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Attraction of the quantum particle to the center in three-dimensional space with potential −V0r
−2 gives rise to

the quantum collapse, i.e., nonexistence of the ground state (GS) when the attraction strength exceeds a critical
value [(V (cr)

0 )1 = 1/8, in the present notation]. Recently, we have demonstrated that the quantum collapse is
suppressed and the GS is restored if repulsive interactions between particles in the quantum gas are taken into
account in the mean-field approximation. This setting can be realized in a gas of dipolar molecules attracted to
the central charge, with dipole-dipole interactions taken into regard as well. Here we analyze this problem for a
binary gas. GSs supported by the repulsive interactions are constructed in a numerical form, as well as by means
of analytical approximations for both miscible and immiscible binary systems. In particular, the Thomas-Fermi
approximation is relevant if V0 is large enough. It is found that the GS of the miscible binary gas, both balanced and
imbalanced, features a weak phase transition at another critical value, (V (cr)

0 )2 = 1/2 ≡ 4(V (cr)
0 )1. The transition

is characterized by an analyticity-breaking change in the structure of the wave functions at small r . To illustrate
the generic character of the present phenomenology, we also consider the binary system with attraction between
the species (rather than repulsion) in the case when the central potential pulls a single component only.
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I. INTRODUCTION

Attractive potential U (r) = −V0r
−2 plays a critical role for

the effect of the quantum collapse (also known as “fall onto the
center”) in three-dimensional (3D) space [1]: If V0 exceeds a
critical value [it is V

(cr)
0 = 1/8 in the notation adopted below;

see Eqs. (2)], the corresponding 3D Schrödinger equation fails
to produce the ground state (GS; loosely speaking, in this case
the energy of the GS collapses to E → −∞). This critical
feature is explained by the fact that the quantization breaks the
scaling invariance of the classical counterpart of the present
quantum setting. The effect is also known as the quantum
anomaly, or “dimensional transmutation” [2].

A solution of the problem of the missing GS was elaborated
in terms of the linear quantum field theory, which, by means of
the renormalization procedure, postulated the existence of the
GS with an arbitrary spatial size [2]. A different approach was
recently proposed in our work [3], which considered, in terms
of the mean-field approximation, a bosonic gas (rather than the
single particle) pulled to the center by potential −V0r

−2 and
took into account the collision-induced repulsive nonlinearity
in the corresponding Gross-Pitaevskii equation (GPE) [4]. The
physical realization of the setting is possible in ultracold gases
of molecules carrying a permanent electric dipole moment
d (such as LiCs [5] and KRb [6]), which are attracted by
electric charge Q placed at the center (it may be an ion held
by an optical trapping potential [7]). In this case, the attraction
constant is

V0 = |Q|d. (1)

Alternatively, it is possible to use an atomic gas in a long-
lived excited state (such as a “frozen” low-lying Rydberg state
[8,9], in which the permanent dipole moment grows with the
principal quantum number n as n2); to additionally stabilize
the gas of excited atoms, one may pump it by a resonant
laser field [10]. The analysis reported in Ref. [3] took into

account the dipole-dipole interaction in the gas too, also in the
framework of the mean-field approximation, which amounts
to an effective renormalization (increase) of the strength of the
contact nonlinearity. As a result, it has been demonstrated that
the repulsive nonlinearity suppresses the quantum collapse at
all values of V0, restoring the GS. An estimate with relevant
values of physical parameters demonstrates that the radius
of the resurrected GS may be a few microns. In Ref. [11],
the analysis was extended for the dipolar gas polarized by a
strong uniform dc field, with the spatial symmetry reduced
from spherical to cylindrical.

