∈ K the solution of the minimization
for jk is positive. Let mk be this solution. With the notation
M = ∑

K mk,

mk = 2tkM − sktk

2wK
, (2.27)

where tk is now defined with wK. From here, by summation
over K we obtain

M = 1

2wK
(
2
∑

tk − 1
) ∑

k

sktk. (2.28)

Insertion of the last two expressions into EK{mk} results in

EK{mk} = −
∑

k,q tktqsksq

2wK
(
2
∑

tk − 1
) +

∑
k tks

2
k

4wK
. (2.29)

Applying the inequality sqsk � (s2
q + s2

k)/2, we arrive at

EK{mk} � −
∑

k tks
2
k

4wK
(
2
∑

tk − 1
)

� −
∑

k tkwkk

wK
(
2
∑

tk − 1
) max

k∈K
s2

k

4wkk

�
∑

tkwkk

wK
(
2
∑

tk − 1
)Ev(kv,mkv )

=
[

1 − � − 1

2
∑

tk − 1

]
Ev(kv,mkv ), (2.30)

where � is the number of vectors in K. This shows that the
minimum is attained with � = 1. We thus conclude that the
unique ground state of HQP(v) is (2.20) with eigenvalue w0 +
Ev(kv,mkv ). This conclusion is valid in a velocity interval
whose lower edge is that v beyond which maxk{h̄vk − ek}
becomes positive; this value is identified with the superfluid
critical velocity. We think that the condition (2.21) could be
removed; however, the proof would be more lengthy.

It is useful to rewrite the above formulas in terms of
densities. For a fixed v greater than the critical velocity and

any k > ek/h̄v, k parallel to v, substituting wkk from Eq. (2.10)
we find

σk ≡ lim
V →∞

mk

V
= h̄vk − ek

ν
(
1 + 6χ2

k

) (2.31)

and

εv(k,σk) ≡ lim
V →∞

Ev(k,mk)

V

= (ek − h̄vk)σk + 1

2
ν
(
1 + 6χ2

k

)
σ 2

k

= − (h̄vk − ek)2

2ν
(
1 + 6χ2

k

) = −ν

2

(
1 + 6χ2

k

)
σ 2

k . (2.32)

Then the equation corresponding to (2.19) is

εv

(
kv,σkv

) = − 1

2ν

[
max

k

h̄vk − ek√
1 + 6χ2

k

]2

, (2.33)

where kv = |kv|.
When varying v, the total density of physical particles must

be kept fixed. Beyond the critical velocity this renders �0

and, thus, n0, na , and n′ functions of v. The mean value of
Nk = a∗

kak in �mk can be obtained from

Nk = (1 + hk)Mk + hkM−k + hk + χk(bkb−k + b∗
kb

∗
−k).

(2.34)

With the notation 〈Nk′ 〉mk = 〈�mk |Nk′ |�mk〉, for k �= 0 we
have

〈Nk〉mk = (1 + hk)mk + hk,

〈N−k〉mk = hkmk + hk, (2.35)

〈Nk′ 〉mk = hk′ (k′ �= ±k).

Conservation of the density of physical particles implies

n = n0 + n′ + nkv + n−kv , (2.36)

where n is the number density that we keep fixed,

nkv = lim
V →∞

1

V

〈
Nkv

〉
mkv

= (
1 + hkv

)
σkv ,

(2.37)

n−kv = lim
V →∞

1

V

〈
N−kv

〉
mkv

= hkv
σkv .

Thus, for (not too large) velocities beyond the critical value
one has condensation of physical particles at k = 0, kv and, to
a smaller extent, at −kv.

The coexistence of condensates with different wave vectors
is accompanied by a density modulation. Indeed, in the Fourier
transform of the density operator ρk = ∑

q a∗
k+qaq we can

replace, à la Bogoliubov (and also rigorously Ref. [16]), a0
and a∗

0 by
√

n0V and a±kv and a∗
±kv

by
√

n±kvV . Then we
obtain ∥∥ρ±kv�mkv

∥∥
V

≈ √
n0nkv + √

n0n−kv ,

(2.38)∥∥ρ±2kv�mkv

∥∥
V

≈ √
nkvn−kv .

