Condensation of quasiparticles and density modulation beyond the superfluid critical velocity

András Sütő¹ and Péter Szépfalusy^{1,2}

¹*Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences,*

P.O. Box 49, H-1525 Budapest, Hungary

²Department of Physics of Complex Systems, Eötvös University, H-1117 Budapest, Hungary

(Received 22 May 2013; published 29 October 2013)

We extend our earlier study of the ground state of a bosonic quasiparticle Hamiltonian by investigating the effect of a constant external velocity field. Below a critical velocity the ground state is a quasiparticle vacuum, corresponding to a pure superfluid phase at zero temperature. Beyond the critical velocity energy minimization leads to a macroscopic condensation of quasiparticles at a nonzero wave vector \mathbf{k}_v parallel to the velocity **v**. Simultaneously, physical particles also undergo a condensation at **kv** and, to a smaller extent, at −**kv**. Together with the Bose-Einstein condensation at $\mathbf{k} = 0$, the three coexisting condensates give rise to density modulations of wave vectors \mathbf{k}_v and $2\mathbf{k}_v$. For larger $|\mathbf{v}|$ our model predicts a bifurcation of \mathbf{k}_v with corresponding two pure condensates and no density modulation.

DOI: [10.1103/PhysRevA.88.043640](http://dx.doi.org/10.1103/PhysRevA.88.043640) PACS number(s): 03*.*75*.*Nt, 05*.*30*.*Jp, 67*.*10*.*Ba, 67*.*25*.*dj

I. INTRODUCTION

Superfluid flow in systems of Bose-Einstein condensation (BEC) has been of great interest for a long time. Among the most interesting features is the existence of a critical velocity beyond which the motion is accompanied by dissipation even at zero temperature. The two main suggested mechanisms for the occurrence of a critical velocity have been the creation of quasiparticles (QPs) (Landau; cf. Ref. [\[1\]](#page-5-0)) and that of vortices (Feynman [\[2\]](#page-5-0)). Interestingly, it is possible to separate the contribution of QPs even if the true critical velocity due to vortex shedding is smaller than the Landau value [\[3\]](#page-5-0). The Landau criterion is relevant in case of channels of nanometer size (see, e.g., Ref. [\[4\]](#page-5-0)) and also for experiments where ions are dragged in liquid helium [\[5\]](#page-5-0). The observed value of the critical velocity [\[6,7\]](#page-5-0) has been attributed to vortex nucleation. It has been pointed out, however, that density inhomogeneity in a trapped Bose gas can also reduce considerably the Landau critical velocity as compared to that of the homogeneous gas [\[8\]](#page-5-0). A subsonic critical velocity has been derived in Ref. [\[9\]](#page-5-0) using field theoretic methods. It is to be noted that a critical velocity in a trapped Fermi gas was also measured throughout the BEC-BCS crossover, and compared with the Landau criterion [\[10\]](#page-5-0).

An interesting question is the structure of the fluid at velocities greater than the critical one. Within the Landau theory it was proposed that a roton condensate is created [\[11,12\]](#page-5-0), which leads to a density modulation. The existence of density modulation was shown later also within the framework of Density Functional Theory [\[4\]](#page-5-0).

The purpose of the present work is to study QP condensation in a model, termed the Nozières-Saint James-Araki-Woods (NStJAW) scheme, and investigated earlier by us at $v = 0$ flow velocity [\[13\]](#page-5-0). At $v = 0$ the ground state of the NStJAW quasiparticle Hamiltonian describes a superfluid at zero temperature. This is a QP vacuum state built up from a BEC of real particles in the $\mathbf{k} = \mathbf{0}$ one-particle state and from pairs of real particles in plane wave states of opposite nonzero momenta. In Sec. \mathbf{I} we discuss the effect of an external velocity field on the ground state of this model. We find that for small velocities the ground state remains an unperturbed

superfluid. When |**v**| exceeds the Landau critical value, the velocity field excites a macroscopic number of QPs of a single wave vector \mathbf{k}_v which is parallel to **v** and is determined by the energy minimum. The total momentum is carried by these QPs. The QP condensation at \mathbf{k}_v leads to the condensation of physical particles at \bf{k}_v and, to a smaller extent, at $-\bf{k}_v$. The coexistence of the three condensates, those at $\mathbf{k} = \pm \mathbf{k}_v$ and the original one at $\mathbf{k} = \mathbf{0}$, gives rise to a density modulation of wave vector \mathbf{k}_v and another one of $2\mathbf{k}_v$. As the velocity increases, the condensate densities n_0 and n_{-k_v} decay to zero, and this may happen at different finite velocities. The \mathbf{k}_v and 2 k_v density waves vanish with *n*⁰ and *n*_{− k_v , respectively. Our} model predicts a second critical velocity at which the solution for \mathbf{k}_v bifurcates. One of the solutions grows as $|\mathbf{v}|$, and the other one decays as 1*/*|**v**| when |**v**| tends to infinity. A general ground state is a superposition of the corresponding two pure condensates. In Sec. [III](#page-3-0) the density of the QP condensate is calculated in different approximations, for velocities close to the critical values. Section [IV](#page-5-0) summarizes the results.

II. QUASIPARTICLE CONDENSATION

Recall our earlier definition [\[13\]](#page-5-0) of a quasiparticle Hamiltonian,

$$
H_{\rm QP} = w_0 + \sum_{\mathbf{k}} e_{\mathbf{k}} M_{\mathbf{k}} + \sum_{\mathbf{k}} w_{\mathbf{k}\mathbf{k}} (M_{\mathbf{k}}^2 - M_{\mathbf{k}}) + \sum_{\mathbf{k} \neq \mathbf{k}'} w_{\mathbf{k}\mathbf{k}'} M_{\mathbf{k}} M_{\mathbf{k}'}.
$$
 (2.1)

The summations run over $\mathbf{k} = \frac{2\pi}{L}(n_1, n_2, n_3)$, where *L* is the side length of a cube of volume $V = L^3$ and n_i are integers. $M_{\mathbf{k}} = b_{\mathbf{k}}^* b_{\mathbf{k}}$, and Bogoliubov's canonical transformation is applied in the form [\[14\]](#page-5-0)

$$
b_{\mathbf{k}} = \frac{1}{\sqrt{1 - g_{\mathbf{k}}^2}} (a_{\mathbf{k}} - g_{\mathbf{k}} a_{-\mathbf{k}}^*) \quad (\mathbf{k} \neq \mathbf{0}) \tag{2.2}
$$

with $g_k = g_{-k}$ real, $-1 < g_k \leq 0$ (needed to minimize the vacuum energy); a_k , a_k^* annihilate and create "real" bosons, and b_k^* is the adjoint of b_k . For $k = 0$ a shift replaces the Bogoliubov transformation, $b_0 = a_0 - z$, where *z* is a real positive number of order \sqrt{V} [\[15\]](#page-5-0).

