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Scale breaking and fluid dynamics in a dilute two-dimensional Fermi gas
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We study two observables related to the anomalous breaking of scale invariance in a dilute two-dimensional
Fermi gas, the frequency shift and damping rate of the monopole mode in a harmonic confinement potential.
For this purpose we compute the speed of sound and the bulk viscosity of the two-dimensional gas in the
high-temperature limit. We show that the anomaly in the speed of sound scales as (2P − ρc2

s )/P ∼ z/[ln(T/EB )]2

and that the bulk viscosity ζ scales as ζ/η ∼ z2/[ln(T/EB )]6. Here, P is the pressure, c2
s is the speed of sound,

η is the shear viscosity, z is the fugacity, and EB is the two-body binding energy. We show that our results are
consistent with the experimental results of Vogt, Feld, Fröhlich, Pertot, Koschorreck, and Köhl [Phys. Rev. Lett.
108, 070404 (2012)]. Vogt et al. reported a frequency shift δω/ω of the order of a few percent and a damping
rate smaller than the background rate �/ω0 ∼ 5%.
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I. INTRODUCTION

Scale invariant or nearly scale invariant fluids play a
role in many areas of physics. Examples include the three-
dimensional Fermi gas at unitarity, the quark gluon plasma
at very high temperature, and a number of fluids that can
be described in terms of holographic dualities [1,2]. A very
interesting example is provided by a two-dimensional gas of
fermions interacting via a zero range interaction. This system
is scale invariant at the classical level, but scale invariance
is broken in the quantum theory. The quantum mechanical
scattering amplitude depends logarithmically on a scale, which
we can take to be the binding energy EB of the two-body
bound state. This is analogous to what happens in QCD in
three dimensions. QCD is classically scale invariant, but at
the quantum level scale invariance is broken and the coupling
depends logarithmically on the QCD scale parameter.

Two properties related to the breaking of scale invariance
were recently studied by Vogt et al. [3]. The first is the
frequency of the monopole mode in a harmonically trapped
gas. One can show that in a scale invariant gas this mode has
frequency 2ω0, where ω0 is the frequency of the harmonic
confinement potential [4]. Deviations from this value provide
a measure of scale breaking [5,6]. Vogt et al. [3] found that
these deviations are small, on the order of a few percent, for
the entire range of parameters studied in their experiment. The
second observable is the damping of the monopole mode. In
a scale invariant fluid the monopole mode is undamped [7].
The experiments find the that the damping is too small to be
reliably measured, although one has to keep in mind that the
background damping rate is sizable, � � 0.05ω0.

In this work we present a rigorous calculation of the
frequency shift and the damping rate of the monopole mode
in the high-temperature limit. Our calculation is based on
the virial expansion for thermodynamic properties and on
kinetic theory for nonequilibrium effects. We show that the
results are in agreement with the measured frequency shift
and consistent with the failure of the experiment to observe a
nonzero damping rate. We note that the experimental data were
taken for T/TF ∼ 0.4 and a range of values of ln(TF /EB).
In the vicinity of the BCS-BEC crossover, corresponding
to ln(TF /EB) ∼ 0, it is not clear that a high-temperature

calculation is quantitatively reliable. Ultimately comparison
between theory and experiment will determine in what range
of T/TF the kinetic theory description is applicable. In the
case of the three-dimensional Fermi gas at unitarity there is
some evidence that kinetic theory is reliable for T � 0.4TF

(see, for example, Ref. [8]).
Our study builds on earlier work that relates the frequency

shift of the monopole mode to scale breaking in the speed
of sound [5] and on our own work on bulk viscosity in the
three-dimensional Fermi gas [9]. In the latter work we showed
that the bulk viscosity of the three-dimensional Fermi gas near
unitarity scales as ζ ∼ [(�P )/P ]2η, where �P = P − 2

d
E

is the scale breaking part of the pressure and η is the shear
viscosity. Here, d is the number of spatial dimensions and E
is the energy density. We show that the bulk viscosity of the
two-dimensional gas in the limit T � EB is even smaller than
this estimate suggests. We find that ζ is suppressed by two
additional powers of ln(T/EB).