In Ref. [3], the same problem was considered in the
two-dimensional (2D) geometry, where, in the framework
of the linear Schrödinger equation, the attractive potential
−V0r

−2 leads to the collapse at any finite value of V0. In
addition to the above-mentioned physical implementations,
the 2D gas subject to the action of this potential may be
composed of polarizable atoms without a permanent dielectric
moment, while an effective moment is induced in them by the
electric field of a uniformly charged wire set perpendicular
to the system’s plane [12], or with an effective magnetic
moment induced by a current filament set in the perpendicular
direction [3]. However, the cubic repulsive nonlinearity is too
weak to suppress the quantum collapse in the 2D setting; only
the quintic term (if it is physically relevant) is strong enough
for that purpose [3]. Indeed, the experimental realization of
the above-mentioned quasi-2D system of polarizable atoms
attracted to the charged wire has demonstrated a collapse-like
behavior [13]. Furthermore, if a gas is tightly confined near the
2D plane by a strong trapping potential acting in the transverse
direction, then in the limit of large density, the underlying cubic
nonlinearity is effectively transformed into that with power
7/3 [14], which is still weaker. On the other hand, in the same
limit the underlying quintic term will be transformed into one
with power 11/3, which is sufficient for the suppression of the
quantum collapse and rebuilding the GS.
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The objective of the present work is to extend the analysis
of the suppression of the quantum collapse for the binary
gas, which combines the intraspecies repulsion with the
interaction between two species, the relative strength of the
interspecies repulsion being γ [see Eqs. (2) below]. It is well
known that γ can be adjusted by means of the Feshbach
resonance controlled by external fields [15,16]. This, in turn,
allows one to switch the binary system between regimes
of miscibility at γ < 1 and immiscibility at γ > 1 [17,18].
The point of the miscibility-immiscibility transition may be
shifted from γ = 1 to γ > 1 by external confinement [19,20]
and by linear mixing between the species [19,21], including
the mixing which represents the effective spin-orbit coupling
in binary condensates [22]. The immiscibility leads to the
phase separation of binary condensates and formation of
domain walls in the 1D geometry [23]. In 2D and 3D
settings, domain walls often form circular or spherical shells,
respectively [24].

In this work, we construct spherically symmetric GSs
pulled to the center by potential −V0r

−2, which acts on
both species or a single one in the binary quantum gas.
The GSs are stabilized against the collapse by the repulsive
nonlinearity (in the case when the single species carries the
dipolar moment pulled to the central charge, the interspecies
interaction must be attractive, corresponding to γ < 0, rather
than repulsive). The GSs are constructed in miscible and
immiscible settings alike. In the case of immiscibility, we could
identify phase-separated structures in the form of spherically
symmetric shells but not sectors (e.g., for equal norms of
the immiscible components, we have not found states in the
form of two hemispheres separated by a flat domain wall).
In the miscible binary gas, two critical values of V0 are
found. One is (Ṽ (cr)

0 )2 = 1/2 ≡ 4V
(cr)

0 (recall V (cr)
0 = 1/8 is the

value at which the GS breaks down in the linear Schrödinger
equation) in both the balanced and imbalanced miscible gases,
i.e., the gases with equal or different norms of the two
components. At V0 = 1/2, the coupled GPEs feature a breakup
of the analyticity and a change in the structure of the GS
wave function at r → 0 (nevertheless, the GS exists equally
well at V0 < 1/2 and V0 > 1/2). The imbalanced miscible
gas (with γ < 1) gives rise to an additional critical value,
(V (cr)

0 )3 = (1/2)(1 + γ )/(1 − γ ), which we consider only
briefly.

The rest of the paper is organized as follows. The model
is formulated in Sec. II, which also includes an analysis of
the asymptotic form of the wave functions. In Sec. III, basic
numerical results are reported for the miscible and immiscible
settings, along with additional approximate analytical results,
including the Thomas-Fermi (TF) approximation, which is
relevant in the case of large V0. In Sec. IV, we consider the
system with the single component pulled to the center and
attractive, rather than repulsive, interspecies interaction (γ <

0). The paper is concluded in Sec. V.

II. FORMULATION OF THE MODEL AND ANALYTICAL
CONSIDERATIONS

The self-repulsive binary condensate pulled to the center
by the attractive potential is described by the coupled GPEs,

written here in the scaled form, following Ref. [3]:

i
∂φ1

∂t
= −1

2
∇2φ1 + (|φ1|2 + γ |φ2|2)φ1 − V0

r2
φ1,

(2)

i
∂φ2

∂t
= −1

2
∇2φ2 + (γ |φ1|2 + |φ2|2)φ2 − V0

r2
φ2

(in Ref. [3], the strength of the attractive potential was
defined as U0 ≡ 2V0), where γ is the relative strength of the
interspecies repulsion, while coefficients of the self-repulsion
are scaled to be 1. Spherically symmetric stationary states with
chemical potential μn, n = 1,2, are looked for as

φn(r,t) = r−1χn(r) exp(−iμnt), (3)

where χn(r) are real functions obeying the coupled equations

μ1χ1 = −1

2
χ ′′

1 − V0

r2
χ1 + (

χ2
1 + γχ2

2

)χ1

r2
,

(4)

μ2χ2 = −1

2
χ ′′

2 − V0

r2
χ2 + (

χ2
2 + γχ2

1

)χ2

r2
.