The eigenstates of H_{OP} are eigenstates of the operators $M_{\bf k}$ of the form

$$
\Phi_{(j_k)} = \prod_{\mathbf{k}} \frac{1}{\sqrt{j_{\mathbf{k}}!}} (b_{\mathbf{k}}^*)^{j_{\mathbf{k}}} \Phi_0,
$$
\n(2.3)

 (j_k) being any terminating sequence of nonnegative integers. Φ_0 is the common vacuum of all $b_{\mathbf{k}}$,

$$
\Phi_0 = e^{z a_0^*} |0\rangle \otimes [\otimes_{\{\mathbf{k}, -\mathbf{k}\}} (1 - g_{\mathbf{k}}^2)^{1/2} e^{g_{\mathbf{k}} a_{\mathbf{k}}^* a_{-\mathbf{k}}^*} |0\rangle], \tag{2.4}
$$

where $|0\rangle$ is the physical vacuum and the second product runs over nonzero pairs.

In Ref. $[13]$ we gave the expressions entering (2.1) . They depend on *g***^k** via

$$
h_{\mathbf{k}} = \frac{g_{\mathbf{k}}^2}{1 - g_{\mathbf{k}}^2} = \langle \Phi_0 | a_{\mathbf{k}}^* a_{\mathbf{k}} | \Phi_0 \rangle,
$$

$$
\chi_{\mathbf{k}} = \frac{g_{\mathbf{k}}}{1 - g_{\mathbf{k}}^2} = \langle \Phi_0 | a_{\mathbf{k}} a_{-\mathbf{k}} | \Phi_0 \rangle,
$$
 (2.5)

so that $\chi_{\mathbf{k}} = -\sqrt{h_{\mathbf{k}}^2 + h_{\mathbf{k}}}$. The energies $e_{\mathbf{k}}, w_{\mathbf{k}\mathbf{k}}, w_{\mathbf{k}\mathbf{k}'}$ are positive, and we will not need the precise form of the vacuum energy w_0 . In what follows, we approximate $v(\mathbf{k})$, the Fourier transform of the pair potential, by $v = v(0)$; the convergence of the infinite sums which appear in w_0 and e_k and involve *v*(**k**) will be ensured by the fast decay of h **k** and $χ$ **k**. With this approximation, minimization of the vacuum energy with respect to *z* and {*g***k**} results in

$$
e_{\mathbf{k}}^{2} = \varepsilon(\mathbf{k})^{2} + 2\nu(n_{0} + n_{a})\,\varepsilon(\mathbf{k}) + 4\nu^{2}n_{0}n_{a}.\tag{2.6}
$$

Here $\varepsilon(\mathbf{k}) = \hbar^2 \mathbf{k}^2 / 2m$, and

$$
n_0 = \frac{1}{V} \langle \Phi_0 | a_0^* a_0 | \Phi_0 \rangle = \frac{z^2}{V}, \quad n_a = \frac{1}{V} \sum_{\mathbf{k} \neq \mathbf{0}} |\chi_{\mathbf{k}}|.
$$
 (2.7)

We will also need

$$
n' = \frac{1}{V} \sum_{\mathbf{k} \neq \mathbf{0}} \langle \Phi_0 | a_{\mathbf{k}}^* a_{\mathbf{k}} | \Phi_0 \rangle = \frac{1}{V} \sum_{\mathbf{k} \neq \mathbf{0}} h_{\mathbf{k}}, \tag{2.8}
$$

which is somewhat smaller than the density n_a of the anomalous averages; however, n_a goes to zero with n' going to zero. From (2.6), Bogoliubov's dispersion relation,

$$
e_{\mathbf{k}}^2 = \varepsilon(\mathbf{k})^2 + 2\nu n_0 \,\varepsilon(\mathbf{k}),\tag{2.9}
$$

is obtained by assuming that $2\nu n_0 n_a \ll \varepsilon(\mathbf{k})(n_0 + n_a)$ for the relevant values of **k**, and $n_a \ll n_0$. We shall check the consistency of these assumptions. From Eqs. (3.6) and (3.7) of Ref. [\[13\]](#page-5-0),

$$
w_{kk} = \frac{\nu}{2V} \left(1 + 6h_k + 6h_k^2 \right) = \frac{\nu}{2V} \left(1 + 6\chi_k^2 \right), \quad (2.10)
$$

and for $\mathbf{k} \neq \mathbf{k}'$,

$$
w_{kk'} = \frac{v}{V}(1 + 2h_{k} + 2h_{k'} + 4h_{k}h_{k'} + 2\chi_{k}\chi_{k'}).
$$
 (2.11)

Thus,

$$
2\min\{w_{\mathbf{k}\mathbf{k}}, w_{\mathbf{k}'\mathbf{k}'}\} \leqslant w_{\mathbf{k}\mathbf{k}'} \leqslant 2\max\{w_{\mathbf{k}\mathbf{k}}, w_{\mathbf{k}'\mathbf{k}'}\}.
$$
 (2.12)

Note that $\varepsilon(\mathbf{k})$ and $v(\mathbf{k})$ depend only on $k = |\mathbf{k}|$. The same holds for g_k and, hence, for h_k and χ_k , if they are chosen so as to minimize the vacuum energy, and the minimizer is unique. Therefore, in Eqs. (2.5) – (2.11) we have functions of *k* and modify the notations accordingly.