This paper is organized as follows. In Sec. II we introduce a
diagrammatic approach to the virial expansion. We also apply
this method to the calculation of the quasiparticle energy. In
Sec. III we compute the frequency of the monopole mode.
In Sec. IV we describe a calculation of the bulk viscosity in
kinetic theory. We use the result to compute the damping of
the monopole mode. We present an outlook in Sec. V.

II. EQUILIBRIUM AND QUASIPARTICLE PROPERTIES

A. Two-body interaction

A dilute gas of nonrelativistic spin-1/2 fermions can be
described by the effective Lagrangian

L = ψ†
(

i∂0 + ∇2

2m

)
ψ − C0

2
(ψ†ψ)2, (1)

where m is the mass of the fermion and C0 is the coupling
constant. The scattering amplitude in the spin singlet channel
is

A(E) = 1

C−1
0 − �(E)

, (2)
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where �(E) is given by

�(E) =
∫

d2q

(2π )2

1

E − q2

m
+ iε

. (3)

This can be compared to the general structure of the s-wave
scattering amplitude in two dimensions [10]

A(E) = 4π

m

1

−π cot δ(E) + iπ
, (4)

where δ(E) is the s-wave scattering phase shift. We conclude
that cot δ(E) = 1

π
ln( E

EB
), where EB is the two-body binding

energy. We also define the scattering length a by EB = 1/

(ma2). The relation between C0 and EB depends on the
regularization scheme. In cutoff regularization we find

1

C0(�)
= m

4π
ln

(
mEB

�2

)
. (5)

B. Thermodynamic potential

In order to compute the thermodynamic potential it is
useful to apply a Hubbard-Stratonovich transformation to the
effective Lagrangian. Introducing a complex difermion field
� we can write

L = ψ†
(

i∂t + ∇2

2m

)
ψ + [(ψσ+ψ)� + H.c.] + 1

C0
|�|2,

(6)

where σ+ is the Pauli spin raising matrix. The integration over
the fermion fields is Gaussian. We obtain an effective action
for the bosonic field �,

S = −Tr{ln(G−1[�,�∗])} +
∫

d4x
1

C0
|�|2 , (7)

where G−1 is a 2 × 2 matrix,

G−1[�,�∗] =
(

i∂t + ∇2

2m
�∗

� i∂t − ∇2

2m

)
. (8)

The thermodynamic potential � is computed using the
Matsubara formalism. We continue the fields to imaginary
time τ and impose periodic (antiperiodic) boundary conditions
on the bosonic (fermionic) fields. We also introduce a
chemical potential for ψ . We evaluate the partition function
by expanding the logarithm in powers of �. The leading term
is the free fermion loop,

�1 = νzT

λ2

[
1 − z

2
+ O(z2)

]
, (9)

where ν = 2 is the number of degrees of freedom, z =
exp(μ/T ) is the fugacity, and λ = [(2π )/(mT )]1/2 is the
thermal wavelength. Terms of order z2 and higher arise
from quantum statistics. The complete O(z2) result includes
quadratic fluctuations in �. We find

�2 = T
∑

n

∫
d2q

(2π )2
ln[D−1(iωn,q)], (10)

where ωn = 2πnT are bosonic Matsubara frequencies and
D−1(ωn,q) is the one-loop difermion polarization function

D−1(iωn,q) =
∫

d2k

(2π )2

{
1 − fk − fk+q

iωn − ξk − ξk+q

− 1

EB − 2εk

}
.

(11)

Here, fk = [exp(βξk) + 1]−1 is the Fermi-Dirac distribution,
ξk = εk − μ, and εk = k2/(2m). In order to deriving Eq. (11)
we have used the relation between C0 and EB given in
Eq. (5). The sum over Matsubara frequencies in Eq. (10) can
be performed using contour integration. The result can be
expressed in terms of the discontinuity of D−1(ω,q) along the
real axis in the complex frequency plane. We obtain

�2 = 1

2πi

∫ ∞

−∞
dω

∫
d2k

(2π )2
disc[lnD−1(ω + iε,k)]fBE(ω),

(12)

where fBE(ω) = [exp(βω) − 1]−1 is the Bose-Einstein distri-
bution function. In order to compute �2 at second order in
fugacity z we need to evaluate D−1(ω,k) to zeroth order in z.
We get