In terms of functions χn(r), the norms of the wave functions
are

Nn ≡
∫

|φn(r)|2dr = 4π

∫ ∞

0
[χn(r)]2dr, (5)

and the average squared radial size of the trapped mode is〈
r2
n

〉 =
∫ ∞

0 [χn(r)]2r2dr∫ ∞
0 [χn(r)]2dr

. (6)

An expansion of solutions to Eqs. (4) at r → 0 is looked
for as [3]

χn(r) = χ (0)
n

[
1 − c(1)

n rs/2 − c(2)
n rs/2+2 + · · ·

− d (1)
n r2 − d (2)

n r4 + · · · ], (7)

with a positive power, s > 0 (here, c1 �= c2 is possible, but
power s must be the same for χ1 and χ2). The terms ∼
c(1,2,...)
n and d (1,2,...)

n are produced, respectively, by terms on
the right- and left-hand sides of Eqs. (4). The leading-order
(most singular) terms, ∼r−2, produced by the substitution of
Ansatz (7) into Eqs. (4), lead to a system of algebraic relations
for coefficients χ (0)

n :

χ
(0)
1

[(
χ

(0)
1

)2 + γ
(
χ

(0)
2

)2] = V0χ
(0)
1 ,

(8)
χ

(0)
2

[(
χ

(0)
2

)2 + γ
(
χ

(0)
1

)2] = V0χ
(0)
2 .

Obviously, Eqs. (8) may have solutions of two types, corre-
sponding to miscible and immiscible states, respectively:

χ
(0)
1 = χ

(0)
2 ≡ χ (0)

misc =
√

V0/(1 + γ ); (9)

χ
(0)
1 ≡ χ (0)

immisc =
√

V0,χ
(0)
2 = 0. (10)

The miscible and immiscible states, which are defined by
relations (9) and (10), are relevant strictly for γ < 1 and
γ > 1, respectively. Our numerical analysis demonstrates that
immiscible modes do not exist at γ < 1, while miscible ones
are completely unstable at γ > 1. Thus, unlike other settings
featuring the miscibility-immiscibility transitions [19,22], in
the present situation the transition point undergoes no shift
from γ = 1.
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In the miscible state, the substitution of Ansatz (7) into
Eqs. (4) identifies two independent next orders, past r−2, in the
expansion at r → 0, namely, rs/2−2 and r0 (constant). These
terms are produced, respectively, by the right- and left-hand
sides of Eqs. (4), as mentioned above. The analysis of the
former order (rs/2−2) yields power s,

s = 1 +
√

1 + 16V0, (11)

with c1 = c2 in Eq. (7), while coefficient c1 itself remains
indefinite in terms of the asymptotic expansion at r → 0 . The
consideration of the latter order (r0) produces coefficients d (1)

n

in Eq. (7):

d (1)
n = μ1 + μ2

2(1 − 2V0)
− (−1)n(μ1 − μ2)

2
(
1 − 2V0

1−γ

1+γ

) . (12)

Furthermore, exactly at the critical point, (V (cr)
0 )2 = 1/2, at

which the first term in expression (12) does not make sense,
expansion (7) for the fully mixed state is replaced by

χn(r) = 1√
2(1 + γ )

[
1 + μ1 + μ2

4
r2 ln

(
r0

r

)
+ (−1)n

1 + γ

4γ
(μ1 − μ2)r2

]
, (13)

where r0 is an arbitrary scale constant in terms of the expansion
at r → 0.