Now we introduce a constant velocity field in the quasiparticle Hamiltonian,

$$
H_{\rm QP}(\mathbf{v}) = w_0 + \sum_{\mathbf{k}} (e_k - \hbar \mathbf{v} \cdot \mathbf{k}) M_{\mathbf{k}} + \sum_{\mathbf{k}} w_{kk} (M_{\mathbf{k}}^2 - M_{\mathbf{k}})
$$

+
$$
\sum_{\mathbf{k} \neq \mathbf{k'}} w_{\mathbf{k}\mathbf{k'}} M_{\mathbf{k}} M_{\mathbf{k'}}
$$
 (2.13)

and look for the ground state of $H_{QP}(\mathbf{v})$. Let

$$
s_{\mathbf{k}} = \hbar \mathbf{v} \cdot \mathbf{k} - e_k + w_{kk}.
$$
 (2.14)

The eigenvalues of $H_{OP}(v) - w_0$ are

$$
E_{\mathbf{v}}\{j_{\mathbf{k}}\} = -\sum_{\mathbf{k}} s_{\mathbf{k}} j_{\mathbf{k}} + \sum_{\mathbf{k}} w_{kk} j_{\mathbf{k}}^2 + \sum_{\mathbf{k} \neq \mathbf{k}'} w_{\mathbf{k}\mathbf{k}'} j_{\mathbf{k}} j_{\mathbf{k}'}.
$$
 (2.15)

Because e_k starts with a constant $\left[\text{in } (2.6) \right]$ or linearly $\left[\text{in } (2.9) \right]$ at $k = 0$, if $|\mathbf{v}|$ is small, then $s_k < 0$ for each $k \neq 0$ (note: $w_{kk} \sim L^{-3}$); as a consequence, Φ_0 remains the ground state $(j_k \equiv 0)$. Even if $|\mathbf{v}|$ is large, s_k is negative except for a finite number of **k**: because e_k grows quadratically with k , for any **v** ∈ \mathbb{R}^3 the number of **k** vectors such that $s_k > 0$ is at most proportional to the volume. The eigenvalues with a single nonzero j_k have the form

$$
E_{\mathbf{v}}(\mathbf{k}, j_{\mathbf{k}}) = -s_{\mathbf{k}} j_{\mathbf{k}} + w_{kk} j_{\mathbf{k}}^2.
$$
 (2.16)

Supposing $s_k > 0$ and of order L^0 , this can be negative, and its minimum is attained at $j_k = m_k$, where

$$
m_{\mathbf{k}} = \frac{s_{\mathbf{k}}}{2w_{kk}} \sim L^3 \tag{2.17}
$$

(more precisely, the closest integer to the value on the right). The corresponding eigenvalue is

$$
E_{\mathbf{v}}(\mathbf{k},m_{\mathbf{k}}) = -\frac{s_{\mathbf{k}}^2}{4w_{kk}} < 0; \tag{2.18}
$$

it is also of the order of *V* and still can be minimized with respect to **k**. Because m_k is an integer and **k** also takes values on a lattice, the minimum may not be unique for all **v**. To avoid this problem, we choose **v** parallel to a side of the cube and exclude a discrete set of $v = |v|$. Then the unique minimum is attained at a **kv** parallel to **v**:

$$
E_{\mathbf{v}}(\mathbf{k}_{\mathbf{v}},m_{\mathbf{k}_{\mathbf{v}}}) = -\frac{1}{4} \bigg[\max_{k} \frac{\hbar v k - e_k + w_{kk}}{\sqrt{w_{kk}}} \bigg]^2. \tag{2.19}
$$

The corresponding eigenstate is

$$
\Phi_{m_{\mathbf{k}_{\mathbf{v}}}} = \frac{1}{\sqrt{m_{\mathbf{k}_{\mathbf{v}}}}!} \left(b_{\mathbf{k}_{\mathbf{v}}}^* \right)^{m_{\mathbf{k}_{\mathbf{v}}}} \Phi_0. \tag{2.20}
$$

Below we show that this is actually the ground state of $H_{\text{OP}}(\mathbf{v})$. For a given **v** let K' denote the set of **k** vectors such that $s_k > 0$. We will suppose that

$$
\max_{\mathbf{k}\in\mathcal{K}'} w_{kk} < 2 \min_{\mathbf{k}\in\mathcal{K}'} w_{kk} \equiv 2w_{\mathcal{K}'} \tag{2.21}
$$

which trivially holds in Bogoliubov's approximation. From (2.12), for any $\mathbf{k}, \mathbf{k}' \in \mathcal{K}', \mathbf{k} \neq \mathbf{k}'$,

$$
w_{kk'} \geqslant 2w_{\mathcal{K}'}.\tag{2.22}
$$

In our search for the minimum of $E_v{j_k}$ we can set $j_k = 0$ for **k** outside K' . We have

$$
E_{\mathbf{v}}\{j_{\mathbf{k}}\} \geqslant E_{\mathcal{K}'}\{j_{\mathbf{k}}\},\tag{2.23}
$$

where

$$
E_{\mathcal{K}'}\{j_{\mathbf{k}}\} = -\sum_{\mathbf{k}} s_{\mathbf{k}} j_{\mathbf{k}} + \sum_{\mathbf{k}} w_{kk} j_{\mathbf{k}}^2 + 2w_{\mathcal{K}'} \sum_{\mathbf{k} \neq \mathbf{k}'} j_{\mathbf{k}} j_{\mathbf{k}'}, \quad (2.24)
$$

with summations over K' . Define

$$
t_k = \frac{w_{K'}}{2w_{K'} - w_{kk}}.\t(2.25)
$$

With the assumption [\(2.21\),](#page-1-0) $1 \le t_k < \infty$ for each $\mathbf{k} \in \mathcal{K}'$. Minimization of (2.24) w.r.t. each j_k yields

$$
j_{\mathbf{k}} = 2t_k \sum_{\mathbf{q} \in \mathcal{K}'} j_{\mathbf{q}} - \frac{s_{\mathbf{k}} t_k}{2w_{\mathcal{K}'}}, \quad \mathbf{k} \in \mathcal{K}'. \tag{2.26}
$$