D−1(ω,k) = m

4π
ln

(
−ω − εk

2 + 2μ

EB

)
. (13)

The simplest strategy to compute the integral over ω and k

is to compute n = (∂�)/(∂μ) and then integrate over μ. The
result can be used to extract the interaction part of the second
virial coefficient. We find

δb2 = eβEB − 2
∫

dk

k

e−2βεk

[ln(a2k2)]2 + π2
, (14)

with β = 1/T . The result agrees with the expectation from
the standard Beth-Uhlenbeck expression for the second virial
coefficient in terms of the phase shift,

δb2 = eβEB + 1

π

∫
dk

(
dδ

dk

)
e−2βεk . (15)

The integral can be computed in terms of a function called
ν(x) in Ref. [11]. We find

δb2(T ) = ν(βEB ), ν(x) =
∫ ∞

0

xt dt

�(t + 1)
. (16)

For small x the function ν(x) can be expanded in in-
verse powers of ln(1/x) (see Appendix B and Ref. [12]).
This expansion determines the virial coefficient in the limit
T � EB . We get

δb2(T ) = 1

ln(T/EB)
+ γE

[ln(T/EB)]2
+ · · · , (17)

where γE is Euler’s constant. We note that the virial expansion
in two dimensions was previously studied in Ref. [13].
Since this work was submitted for publication, additional
investigations have appeared in Refs. [14,15].

C. Quasiparticle properties

We can construct a systematic expansion for the two-
dimensional gas in the dilute limit by writing the Lagrangian
in terms of fermion and boson degrees of freedom. For this
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purpose we write the Lagrangian as the sum of free and
interacting terms, L = L0 + L1, with

L0 = ψ†S−1(ω,p)ψ + �∗D−1(ω,p)�,
(18)

L1 = [(ψσ+ψ)� + H.c.] + �∗[C−1
0 − D−1(ω,p)

]
�.

Here, S(ω,p) = [ω − ξp]−1 is the fermion propagator and
D(ω,p) is the boson propagator given in Eq. (13). The bosonic
term in the interaction serves as a counterterm that removes
fermion loop insertions in the boson self-energy order by order
in the expansion. The leading-order fermion self-energy is
given by

�(iωm,k) = T
∑

n

∫
d2q

(2π )2
D(iωn + iωm,q + k)S(iωn,q).

(19)

The Matsubara sum can be performed as in the previous
section. The resulting contour integral receives contributions
from the cut in the boson propagator and the pole in the
fermion propagator. At leading order in the fugacity expansion
we can neglect the cut contribution. In order to compute
the quasiparticle self-energy we analytically continue the
pole term to the on-shell point iωm = ξk . The result can be
determined analytically as an expansion in [ln(T/EB)]−1. We
get

Re�(k) = − 2zT

ln(T/EB)

{
1 − 1

ln(T/EB)

[
−Ei

(
−εk

T

)

+ ln

(
εk

2T

)]
+ · · ·

}
,

Im�(k) = − 2πzT

[ln(T/EB)]2
, (20)

where Ei is the exponential integral. The quasiparticle energy
is Ek = εk + Re�(k) and the width is �K = −2Im�(k). We
note that Re� is momentum independent at leading order in
[ln(T/EB)]−1, but develops momentum dependence at next-
to-leading order. The imaginary part only appears at order
[ln(T/EB)]−2 and is momentum independent.

III. FREQUENCY SHIFT OF THE MONOPOLE MODE

We follow the work of Refs. [5,16,17] and compute
the frequency of the monopole mode using a variational
method. The use of variational methods in hydrodynamics
was pioneered in Refs. [18,19]. The Euler equations follow
from the variational principle δS = 0, with S = ∫

dtL and

L =
∫

d2r

[
1

2
ρ �u 2 − E(ρ,s̄) − ρ

m
Vext(r)

−φ

(
∂ρ

∂t
+ �∇ · (�u ρ)

)
− ξ

(
∂ρs̄

∂t
+ �∇ · (�uρ s̄)

)]
.