It is seen that the kv density modulation is due to the
entanglement of the condensates at 0 and ±kv and vanishes
together with n0. On the other hand, the 2kv density wave
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comes from the coexistence of the condensates at ±kv and
decays with n−kv .

Let us analyze the v dependence of σkv . This can be inferred
from Eqs. (2.31)–(2.33) with the remark that the bounds

0 � σkv = nkv − n−kv � nkv � n (2.39)

must also be respected. It is easy to see that σkv attains n

at a finite velocity v1. Indeed, because |χk| tends to zero as
k increases, without the bound (2.39) energy minimization
would lead to the asymptotic (large v) results kv = mv/h̄,
σkv = mv2/2ν and εv(kv,σkv ) = −m2v4/8ν. With the bound
(2.39) we have, instead,

σkv ≡ n, εv(kv,σkv ) ≡ −ν

2
n2 (v � v1), (2.40)

and the densities n0, n′, and n−kv vanish at respective velocities
v0,v

′,v− � v1 which may be different, and the largest of them
equals v1. If v0 �= v−, the two density modulations (2.38)
disappear at different velocities. For v � v1 the quasiparticles
coincide with the physical ones, and HQP(v) goes over into the
Hamiltonian of the so-called full diagonal model,

HFD(v) =
∑

k

[ε(k) − h̄ v · k]Nk + ν

2V
(N2 − N )

+ 1

2V

∑
k �=k′

v(k − k′)NkNk′ , (2.41)

studied earlier without the external velocity field [17]. Accord-
ingly, kv is the solution for k of the equation

f (v,k) ≡ h̄vk − ε(k) = νn (v � v1). (2.42)

At v = v1, kv still can be determined also from energy
minimization. This provides a second equation,

∂kf (v,k) = 0, (2.43)

which, together with Eq. (2.42), can be used to compute v1

and k1 ≡ kv1 . Introducing

c =
√

νn/m, (2.44)

the solution of Eqs. (2.42) and (2.43) is

v1 =
√

2c, h̄k1 = mv1. (2.45)

In the actual model the saturation of the QP and energy
densities occurs with a discontinuous derivative: the left-sided
v derivative of σkv and of εv(kv,σkv ) is nonzero at v = v1; see
also the end of Sec. III.

The velocity v1 not only marks density saturation, it is also a
bifurcation point for kv; see Fig. 1. For v > v1, kv is determined
from Eq. (2.42), and not from energy minimization. The two
solutions k±(v) are

h̄k±
mv

= 1 ±
√

1 − 2

(
c

v

)2

(v > v1). (2.46)

In this way, at v1 there is a (second) quantum phase transition:
Between v = 0 and v = v1 the ground state of HQP(v) is
unique, but there is a first quantum phase transition at the super-
fluid critical velocity (c in Bogoliubov’s approximation). For
v > v1, the ground states of HQP(v) form a two-dimensional
subspace. In Eq. (2.46) the plus sign corresponds to a pure

0

1

2

 0   1 3

FIG. 1. (Color online) Variation of the wave number kv as a
function of the velocity v; see Eqs. (2.33) and (2.46).

condensate with an ever-increasing momentum density. The
minus sign corresponds to a pure condensate with a vanishing
momentum density nh̄k−, where k− ≈ mc2/v as v tends to
infinity. Along this solution momentum transfer to the system
is a resonance phenomenon with a peak at v1. The phase
transition itself is subject to interpretation; it may signify the
onset of turbulence. Note that there is no density modulation
at velocities above v1.