These results demonstrate the breakup of analyticity in
the dependence of the GS wave function on V0 at V0 = 1/2.
Indeed, at V0 < 1/2, i.e., s/2 < 2 [see Eq. (11)], the expansion
of the wave function at r → 0 is dominated by terms ∼rs/2,
while at V0 > 1/2 the power of the leading terms (∼r2) is fixed
to be 2; that is, the nonanalyticity is manifest in the dependence
of the power of the leading term of the expansion on V0. This
conclusion is corroborated in Fig. 1 by the shapes of functions
χ (0) − χ (r) ≡ √

V0 − χ1(r), found from numerical solutions
of Eqs. (4) at γ = 0.9 < 1 at different values of V0. The power
of the first correction to the constant term is given by the
slope of the plots shown on the double-logarithmic scale in
Fig. 1. The slope is indeed equal to 2 at V0 � 1/2, taking
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FIG. 1. Numerically found profiles of stationary wave functions
for Eqs. (4) are shown in the form of χ (0) − χ (r), where χ (0) =√

V0 at γ = 0.9 on the double-log scale for several values of V0,
below and above the weak-phase-transition point, i.e., at V0 < 1/2
and V0 > 1/2, respectively. All the profiles are obtained for the same
norm, N1 = 4π .

smaller values at V0 < 1/2. Note that at V0 > 1/2 terms ∼rs/2

in expansion (7), although they are no longer leading ones, are
essential, as the free coefficient in front of them, c1 = c2, is
necessary to adjust the wave function to the condition of its
exponential decay at r → ∞ [see Eq. (16) below].

Nonanalyticity of structural and correlation functions is
a characteristic feature of phase transitions in many-body
settings, as shown in detail for the Calogero-Sutherland model
[25] and for many other systems [26], including, incidentally,
binary fluids [27]. Therefore, the analyticity breakup observed
in the present model at (V (cr)

0 )2 = 1/2 suggests that the model
undergoes a phase transition at this point, although the GS
exists equally well at V0 < 1/2 and V0 > 1/2. Recall that the
onset of the quantum collapse in the linear version of the model
occurs at the critical value (V (cr)

0 )1 = 1/8 [1], which is a quarter
of (V (cr)

0 )2. In fact, this phase transition is a weak one, as the
structural characteristic of the wave function which features
the loss of the analyticity is a subtle one. Accordingly, it is
shown below (see Fig. 6) that the transition can be seen in a
subtle change of the experimentally observable dependence of
the average radius of the ground state [Eq. (6)] on the attraction
strength V0.

In the general case of the imbalanced miscible gas, with
μ1 �= μ2, Eq. (12) demonstrates that a singularity in the GS
wave function occurs at an additional critical point,(

V
(cr)

0

)
3 = 1

2

1 + γ

1 − γ
>

(
V

(cr)
0

)
2. (14)

Thus, in addition to the phase transition in the balanced or
imbalanced bosonic gas at V0 = 1/2, it is possible to expect
another transition in the imbalanced binary gas at point (14).
Further analysis of this issue is beyond the scope of the present
work.

For the immiscible state, with γ > 1, the expansion of χ1(r)
at r → 0 is built per Eqs. (7), (11), (12), and (13), with μ2

substituted by μ1 in the two latter equations. However, due
to the immiscibility, the expansion is completely different for
wave function χ2(r):

χ2(r) = χ
(1)
2 rs2 ,s2 = 1 +

√
1 + 8 (γ − 1) V0, (15)

which is valid for all values of V0 > 0, while χ
(1)
2 remains an

indefinite constant in terms of the expansion at r → 0.
Finally, at r → ∞ Eqs. (4) yield an exponential asymptotic

form of the solution, which is valid for trapped modes of any
type,

χn(r) ≈ χ (∞)
n

(
1 − V0√−2μnr

)
exp(−

√
−2μnr), (16)

where constants χ (∞)
n are indefinite in terms of the asymptotic

expansion at r → ∞. Obviously, bound states, which we aim
to analyze here, may exist only for negative values of both
chemical potentials, μ1,2 < 0.