This set of equations has a unique solution for j_k , and some of them may be negative. If this is the case, the set of **k** vectors must be restricted to a subset K'' of K' , $w_{K'}$ replaced by $w_{K''}$ and the minimization restarted. [Equations (2.21) – (2.22) are valid for $K'' \subset K'$.] Let K be (any of) the largest subset(s) of K' such that for each $\mathbf{k} \in \mathcal{K}$ the solution of the minimization for j_k is positive. Let m_k be this solution. With the notation $M = \sum_{\mathcal{K}} m_{\mathbf{k}},$

$$
m_{\mathbf{k}} = 2t_k M - \frac{s_{\mathbf{k}}t_k}{2w_{\mathcal{K}}},\tag{2.27}
$$

where t_k is now defined with w_K . From here, by summation over K we obtain

$$
M = \frac{1}{2w_{\mathcal{K}}(2\sum t_k - 1)} \sum_{\mathbf{k}} s_{\mathbf{k}} t_k.
$$
 (2.28)

Insertion of the last two expressions into $E_K{m_k}$ results in

$$
E_{\mathcal{K}}\{m_{\mathbf{k}}\} = -\frac{\sum_{\mathbf{k},\mathbf{q}} t_{k} t_{q} s_{\mathbf{k}} s_{\mathbf{q}}}{2w_{\mathcal{K}}(2\sum t_{k}-1)} + \frac{\sum_{\mathbf{k}} t_{k} s_{\mathbf{k}}^{2}}{4w_{\mathcal{K}}}.
$$
 (2.29)

Applying the inequality $s_q s_k \leqslant (s_q^2 + s_k^2)/2$, we arrive at

$$
E_{\mathcal{K}}\{m_{\mathbf{k}}\} \geqslant -\frac{\sum_{\mathbf{k}} t_{k} s_{\mathbf{k}}^{2}}{4w_{\mathcal{K}}(2 \sum t_{k} - 1)}
$$
\n
$$
\geqslant -\frac{\sum_{\mathbf{k}} t_{k} w_{k k}}{w_{\mathcal{K}}(2 \sum t_{k} - 1)} \max_{\mathbf{k} \in \mathcal{K}} \frac{s_{\mathbf{k}}^{2}}{4w_{k k}}
$$
\n
$$
\geqslant \frac{\sum t_{k} w_{k k}}{w_{\mathcal{K}}(2 \sum t_{k} - 1)} E_{\mathbf{v}}(\mathbf{k}_{\mathbf{v}}, m_{\mathbf{k}_{\mathbf{v}}})
$$
\n
$$
= \left[1 - \frac{\ell - 1}{2 \sum t_{k} - 1}\right] E_{\mathbf{v}}(\mathbf{k}_{\mathbf{v}}, m_{\mathbf{k}_{\mathbf{v}}}), \qquad (2.30)
$$

where ℓ is the number of vectors in \mathcal{K} . This shows that the minimum is attained with $\ell = 1$. We thus conclude that the unique ground state of $H_{OP}(v)$ is [\(2.20\)](#page-1-0) with eigenvalue w_0 + $E_{\bf{v}}({\bf{k}}_{\bf{v}},m_{\bf{k}_{\bf{v}}})$. This conclusion is valid in a velocity interval whose lower edge is that *v* beyond which $\max_k \{h v k - e_k\}$ becomes positive; this value is identified with the superfluid critical velocity. We think that the condition (2.21) could be removed; however, the proof would be more lengthy.

It is useful to rewrite the above formulas in terms of densities. For a fixed *v* greater than the critical velocity and (2.31)

any $k > e_k/\hbar v$, **k** parallel to **v**, substituting w_{kk} from Eq. [\(2.10\)](#page-1-0) we find

and

 $\epsilon_v(k)$

$$
\begin{aligned} \n\sigma_{\mathbf{k}} &= \lim_{V \to \infty} \frac{E_v(k, m_{\mathbf{k}})}{V} \\ \n&= (e_k - \hbar v k) \sigma_{\mathbf{k}} + \frac{1}{2} v \left(1 + 6 \chi_k^2 \right) \sigma_{\mathbf{k}}^2 \n\end{aligned}
$$

 $\frac{m_{\bf k}}{V} = \frac{\hbar v k - e_k}{v(1 + 6\chi_k^2)}$

$$
= -\frac{(\hbar v k - e_k)^2}{2v(1 + 6\chi_k^2)} = -\frac{v}{2}(1 + 6\chi_k^2)\sigma_k^2.
$$
 (2.32)

Then the equation corresponding to (2.19) is

 $\sigma_{\mathbf{k}} \equiv \lim_{V \to \infty}$

$$
\epsilon_v(k_v, \sigma_{\mathbf{k}_v}) = -\frac{1}{2v} \left[\max_k \frac{\hbar v k - e_k}{\sqrt{1 + 6\chi_k^2}} \right]^2, \quad (2.33)
$$

where $k_v = |\mathbf{k}_v|$.

When varying *v*, the total density of physical particles must be kept fixed. Beyond the critical velocity this renders Φ_0 and, thus, n_0 , n_a , and n' functions of *v*. The mean value of $N_{\mathbf{k}} = a_{\mathbf{k}}^* a_{\mathbf{k}}$ in $\Phi_{m_{\mathbf{k}}}$ can be obtained from

$$
N_{\mathbf{k}} = (1 + h_k)M_{\mathbf{k}} + h_k M_{-\mathbf{k}} + h_k + \chi_k (b_{\mathbf{k}} b_{-\mathbf{k}} + b_{\mathbf{k}}^* b_{-\mathbf{k}}^*).
$$
\n(2.34)

With the notation $\langle N_{\mathbf{k'}} \rangle_{m_{\mathbf{k}}} = \langle \Phi_{m_{\mathbf{k}}} | N_{\mathbf{k'}} | \Phi_{m_{\mathbf{k}}} \rangle$, for $\mathbf{k} \neq \mathbf{0}$ we have

$$
\langle N_{\mathbf{k}} \rangle_{m_{\mathbf{k}}} = (1 + h_k) m_{\mathbf{k}} + h_k,
$$