III. QUASIPARTICLE CONDENSATE DENSITY
CLOSE TO THE CRITICAL VELOCITIES

The macroscopic condensation of quasiparticles at kv takes
place independently of our use for ek of the gapful formula
(2.6) or of its Bogoliubov approximation (2.9). We start the
discussion using Eq. (2.6). In this case QP excitation is initiated
by mode softening at a critical velocity c′ and wave number
k′ > 0. While this occurs here due to the gap, an inflection
point in the dispersion relation or a local minimum outside the
origin (cf. roton mode) can also result in such a situation. At
criticality ek = h̄vk has a unique solution for v and k:

c′ =
√

ν(n0 + na)

m

(
1 + 2

√
n0na

n0 + na

)1/2

,

(3.1)

k′ = 2

√
νm

h̄
(n0na)1/4,

where n0 and na are the values at v = 0, still unchanged at
v = c′. If v > c′, then kv > k′ can be large enough (for n0

large) so that hkv
≈ 0 hold true. Then wkvkv

≈ ν/2V , and kv is
obtained from the maximum of h̄vk − ek . To leading order in
v − c′,

kv = k′ + h̄(v − c′)/e′′
k′ , (3.2)

σkv = h̄k′c′

2ν

(
v

c′ − 1

)
, (3.3)

and Ev(kv,mkv )/V = −(ν/2)σ 2
kv

. The above treatment is
meaningful if the interval (c′,v1) is nonempty, that is, if
2
√

n0na < n0 + 2n′ − na , which holds if, say, na/n0 < 0.1.
Next, we use the Bogoliubov approximation (2.9) of ek .

This is based on the assumption that n0 ≈ n below the critical
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velocity. Since ek is a convex function of k and

ek = h̄k
√

νn/m + O(k2) (3.4)

near k = 0, the critical velocity at which quasiparticle excita-
tions appear is c given by (2.44); see Fig. 1.

To minimize the energy density we need χ2
k . From

Eqs. (3.29), (4.14), and (4.20) of Ref. [13], and assuming
n′ 	 n0,

hk ≈ νn0 + ε(k)

2ek

− 1

2
. (3.5)

Here and below n0 is the v-dependent value for v > c. Note that
the convergence of hk to zero with either k going to infinity or
νn0 going to zero can be seen on this formula. If c < v 	 2c,
kv will be close to zero and n0 close to n, so

hk ≈ −χk ≈ mc

2h̄k
. (3.6)

Substituting (2.9) and (3.6) into Eq. (2.32), keeping the terms
of the order of k4 and k6 and minimizing with respect to k we
find

kv =
√

8

3

mc

h̄

√
v

c
− 1, (3.7)

εv(kv,σkv ) = −64

27
νn2

(
v

c
− 1

)4

, (3.8)

and

σkv = 2

3

(
8

3

)3/2

n

(
v

c
− 1

)5/2

. (3.9)

We still have to verify the consistency of the assumptions
2νn0na 	 ε(kv)(n0 + na) and na 	 n0 which were at the
origin of the Bogoliubov approximation. From (3.7),

ε(kv) = 4

3
mc2

(
v

c
− 1

)
= 4

3
νn

(
v

c
− 1

)
, (3.10)

so the lower bound on the velocity reads

v

c
− 1 � 3

2

n0na

n(n0 + na)
, (3.11)

which is consistent with v 	 2c if na 	 n0. This, however,
holds true if the interaction is weak enough. There is also
an absolute upper bound, v/c − 1 � 3/211/5, coming from
σkv � n which can be read off from Eq. (3.9). However, the
applicability of this formula does not extend up to this velocity.

For the Bogoliubov approximation at a somewhat larger
v but still close to c we can again suppose n0 ≈ n, hk = 0,
wkk = ν/2V to compute kv and σkv . Thus,

σk = h̄vk − ek

ν
, (3.12)

εv(k,σk) = −(ν/2)σ 2
k , (3.13)

and kv is determined by the maximum of h̄vk − ek . This latter
is attained for ε = ε(k) satisfying the equation

ε2 + (2mc2 − mv2/2)ε = m2c2(v2 − c2). (3.14)

Suppose that

ε 	 2mc2 − mv2/2. (3.15)