(21)

The hydrodynamic variables are the mass density ρ, the
velocity �u, and the entropy per particle s̄ = s/n. Here, s is
the entropy density and n is the particle density. The fields φ

and ξ are Lagrange multipliers that enforce the continuity and
entropy conservation equations. E(ρ,s̄) is the energy density
and Vext is an external potential. We consider a harmonic,

rotationally invariant potential Vext = 1
2mω0�r 2. We also add

Lagrange multipliers μ0 and T0 to allow for solutions with
finite particle number and entropy,

L′ = L + 1

m

∫
d2r(ρμ0 + ρs̄T0). (22)

Varying S ′ with respect to the hydrodynamic variables and
setting �u = 0 we get the hydrostatic equations

�∇P = ∂P

∂ρ

∣∣∣∣
s̄

�∇ρ + ∂P

∂s̄

∣∣∣∣
ρ

�∇ s̄ = −n �∇Vext, (23)

�∇T = ∂T

∂ρ

∣∣∣∣
s̄

�∇ρ + ∂T

∂s̄

∣∣∣∣
ρ

�∇ s̄ = 0. (24)

The partial derivatives are related by the Maxwell relation

ρ
∂T

∂ρ

∣∣∣∣
s̄

= 1

ρ

∂P

∂s̄

∣∣∣∣
ρ

. (25)

We denote the solution to the hydrostatic equations by ρ0 and
s̄0. Small oscillations around this solution are governed by

L2 = 1

2

∫
d2r

[
ρ0 �u 2 − 1

ρ0

(
∂P

∂ρ

)
s̄

(δρ)2 − 2ρ0

(
∂T

∂ρ

)
s̄

δρδs̄

− ρ0

(
∂T

∂s̄

)
ρ

(δs̄)2

]
. (26)

A variational ansatz for monopole vibrations is given by �u =
�u0e

−iωt , with �u0 = α�r . This ansatz corresponds to an exact
solution of the Euler equation in the scale invariant case. The
continuity equation implies that

δρ = − i

ω
�∇ · (ρ0 �u0), δs̄ = − i

ω
�u0 · �∇(s̄0). (27)

The variational estimate for the mode frequency ω is ob-
tained by setting L2 to zero. Using the hydrostatic equations
[Eqs. (23) and (24)] and the Maxwell relation [Eq. (25)] we
find [5]

ω2

4ω2
0

= 1 − 1

2

[ ∫
d2rγ2(r)

]/[ ∫
d2rn0(r)Vext(r)

]
, (28)

with γ2 = 2P − ρc2
s , where c2

s is the speed of sound. This
result has a simple physical interpretation: The deviation of
the monopole frequency from the value ω = 2ω0 in a scale
invariant theory [4] is governed by the trap average of the
difference between the actual speed of sound and the sound
speed c2

s,0 = 2P/ρ in a scale invariant gas.
In the dilute limit we can compute γ2 using the virial

equation of state. We find

γ2 = mz2E2
B

π
ν ′′

(
EB

T

)
. (29)

We perform the trap average using the density profile in the
high-temperature limit,

n0(x) = mT

2π

(
TF

T

)2

exp

(
−mω2

0r
2

2T

)
, (30)

where TF = √
Nω0 is the Fermi temperature of the trap. We

can now compute the frequency shift in the dilute limit:

ω2

4ω2
0

= 1 − 1

8

T 2
F E2

B

T 4
ν ′′

(
EB

T

)
. (31)
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FIG. 1. (Color online) Frequency shift relative to the prediction
ω = 2ω0 for a scale invariant fluid of the collective monopole mode
in a two-dimensional Fermi gas. The frequency shift is shown as a
function of ln(kF a) for T/TF = 0.42. The solid line is based on the
virial expansion, the dashed line shows the result at leading order in
1/[ln(T/EB )], and the data are taken from Fig. 1(c) in Ref. [3].

The result is shown in Fig. 1. We observe that the frequency
shift is in agreement with the data for ln(kF a) � 1.75. For
smaller values of ln(kF a) the contribution of the bound state
is large and the virial expansion breaks down. In Fig. 1 we
also show the contribution of the leading [ln(T/EB)]−1 term
in the second virial coefficient. We observe that the leading
term dominates for ln(kF a) � 2.