\n
$$
\langle N_{-\mathbf{k}} \rangle_{m_{\mathbf{k}}} = h_k m_{\mathbf{k}} + h_k,
$$

\n
$$
\langle N_{\mathbf{k'}} \rangle_{m_{\mathbf{k}}} = h_{k'}
$$
 ($\mathbf{k'} \neq \pm \mathbf{k}$). (2.35)

Conservation of the density of physical particles implies

$$
n = n_0 + n' + n_{\mathbf{k}_v} + n_{-\mathbf{k}_v}, \tag{2.36}
$$

where n is the number density that we keep fixed,

$$
n_{\mathbf{k}_{\mathbf{v}}} = \lim_{V \to \infty} \frac{1}{V} \langle N_{\mathbf{k}_{\mathbf{v}}} \rangle_{m_{\mathbf{k}_{\mathbf{v}}}} = (1 + h_{k_v}) \sigma_{\mathbf{k}_{\mathbf{v}}},
$$

\n
$$
n_{-\mathbf{k}_{\mathbf{v}}} = \lim_{V \to \infty} \frac{1}{V} \langle N_{-\mathbf{k}_{\mathbf{v}}} \rangle_{m_{\mathbf{k}_{\mathbf{v}}}} = h_{k_v} \sigma_{\mathbf{k}_{\mathbf{v}}}.
$$
\n(2.37)

Thus, for (not too large) velocities beyond the critical value one has condensation of physical particles at $\mathbf{k} = \mathbf{0}$, \mathbf{k}_v and, to a smaller extent, at −**kv**.

The coexistence of condensates with different wave vectors is accompanied by a density modulation. Indeed, in the Fourier transform of the density operator $\rho_{\bf k} = \sum_{\bf q} a^*_{\bf k+q} a_{\bf q}$ we can replace, *à la* Bogoliubov (and also rigorously Ref. [\[16\]](#page-5-0)), a_0 replace, *a la* Bogoliubov (and also rigorously Ker. [16]), *a*₀ and a^* ₀^{*v*} by $\sqrt{n_0 V}$ and $a_{\pm k_v}$ and $a^*_{\pm k_v}$ by $\sqrt{n_{\pm k_v} V}$. Then we obtain

$$
\frac{\left\|\rho_{\pm \mathbf{k}_{\mathbf{v}}}\Phi_{m_{\mathbf{k}_{\mathbf{v}}}}\right\|}{V} \approx \sqrt{n_0 n_{\mathbf{k}_{\mathbf{v}}}} + \sqrt{n_0 n_{-\mathbf{k}_{\mathbf{v}}}},
$$
\n
$$
\frac{\left\|\rho_{\pm 2\mathbf{k}_{\mathbf{v}}}\Phi_{m_{\mathbf{k}_{\mathbf{v}}}}\right\|}{V} \approx \sqrt{n_{\mathbf{k}_{\mathbf{v}}} n_{-\mathbf{k}_{\mathbf{v}}}}.
$$
\n(2.38)

It is seen that the \mathbf{k}_v density modulation is due to the entanglement of the condensates at $\bf{0}$ and $\pm \bf{k}_v$ and vanishes together with n_0 . On the other hand, the $2k_v$ density wave comes from the coexistence of the condensates at $\pm \mathbf{k}_v$ and decays with n_{-k_v} .

Let us analyze the *v* dependence of σ_{k_v} . This can be inferred from Eqs. (2.31) – (2.33) with the remark that the bounds

$$
0 \leq \sigma_{\mathbf{k}_{\mathbf{v}}} = n_{\mathbf{k}_{\mathbf{v}}} - n_{-\mathbf{k}_{\mathbf{v}}} \leqslant n_{\mathbf{k}_{\mathbf{v}}} \leqslant n \tag{2.39}
$$

must also be respected. It is easy to see that $\sigma_{\mathbf{k}_v}$ attains *n* at a finite velocity v_1 . Indeed, because $|\chi_k|$ tends to zero as *k* increases, without the bound (2.39) energy minimization would lead to the asymptotic (large *v*) results $k_v = mv/\hbar$, $\sigma_{\mathbf{k}_v} = m v^2 / 2 \nu$ and $\epsilon_v(k_v, \sigma_{\mathbf{k}_v}) = -m^2 v^4 / 8 \nu$. With the bound (2.39) we have, instead,

$$
\sigma_{\mathbf{k}_{\mathbf{v}}} \equiv n, \quad \epsilon_{v}(k_{v}, \sigma_{\mathbf{k}_{\mathbf{v}}}) \equiv -\frac{v}{2}n^{2} \quad (v \geq v_{1}), \qquad (2.40)
$$

and the densities n_0 , n' , and $n_{-\mathbf{k}_v}$ vanish at respective velocities $v_0, v', v_- \le v_1$ which may be different, and the largest of them equals *v*₁. If *v*₀ \neq *v*_−, the two density modulations [\(2.38\)](#page-2-0) disappear at different velocities. For $v \ge v_1$ the quasiparticles coincide with the physical ones, and $H_{OP}(v)$ goes over into the Hamiltonian of the so-called full diagonal model,

$$
H_{\rm FD}(\mathbf{v}) = \sum_{\mathbf{k}} [\varepsilon(k) - \hbar \mathbf{v} \cdot \mathbf{k}] N_{\mathbf{k}} + \frac{\nu}{2V} (N^2 - N)
$$

$$
+ \frac{1}{2V} \sum_{\mathbf{k} \neq \mathbf{k}'} \nu(\mathbf{k} - \mathbf{k}') N_{\mathbf{k}} N_{\mathbf{k}'}, \tag{2.41}
$$

studied earlier without the external velocity field [\[17\]](#page-5-0). Accordingly, k_v is the solution for k of the equation

$$
f(v,k) \equiv \hbar v k - \varepsilon(k) = v n \quad (v \ge v_1). \tag{2.42}
$$

At $v = v_1$, k_v still can be determined also from energy minimization. This provides a second equation,

$$
\partial_k f(v,k) = 0,\tag{2.43}
$$

which, together with Eq. (2.42) , can be used to compute v_1 and $k_1 \equiv k_{\nu_1}$. Introducing

$$
c = \sqrt{vn/m},\tag{2.44}
$$

the solution of Eqs. (2.42) and (2.43) is

$$
v_1 = \sqrt{2}c, \quad \hbar k_1 = m v_1. \tag{2.45}
$$

In the actual model the saturation of the QP and energy densities occurs with a discontinuous derivative: the left-sided *v* derivative of $\sigma_{\mathbf{k}_v}$ and of $\epsilon_v(k_v, \sigma_{\mathbf{k}_v})$ is nonzero at $v = v_1$; see also the end of Sec. III.