III. NUMERICAL AND ADDITIONAL ANALYTICAL
RESULTS FOR TRAPPED BINARY MODES

A. Miscible ground states

Figure 2(a) shows a typical example of the stationary profile
for the miscible GSs produced by a numerical solution of
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FIG. 2. (a) The numerically found profile of stationary wave
functions χ1(r) = χ2(r) at V0 = 1 and γ = 0.9, with N1 = N2 = 4π ,
and a comparison with the exponential analytical approximation given
by Eq. (17) and the TF approximation, Eq. (20) (the short- and
long-dashed lines, respectively). (b) The chain of rhombuses depicts
the numerically found relation between |μ|N2 and V0 at γ = 0.9. The
short- and long-dashed lines represent the approximations provided
by Eqs. (18) and (21), respectively.

Eqs. (4) at V0 = 1 for γ = 0.9 and equal values of the norms
of the two components, N1 = N2 = 4π [see Eq. (5)]. The
full density, |φ(r)|2 = r−2χ2(r) [see Eq. (3)], monotonously
diverges at r → 0 (keeping the total norm convergent).

The simplest global analytical approximation for the wave
function of the GS was proposed in Ref. [3] as an interpolation
between the asymptotic expansions (7), ignoring the correc-
tions ∼rs/2 and r2, and the leading term in expansion (16):

χn(r) ≈ χ (0)
misce

−√−2μnr . (17)

The substitution of this interpolation into Eqs. (5) and (6),
along with expression (9), yields an approximate relation
between the chemical potentials and squared average radius
of two components and their norms:

μn = −2

[
πV0

(1 + γ )Nn

]2

, (18)

〈
r2
n

〉 =
[

(1 + γ )Nn

2πV0

]2

. (19)

Comparison of Eq. (18) with numerical results is shown in
Fig. 2(b) by the dashed line. This approximation is accurate
for sufficiently small V0 but becomes inaccurate for large V0.

For large V0, the TF approximation can be applied to the
balanced mixture, with N1 = N2 ≡ N . In this approximation,

the derivative terms are neglected in Eq. (4), which yields (for
χ1 = χ2 ≡ χ )

χTF(r) =
{√

(V0 + μr2)/(1 + γ ) at r < R0 ≡ √
V0/(−μ),

0 at r > R0.

(20)

The substitution of approximation (20) into Eqs. (5) and (6)
yields the corresponding μTF(N ) and 〈r2

TF〉(N ) relations,

μTF = − 64π2V 3
0

9(1 + γ )2N2
, (21)

〈
r2

TF

〉 = 5

π3

[
3(1 + γ )N

16V0

]2

≡ 5

4π
R2

0, (22)

where N is the norm of one component [recall R0 is the
TF cutoff radius defined in Eq. (20); naturally, the average
radius is smaller than the cutoff value]. Analytical approxi-
mations (17) and (20) (shown by the short- and long-dashed
lines, respectively) are compared with the numerically found
profile of the GS in Fig. 2(b), demonstrating that the TF
approximation provides a good description of the core part of
the GS.

An obvious corollary of Eqs. (4) and (5) is exact scaling
relations between μ, 〈r2〉, and N :

μ ∝ −1/N2, (23)

〈r2〉 ∝ N2 (24)

for fixed V0 and γ ; see particular examples given by
Eqs. (18), (19), (21), and (22). Note that scaling (23) meets the
“anti-Vakhitov-Kolokolov” criterion, which plays the role of
the condition necessary for the stability of localized modes
supported by repulsive nonlinearities [28]. Thus, product
|μ|N2 does not depend on N but does depend on the pull-
to-the-center constant V0. This numerically found dependence
is shown by a chain of rhombuses in Fig. 1(b) on the
double-logarithmic scale. It is seen that |μ|N2 increases with
V0 monotonously. In the same plot, the short- and long-dashed
lines show analytical approximations for the same dependence
given by Eqs. (18) and (21), respectively. It can be concluded
that, quite naturally, the TF approximation works better for
larger V0, while the interpolation (17) is more accurate for
smaller V0.
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FIG. 3. (a) χ1 (solid line) and χ2 (dashed line) components of the imbalanced miscible ground state at V0 = 2 and γ = 0.9, with N1 = 4π

and N2 = 2π . (b) and (c) Comparison of the numerical result (solid lines) with the two-layer TF approximation (dashed lines) for χ1(r) and
χ2(r).
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An example of numerically generated profiles of imbal-
anced miscible GSs is shown in Fig. 3(a) at V0 = 2 and γ = 0.9
for N1 = 4π and N2 = 2π . Imbalanced miscible states with
μ1 �= μ2 and N1 �= N2 are still characterized by equal values of
χ1,2(r = 0), in agreement with Eq. (9), but different constants
d

(1)
1,2 in expansion (7) [see Eq. (12)].