Then

ε(kv) = h̄2k2
v

2m
≈ mc2 (v/c)2 − 1

2 − (v/c)2/2
, (3.16)

from which we get

kv =
√

2mc

h̄
√

1 − (v/2c)2

√
v

c
− 1. (3.17)

Under the condition (3.15), ekv
≈ h̄ckv , yielding

σkv ≈ 2

√
2

3

mc2

ν

(
v

c
− 1

)3/2

= 2

√
2

3
n

(
v

c
− 1

)3/2

. (3.18)

The interval of v in which this law makes sense can be deduced
from (3.15) and (3.16). From the first we see that v < 2c; the
comparison of the two gives v 	 √

2c = v1. Moreover, if α is
the largest value of v/c for the applicability of (3.5) to k = kv

given by (3.7), and β is the lowest value of v/c for which
hkv

= 0 is a good approximation and (3.15) and (3.16) are
compatible, then both

1 < α < β <
√

2,
4

3
(α − 1) <

β2 − 1

2 − β2/2
(3.19)

must hold. The second inequality follows from the monotonic
growth of kv and, hence, of ε(kv) with v. At β = √

2 the second
inequality holds for α < 1.75, indicating that (3.19) can easily
be satisfied.

Somewhat more can be said about σkv if we suppose hk =
χk = 0 for all v � c. In general, between c and v1, kv is an
invertible function of v. Let vk be its inverse. If we set χk = 0,
then both kv and vk can be computed from the equation

∂k[h̄vk −
√

ε(k)2 + 2νn0ε(k)] = 0. (3.20)

Solving this equation for v, we find

vk =
√

2

m

ε(k) + νn0√
ε(k) + 2νn0

. (3.21)

Let

σ (k) = 1

ν
[h̄kvk −

√
ε(k)2 + 2νn0ε(k)]; (3.22)

this is just σkv if kv = k. Substituting (3.21) into (3.22) and
setting n0 = n − σ (k) which is now the case, we arrive at the
implicit equation

νσ (k) = ε(k)3/2

[ε(k) + 2νn − 2νσ (k)]1/2
. (3.23)

From here, for k small, i.e., v close to c,

σkv = 1√
2n

(
ε(kv)

ν

)3/2

, (3.24)

to be compared with (3.17) and (3.18). On the other hand,
observing that νn = ε(k1), it is seen that for v smaller than but
close to v1, σkv satisfies the equation

σkv = n − h̄v1

ν
(k1 − kv) ≈ n − mv1

ν
(v1 − v), (3.25)

so that (
dσkv

dv

)
v=v1−0

= mv1

ν
. (3.26)
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IV. SUMMARY

In this paper we applied a variational quasiparticle theory to
study the ground state of a Bose system exposed to a constant
external velocity field. We have shown that at small velocities
the energy minimum for the variational ansatz occurs at zero
quasiparticle excitation, meaning the persistence of a pure
superfluid state at zero temperature. Crossing the Landau
critical velocity a quasiparticle condensate is formed with
spectacular consequences. The condensation takes place into
a one-particle state of momentum kv which is parallel to the
velocity v and whose magnitude is determined by the energy
minimum. The quasiparticle condensation deeply influences
the distribution of real particles. Apart from the original BEC
in the k = 0 one-particle state, two more condensates appear,
a dominant one in the plane wave state kv and another one of a
smaller density at −kv. The coexistence of these condensates
leads to density modulations characterized by the wave vectors

kv and 2kv. In the present model, the density of the condensate
at kv attains the full density at a finite velocity v1; necessarily,
the condensates at k = 0 and k = −kv and the two density
modulations together with them vanish here, if not already at
smaller velocities. At v1 our model exhibits a bifurcation of
kv, with one solution increasing and the other one decaying
as v tends to infinity. The bifurcation is due to the fact
that kv is determined by density saturation, when v > v1. A
general ground state is then a superposition of the two pure
condensates, corresponding to the two solutions for kv. There
is no density modulation in these states.
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