The velocity v_1 not only marks density saturation, it is also a bifurcation point for k_v ; see Fig. 1. For $v > v_1$, k_v is determined from Eq. (2.42), and *not* from energy minimization. The two solutions $k_{\pm}(v)$ are

$$
\frac{\hbar k_{\pm}}{mv} = 1 \pm \sqrt{1 - 2\left(\frac{c}{v}\right)^2} \quad (v > v_1). \tag{2.46}
$$

In this way, at v_1 there is a (second) quantum phase transition: Between $v = 0$ and $v = v_1$ the ground state of $H_{OP}(v)$ is unique, but there is a first quantum phase transition at the superfluid critical velocity (*c* in Bogoliubov's approximation). For $v > v_1$, the ground states of $H_{OP}(v)$ form a two-dimensional subspace. In Eq. (2.46) the plus sign corresponds to a pure

FIG. 1. (Color online) Variation of the wave number k_v as a function of the velocity v ; see Eqs. (2.33) and (2.46) .

condensate with an ever-increasing momentum density. The minus sign corresponds to a pure condensate with a vanishing momentum density *nhk*_−, where $k_-\approx mc^2/v$ as *v* tends to infinity. Along this solution momentum transfer to the system is a resonance phenomenon with a peak at v_1 . The phase transition itself is subject to interpretation; it may signify the onset of turbulence. Note that there is no density modulation at velocities above *v*1.

III. QUASIPARTICLE CONDENSATE DENSITY CLOSE TO THE CRITICAL VELOCITIES

The macroscopic condensation of quasiparticles at \mathbf{k}_v takes place independently of our use for e_k of the gapful formula [\(2.6\)](#page-1-0) or of its Bogoliubov approximation [\(2.9\).](#page-1-0) We start the discussion using Eq. (2.6) . In this case QP excitation is initiated by mode softening at a critical velocity *c'* and wave number $k' > 0$. While this occurs here due to the gap, an inflection point in the dispersion relation or a local minimum outside the origin (cf. roton mode) can also result in such a situation. At criticality $e_k = \hbar v k$ has a unique solution for *v* and *k*:

$$
c' = \sqrt{\frac{\nu(n_0 + n_a)}{m}} \left(1 + 2 \frac{\sqrt{n_0 n_a}}{n_0 + n_a} \right)^{1/2},
$$

\n
$$
k' = 2 \frac{\sqrt{\nu m}}{\hbar} (n_0 n_a)^{1/4},
$$
\n(3.1)

where n_0 and n_a are the values at $v = 0$, still unchanged at $v = c'$. If $v > c'$, then $k_v > k'$ can be large enough (for n_0) large) so that $h_{k_v} \approx 0$ hold true. Then $w_{k_v k_v} \approx v/2V$, and k_v is obtained from the maximum of $\hbar v k - e_k$. To leading order in $v - c'$,

$$
k_v = k' + \hbar (v - c')/e''_{k'},
$$
\n(3.2)

$$
\sigma_{\mathbf{k}_{\mathbf{v}}} = \frac{\hbar k' c'}{2\nu} \bigg(\frac{\nu}{c'} - 1 \bigg),\tag{3.3}
$$

and $E_v(\mathbf{k}_v, m_{\mathbf{k}_v})/V = -\frac{(\nu/2)\sigma_{\mathbf{k}_v}^2}{\sigma_{\mathbf{k}_v}^2}$. The above treatment is meaningful if the interval (c', v_1) is nonempty, that is, if $2\sqrt{n_0n_a} < n_0 + 2n' - n_a$, which holds if, say, $n_a/n_0 < 0.1$.

Next, we use the Bogoliubov approximation [\(2.9\)](#page-1-0) of *ek*. This is based on the assumption that $n_0 \approx n$ below the critical velocity. Since e_k is a convex function of k and

$$
e_k = \hbar k \sqrt{\nu n/m} + O(k^2)
$$
 (3.4)

near $k = 0$, the critical velocity at which quasiparticle excitations appear is *c* given by [\(2.44\);](#page-3-0) see Fig. [1.](#page-3-0)

To minimize the energy density we need χ_k^2 . From Eqs. (3.29), (4.14), and (4.20) of Ref. [\[13\]](#page-5-0), and assuming $n' \ll n_0$,

$$
h_k \approx \frac{\nu n_0 + \varepsilon(k)}{2e_k} - \frac{1}{2}.\tag{3.5}
$$

Here and below n_0 is the *v*-dependent value for $v > c$. Note that the convergence of h_k to zero with either k going to infinity or *νn*₀ going to zero can be seen on this formula. If $c < v \ll 2c$, k_v will be close to zero and n_0 close to *n*, so

$$
h_k \approx -\chi_k \approx \frac{mc}{2\hbar k}.\tag{3.6}
$$

Substituting (2.9) and (3.6) into Eq. (2.32) , keeping the terms of the order of k^4 and k^6 and minimizing with respect to k we find

$$
k_v = \sqrt{\frac{8}{3}} \frac{mc}{\hbar} \sqrt{\frac{v}{c} - 1},\tag{3.7}
$$

$$
\epsilon_v(k_v, \sigma_{\mathbf{k}_v}) = -\frac{64}{27} \nu n^2 \left(\frac{v}{c} - 1\right)^4,\tag{3.8}
$$

and

$$
\sigma_{\mathbf{k}_{\mathbf{v}}} = \frac{2}{3} \left(\frac{8}{3}\right)^{3/2} n \left(\frac{v}{c} - 1\right)^{5/2}.
$$
 (3.9)