In the case of the strong pull to the center, V0 � 1, the
TF approximation, which has yielded Eqs. (20) and (21)
for the balanced miscible GS, neglecting the derivatives
in Eq. (4), can be generalized for imbalanced states, with
μ1 �= μ2. For the sake of definiteness, we set μ2 � μ1 (i.e.,
|μ1| � |μ2|, as the chemical potentials of the bound states are
negative).

The TF approximation for the imbalanced configuration is
constructed in a two-layer form, technically similar to that
applied to the so-called symbiotic gap solitons in Ref. [29]. In
the inner layer,

r2 < r2
0 ≡ 1 − γ

γμ1 − μ2
V0, (25)

both wave functions are different from zero:

χ (inner)
n (r) =

√
V0

1 + γ
− γμ3−n − μn

1 − γ 2
r2. (26)

In the outer layer, only one component is present in the
framework of the TF approximation, χ2 ≡ 0,

χ
(outer)
1 (r) =

{√
V0 + μ1r2 at r2

0 � r2 � R2
0 ≡ −V0/μ1,

0 at r2 � R2
0 .

(27)

Note that both components of the TF solution, given by
Eqs. (25)–(27), are continuous at r = r0 and r = R0. It is
also worth noting that χ

(inner)
1 (r) is a decreasing or increasing

function of r in the cases of |μ1| < |μ2| < |μ1|/γ and
|μ2| > |μ1|/γ , respectively. The two-layer TF approximation
for a typical imbalanced GS is compared to its numerical
counterpart in Figs. 3(b) and 3(c).

The corresponding approximation for the dependence
between the chemical potentials and norms of the second
component is produced by the straightforward integration of
expression (26) [cf. Eq. (5)]:

N
(TF)
2 (μ1,μ2) = 4π

∫ r0

0

[
χ

(inner)
2 (r)

]2
dr

= 8π

3

√
1 − γ

1 + γ
V

3/2
0 (γμ1 − μ2)−1/2. (28)

The corresponding expression for the norm of the first
component is very cumbersome; therefore we give it here only
for the limit case of N1 � N2, i.e., |μ2| � |μ1|:

N
(TF)
1 ≈ 8π

3
V

3/2
0 (−μ1)−1/2. (29)

Note that dependences (28) and (29) obey the generic scaling
law (23). Expressions for the TF radii of the two imbalanced
components can be derived too [cf. Eq. (22)], but they are very
cumbersome.

B. Immiscible ground states

As stated above, in the case of γ > 1 the relevant states
are immiscible ones, which are approximated, at small r , by
Eqs. (7), (11), (12), and (13) for χ1(r), with μ2 substituted by
μ1 in the two latter equations, and by Eq. (15) for χ2(r).
A generic example of the immiscible GS found at V0 =
1,γ = 1.2, and N1 = N2 = 0.8π is displayed in Fig. 4(a),
and Fig. 4(b) shows the double-logarithmic plot of χ2(r) at
V0 = 1, comparing it to the analytical prediction given by
Eq. (15). Further, Fig. 4(c) displays relations between chemical
potentials and norms of both components of the immiscible
GSs. The dashed curves in Fig. 4(c) verify the validity of
scaling relation (23) in the present case.

The TF approximation produces a two-layer solution for
the immiscible state. In the inner layer,

r2 < r2
0 = (γ − 1)V0

γμ1 − μ2
,

the approximation yields

χ1(r) =
√

V0 + μ1r2, χ2(r) = 0. (30)
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FIG. 4. (a) An example of numerically found profiles χ1(r) and χ2(r) (the solid and dashed lines, respectively) of the immiscible ground state
for V0 = 1,γ = 1.2, and equal norms of the two components, N1 = N2 = 0.8π , while μ1 = −14.2 and μ2 = −0.84. (b) The double-logarithmic
plot of χ2(r). The dashed straight line shows, for the sake of comparison, the analytical prediction provided by Eq. (15). (c) Chains of
symbols depict relations μ1,2(N1,2) for the immiscible ground states at V0 = 1,γ = 1.2. Dashed lines are empiric fits to scaling equation (23),
μ1 = −89/N 2 and μ2 = −5/N 2.
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FIG. 5. Comparison of the numerically found profiles for compo-
nents (a) χ1(r) and (b) χ2(r) of the immiscible ground state, shown in
Fig. 4(a) (solid lines), with the respective TF approximations, given
by Eqs. (30) and (31), respectively (solid lines).

In the outer layer, with r2
0 < r2 < R2

0 = V0/(−μ2), the result
is

χ1(r) = 0, χ2(r) =
√

V0 + μ2r2. (31)

In these solutions, μ1 and μ2 are related to the norms.

N
(TF)
1 (μ1,μ2) = 4π

∫ r0

0
χ1(r)2dr

= 4πr0
μ2 − (2/3)γμ1 − μ1/3

μ2 − γμ1
,

N
(TF)
2 (μ1,μ2) = 4π

∫ R0

r0

χ2
2 (r)dr

= 4π

[
2

3

V
3/2

0√−μ2
−

√
γ − 1

(
V0

(μ2 − γμ1

)3/2

×
(

2

3
μ2 + 1

3
γμ2 − γμ1

)]
.

Figure 5 compares this TF approximation with numerical
results.

C. Characterization of the weak phase transition

Finally, it is relevant to discuss how the weak phase tran-
sition, predicted above at V0 = (Ṽ (cr)

0 )2 ≡ 1/2, may manifest
itself in terms of experimentally measurable quantities. For
this purpose, it is relevant to consider dependences of the GS’s
characteristics on V0 at a fixed value of the norm N , which
is sufficient for the single-component model (this problem
was not considered previously in Ref. [11]). In fact, scaling
relations (23) and (24) demonstrate that these dependences
have the same form at all constant values of N .

In the experiment, the variation of V0 may be possible in a
gas composed of excited atoms: because the dipole moment of
the atom in the Rydberg state scales with the principal quantum
number n as n2, the change n → n + 1 will give rise, according
to Eq. (1), to a relative variation of the attraction constant,
|�V0|/V0 ≈ 2/n, which is small for sufficiently large n.

First, Fig. 6(a) shows that the dependence of the chemical
potential on V0 does not show any visible peculiarity at
V0 = 1/2 (however, the chemical potential is not an observable
quantity). On the other hand, the plot for 〈r2〉 versus V0,
displayed in Fig. 6(b), shows a subtle but observable feature:
the change of the slope of the dependence from −85 to −54

(b)
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19
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FIG. 6. (a) The dependence of the chemical potential on the
attraction strength V0 for a fixed norm, N = 4π , in the miscible state
at γ = 0.9. (b) The dependence of the average squared radius of the
ground state, calculated per Eq. (6), on V0 in the same case. Straight
tangent lines illustrate the change in the slope of the dependence
around the weak-phase-transition point, V0 = 1/2.

(in the scaled units adopted in this work) in the small vicinity
of the phase-transition point, as illustrated by means of the
two tangent lines. Thus the experimental observation of the
size of the ground state may reveal the occurrence of the phase
transition.

IV. THE BINARY SYSTEM WITH THE SINGLE
COMPONENT PULLED TO THE CENTER

Next, we consider the binary system with the attractive
potential −V0/r2 acting only on the first species. In this case,
we adopt the combination of the intraspecies self-repulsion and
attraction between the species, i.e., γ < 0 in the accordingly
modified system of Eqs. (2) and (4):

i
∂φ1

∂t
= −1

2
∇2φ1 + (|φ|2 + γ |φ2|2)φ1 − V0

r2
φ1,

(32)

i
∂φ2

∂t
= −1

2
∇2φ2 + (γ |φ1|2 + |φ2|2)φ2,

μ1χ1 = −1

2
χ ′′

1 − V0

r2
χ1 + (

χ2
1 + γχ2

2

)χ1

r2
,

(33)

μ2χ2 = −1

2
χ ′′

2 + (
χ2

2 + γχ2
1

)χ2

r2
.