We still have to verify the consistency of the assumptions $2\nu n_0 n_a \ll \varepsilon(k_\nu)(n_0 + n_a)$ and $n_a \ll n_0$ which were at the origin of the Bogoliubov approximation. From (3.7),

$$
\varepsilon(k_v) = \frac{4}{3}mc^2 \left(\frac{v}{c} - 1\right) = \frac{4}{3}vn \left(\frac{v}{c} - 1\right), \quad (3.10)
$$

so the lower bound on the velocity reads

$$
\frac{v}{c} - 1 \gg \frac{3}{2} \frac{n_0 n_a}{n(n_0 + n_a)},
$$
\n(3.11)

which is consistent with $v \ll 2c$ if $n_a \ll n_0$. This, however, holds true if the interaction is weak enough. There is also an absolute upper bound, $v/c - 1 \leqslant 3/2^{11/5}$, coming from $\sigma_{\mathbf{k}_{\mathbf{v}}} \leq n$ which can be read off from Eq. (3.9). However, the applicability of this formula does not extend up to this velocity.

For the Bogoliubov approximation at a somewhat larger *v* but still close to *c* we can again suppose $n_0 \approx n$, $h_k = 0$, $w_{kk} = v/2V$ to compute k_v and σ_{k_v} . Thus,

$$
\sigma_{\mathbf{k}} = \frac{\hbar v k - e_k}{v},\tag{3.12}
$$

$$
\epsilon_v(k,\sigma_{\mathbf{k}}) = -(\nu/2)\sigma_{\mathbf{k}}^2,\tag{3.13}
$$

and k_v is determined by the maximum of $\hbar v k - e_k$. This latter is attained for $\varepsilon = \varepsilon(k)$ satisfying the equation

$$
\varepsilon^2 + (2mc^2 - mv^2/2)\varepsilon = m^2c^2(v^2 - c^2). \tag{3.14}
$$

Suppose that

$$
\varepsilon \ll 2mc^2 - mv^2/2. \tag{3.15}
$$

Then

$$
\varepsilon(k_v) = \frac{\hbar^2 k_v^2}{2m} \approx mc^2 \frac{(v/c)^2 - 1}{2 - (v/c)^2/2},
$$
 (3.16)

from which we get

$$
k_v = \frac{\sqrt{2}mc}{\hbar\sqrt{1 - (v/2c)^2}}\sqrt{\frac{v}{c} - 1}.
$$
 (3.17)

Under the condition (3.15), $e_{k_v} \approx \hbar c k_v$, yielding

$$
\sigma_{\mathbf{k}_{\mathbf{v}}} \approx 2\sqrt{\frac{2}{3}} \frac{mc^2}{\nu} \left(\frac{v}{c} - 1\right)^{3/2} = 2\sqrt{\frac{2}{3}} n \left(\frac{v}{c} - 1\right)^{3/2}.
$$
 (3.18)

The interval of *v* in which this law makes sense can be deduced from (3.15) and (3.16) . From the first we see that $v < 2c$; the comparison of the two gives $v \ll \sqrt{2}c = v_1$. Moreover, if α is the largest value of v/c for the applicability of (3.5) to $k = k_v$ given by (3.7), and β is the lowest value of v/c for which $h_{k_v} = 0$ is a good approximation *and* (3.15) and (3.16) are compatible, then both

$$
1 < \alpha < \beta < \sqrt{2}, \quad \frac{4}{3}(\alpha - 1) < \frac{\beta^2 - 1}{2 - \beta^2 / 2} \tag{3.19}
$$

must hold. The second inequality follows from the monotonic growth of k_v and, hence, of $\varepsilon(k_v)$ with v. At $\beta = \sqrt{2}$ the second inequality holds for α < 1.75, indicating that (3.19) can easily be satisfied.

Somewhat more can be said about $\sigma_{\mathbf{k}_v}$ if we suppose $h_k =$ $\chi_k = 0$ for all $v \geq c$. In general, between *c* and v_1 , k_v is an invertible function of *v*. Let v_k be its inverse. If we set $\chi_k = 0$, then both k_v and v_k can be computed from the equation

$$
\partial_k[\hbar v k - \sqrt{\varepsilon(k)^2 + 2\nu n_0 \varepsilon(k)}] = 0. \tag{3.20}
$$

Solving this equation for *v*, we find

$$
v_k = \sqrt{\frac{2}{m}} \frac{\varepsilon(k) + \nu n_0}{\sqrt{\varepsilon(k) + 2\nu n_0}}.
$$
 (3.21)

Let

$$
\sigma(k) = \frac{1}{\nu} [\hbar k v_k - \sqrt{\varepsilon(k)^2 + 2\nu n_0 \varepsilon(k)}];\tag{3.22}
$$

this is just $\sigma_{\mathbf{k}v}$ if $k_v = k$. Substituting (3.21) into (3.22) and setting $n_0 = n - \sigma(k)$ which is now the case, we arrive at the implicit equation

$$
\nu \sigma(k) = \frac{\varepsilon(k)^{3/2}}{[\varepsilon(k) + 2\nu n - 2\nu\sigma(k)]^{1/2}}.
$$
 (3.23)

From here, for *k* small, i.e., *v* close to *c*,

$$
\sigma_{\mathbf{k}_{\mathbf{v}}} = \frac{1}{\sqrt{2n}} \left(\frac{\varepsilon(k_v)}{v} \right)^{3/2},\tag{3.24}
$$

to be compared with (3.17) and (3.18) . On the other hand, observing that $\nu n = \varepsilon(k_1)$, it is seen that for *v* smaller than but close to v_1 , $\sigma_{\mathbf{k}_v}$ satisfies the equation

$$
\sigma_{\mathbf{k}_{\mathbf{v}}} = n - \frac{\hbar v_1}{\nu} (k_1 - k_v) \approx n - \frac{m v_1}{\nu} (v_1 - v), \qquad (3.25)
$$

so that

$$
\left(\frac{d\sigma_{\mathbf{k}_{\mathbf{v}}}}{dv}\right)_{v=v_1-0} = \frac{mv_1}{v}.\tag{3.26}
$$