Solutions to Eqs. (33) can be again sought for in the form
of expansion (7) at r → 0, which yields, instead of Eqs. (8), a
system of algebraic relations,

χ
(0)
1

[(
χ

(0)
1

)2 + γ
(
χ

(0)
2

)2] = V0χ
(0)
1 ,

(34)
χ

(0)
2

[(
χ

(0)
2

)2 + γ
(
χ

(0)
1

)2] = 0.

It is easy to see that, in the present case with γ < 0, a nontrivial
solution to Eqs. (34) exists for |γ | < 1:

χ
(0)
1 =

√
V0/(1 − γ 2), χ

(0)
2 = √−γχ10. (35)

Further, the interpolation Ansatz, following the pattern of
Eq. (17),

χn(x) = χ (0)
n exp(−

√
−2μnr), (36)

with χ (0)
n given by Eq. (35), predicts the following relations

between the chemical potentials and norms of the two
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FIG. 7. (a) Numerically found profiles of stationary wave functions χ1(r) and χ2(r) (the taller and shorter ones, respectively) in the model
based on Eqs. (32) and (33) for V0 = 1,γ = −0.7. μ1 = −2.59 and μ2 = −0.18. Comparison of (b) χ1(r) and (c) χ2(r) with the analytical
approximations provided by Eq. (36).

components:

μ1 = −1

2

(
2πV0N1

1 − γ 2

)2

, μ2 = −1

2

(
2πγV0N2

1 − γ 2

)2

. (37)

Figure 7(a) displays a typical example of the numerically
found profiles of χ1(r) and χ2(r) for V0 = 1,γ = −0.7,N =
4π . Further, Figs. 7(b) and 7(c) compare the numerical profiles
of χ1(r) and χ2(r) with the analytical approximations based
on Ansätze (20), (35), and (36).

The family of GSs in the present version of the binary
system is characterized by dependences of the chemical
potentials of the two components on coupling constant γ [see
Fig. 8(a)] and on N1 = N2 ≡ N in Fig. 8(b). In both panels,
the dashed and dotted lines depict the analytical prediction
for μ1 and μ2 produced by Eq. (37). Thus it is concluded
that the analytical approximation provides quite an accurate
description of the χ2 component (the one which is not pulled
to the center), while the approximation for χ1 is less accurate.

Finally, the two-layer TF approximation can be applied
to the present system as well, under conditions γ 2 < 1 and
μ2 < μ1 < 0. In particular, the solution in the inner layer,

r2 � r2
0 ≡ − |γ |

μ2 + |γ |μ1
V0

-20
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FIG. 8. (a) The chemical potentials of the two components, μ1

(diamonds) and μ2 (crosses), in the model based on Eqs. (32) and (33)
vs γ for N1 = N2 = 4π and V0 = 1. (b) The same chemical potentials
vs N1 = N2 ≡ N for γ = −0.7 and V0 = 1. The dashed and dotted
curves show the analytical prediction (37).

[cf. Eq. (25)], takes the following form [cf. Eq. (26)]:

χ
(inner)
1 (r) =

√
V0 + (μ1 + |γ |μ2) r2

1 − γ 2
,

χ
(inner)
2 (r) =

√
|γ |V0 + (μ2 + |γ |μ1) r2

1 − γ 2
,

with the corresponding dependence of the norm on the
chemical potentials being

N
(TF)
2 (μ1,μ2) = 8π

3
(|γ |V0)2/3 [− (μ2 + |γ |μ1)]−1/2

[cf. Eq. (28)]. In the outer layer, the TF solution takes the same
form as in Eq. (27).

V. CONCLUSION

The aim of this work is to extend the recent analysis of the
suppression of the quantum collapse, induced by action of the
attractive potential −V0r

−2 in the 3D space, by the repulsive
nonlinearity in the bosonic gas to the binary miscible and
immiscible gases. We have concluded that the GS, which the
respective linear Schrödinger equation fails to create, emerges
in the nonlinear system. The GSs were found in the numerical
form and were approximated by means of several analytical
methods, such as the TF approximation, which is relevant
for large V0. An essential finding is that both balanced and
imbalanced miscible gases feature the weak phase transition
in the GS in the form of the analyticity-breaking change in the
structure of the wave functions at small r . The binary system
with attraction between the species (rather than repulsion) has
been considered too, in the case when the attractive central
potential acts on a single component.
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