IV. SUMMARY

In this paper we applied a variational quasiparticle theory to study the ground state of a Bose system exposed to a constant external velocity field. We have shown that at small velocities the energy minimum for the variational ansatz occurs at zero quasiparticle excitation, meaning the persistence of a pure superfluid state at zero temperature. Crossing the Landau critical velocity a quasiparticle condensate is formed with spectacular consequences. The condensation takes place into a one-particle state of momentum \mathbf{k}_v which is parallel to the velocity **v** and whose magnitude is determined by the energy minimum. The quasiparticle condensation deeply influences the distribution of real particles. Apart from the original BEC in the $\mathbf{k} = \mathbf{0}$ one-particle state, two more condensates appear, a dominant one in the plane wave state \mathbf{k}_v and another one of a smaller density at −**kv**. The coexistence of these condensates leads to density modulations characterized by the wave vectors

- [1] F. M. Lifshitz and L. P. Pitaevskii, *Statistical Physics*, Part 2 (Pergamon Press, Oxford, 1980).
- [2] R. P. Feynman, in *Progress in Low Temperature Physics*, edited by C. J. Gorter, Vol. 1 (North Holland, Amsterdam, 1955), Chap. II, pp. 17–53.
- [3] T. Winiecki, B. Jackson, J. F. McCann, and C. S. Adams, [J. Phys.](http://dx.doi.org/10.1088/0953-4075/33/19/317) B **33**[, 4069 \(2000\).](http://dx.doi.org/10.1088/0953-4075/33/19/317)
- [4] F. Ancilotto, F. Dalfovo, L. P. Pitaevskii, and F. Toigo, Phys. Rev. B **71**[, 104530 \(2005\).](http://dx.doi.org/10.1103/PhysRevB.71.104530)
- [5] D. R. Allum, P. V. E. McClintock, and A. Phillips, [Philos. Trans.](http://dx.doi.org/10.1098/rsta.1977.0008) [R. Soc. London A](http://dx.doi.org/10.1098/rsta.1977.0008) **284**, 179 (1977).
- [6] C. Raman, M. Köhl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz, Z. Hadzibabic, and W. Ketterle, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.83.2502) **83**, 2502 (1999).
- [7] R. Onofrio, C. Raman, J. M. Vogels, J. R. Abo-Shaeer, A. P. Chikkatur, and W. Ketterle, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.85.2228) **85**, 2228 (2000).
- [8] P. O. Fedichev and G. V. Shlyapnikov, [Phys. Rev. A](http://dx.doi.org/10.1103/PhysRevA.63.045601) **63**, 045601 [\(2001\).](http://dx.doi.org/10.1103/PhysRevA.63.045601)
- [9] P. Navez and R. Graham, Phys. Rev. A **73**[, 043612 \(2006\).](http://dx.doi.org/10.1103/PhysRevA.73.043612)

 \mathbf{k}_v and $2\mathbf{k}_v$. In the present model, the density of the condensate at \mathbf{k}_v attains the full density at a finite velocity v_1 ; necessarily, the condensates at $\mathbf{k} = \mathbf{0}$ and $\mathbf{k} = -\mathbf{k}_v$ and the two density modulations together with them vanish here, if not already at smaller velocities. At v_1 our model exhibits a bifurcation of **kv**, with one solution increasing and the other one decaying as *v* tends to infinity. The bifurcation is due to the fact that \mathbf{k}_v is determined by density saturation, when $v > v_1$. A general ground state is then a superposition of the two pure condensates, corresponding to the two solutions for \mathbf{k}_v . There is no density modulation in these states.

ACKNOWLEDGMENTS

We thank Gergely Szirmai for numerical assistance. This work was supported by the Hungarian Science Foundation through OTKA Grant No. 77629.

- [10] D. E. Miller, J. K. Chin, C. A. Stan, Y. Liu, W. Setiawan, C. Sanner, and W. Ketterle, Phys. Rev. Lett. **99**[, 070402 \(2007\).](http://dx.doi.org/10.1103/PhysRevLett.99.070402)
- [11] L. P. Pitaevskii, JETP Lett. **39**, 423 (1984).
- [12] L. A. Melnikovsky, Phys. Rev. B **84**[, 024525 \(2011\),](http://dx.doi.org/10.1103/PhysRevB.84.024525) and references therein.
- [13] A. Sütő and P. Szépfalusy, [Phys. Rev. A](http://dx.doi.org/10.1103/PhysRevA.77.023606) 77, 023606 [\(2008\).](http://dx.doi.org/10.1103/PhysRevA.77.023606)
- [14] J. G. Valatin and D. Butler, [Nuovo Cimento](http://dx.doi.org/10.1007/BF02859603) **10**, 37 (1958).
- [15] Some arguments in favor of this treatment of BEC, in contrast to Ref. [14], was presented in Ref. [13]. The shift is necessary also for the diagonalizability of the so-called pair Hamiltonian, see C. J. Pethik and D. ter Haar, Phys. Lett. **19**[, 20 \(1965\).](http://dx.doi.org/10.1016/0031-9163(65)90946-7)
- [16] E. H. Lieb, R. Seiringer, and J. Yngvason, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.94.080401) **94**, [080401 \(2005\);](http://dx.doi.org/10.1103/PhysRevLett.94.080401) A. Sütő, *ibid.* 94[, 080402 \(2005\).](http://dx.doi.org/10.1103/PhysRevLett.94.080402)
- [17] T. C. Dorlas, J. T. Lewis, and J. V. Pulé, [Commun. Math. Phys.](http://dx.doi.org/10.1007/BF02096732) **156**[, 37 \(1993\);](http://dx.doi.org/10.1007/BF02096732) T. C. Dorlas, Ph. A. Martin, and J. V. Pule,´ J. Stat. Phys. 121[, 433 \(2005\);](http://dx.doi.org/10.1007/s10955-005-7582-0) A. Sütő, *[Phys. Rev. A](http://dx.doi.org/10.1103/PhysRevA.71.023602)* 71, 023602 [\(2005\).](http://dx.doi.org/10.1103/PhysRevA.71.023602)