IV. BULK VISCOSITY AND THE DAMPING
OF THE MONOPOLE MODE

A. Chapman-Enskog expansion

In the context of hydrodynamics the damping of the
monopole mode is determined by the bulk viscosity of the
two-dimensional Fermi gas. In this section we use kinetic
theory and the Chapman-Enskog expansion to compute the
bulk viscosity. An analogous calculation of the shear viscosity
and the damping of the quadrupole mode can be found in
Refs. [20,21] (see also Refs. [22–24]).

In kinetic theory we write the stress tensor of the gas in
terms of the quasiparticle distribution function fp(�x,t). We
assume that the gas is spin symmetric so that f

↑
p = f

↓
p ≡ fp.

Close to equilibrium we can write

fp(�x,t) = f 0
p (�x,t) + δfp(�x,t) = f 0

p (�x,t)

(
1 − ψp

T

)
, (32)

where f 0
p (�x,t) is the local equilibrium distribution in a fluid

with local velocity �u(�x,t), temperature T (�x,t), and chemical
potential μ(�x,t). In the case of a fluid undergoing a scaling
expansion the off-equilibrium factor has the form ψp =
χB( �p) �∇ · �u. The off-equilibrium distribution δfp induced by
the bulk stress �∇ · �u is determined by the Boltzmann equation:

Dfp ≡
(

∂

∂t
+ �vp · �∇x + �F · �∇p

)
fp(�x,t) = C[fp] . (33)

Here, �vp = �∇pEp is the quasiparticle velocity, �F = −�∇xEp

is the force term, and C[fp] is the collision term. Using
the methods described in Ref. [9] the left-hand side of the

Boltzmann equation can be written as

T

f0
Df0 =

{
αρc2

T

cV

h − mc2
s +

[
1

2
�p · �∇p − αρc2

T

cV

+ ρc2
s

∂

∂P

∣∣∣∣
T

+ αρc2
T

cV

T
∂

∂T

∣∣∣∣
P

]
Ep

}
�∇ · �u. (34)

where h is the enthalpy per particle, cs and cT are the speed
of sound at constant entropy per particle and temperature,
respectively, cV is the specific heat at constant volume, and α is
the thermal expansion coefficient. This result can be simplified
by writing Ep = εp + �EP and dropping terms of order z2.
We get

T

f0
Df0 =

{
αρc2

T

cV

h − mc2
s +

[
1 − αρc2

T

cV

]
εp

+
[

1

2
�p · �∇p + μ

∂

∂μ
+ T

∂

∂T
− 1

]
�Ep

}
�∇ · �u.

(35)

This result satisfies a number of consistency checks.
Equation (35) vanishes for a free gas and for a general
scale invariant gas characterized by a temperature-independent
second virial coefficient and a scale invariant dispersion law
of the form �Ep ∼ zT g(εp/T ) where g(x) is an arbitrary
function.

In order to solve the Boltzmann equation in the limit
T � EB we use the second virial coefficient given in Eq. (16)
and the quasiparticle energy using Eq. (20). We expand all
quantities to leading nontrivial order in [ln(T/EB)]−1. We get
T
f0

Df0 ≡ Xp( �∇ · �u) with

Xp = 2zT

[ln(T/EB)]3

{
εp

T
− (1 + 2γE)

+ 2

[
Ei

(
− εp

T

)
− ln

(
εp

2T

)]}
, (36)

where Ei(x) is the exponential integral. We note that both the
thermodynamic terms and the self-energy contain contribu-
tions of order [ln(T/EB)]−2, but these terms cancel and Xp

scales as [ln(T/EB)]−3. Equation (36) satisfies two sum rules:∫
d�pf 0

pXp = 0,

∫
d�pf 0

p εpXp = 0, (37)

with d�p = d2p/(2π )2. The sum rules follow from conserva-
tion of particle number and energy.

B. Collision term

The linearized collision operator can be written as

C
[
f 0

p + δfp

] ≡ f 0
p

T
CL[χB(p)]( �∇ · �u), (38)

where, at leading order in the fugacity, the collision term is
dominated by two-body collisions. We have

CL[χB(p1)] =
∫ (

4∏
i=2

d�i

)
w(1,2; 3,4)f 0

p2

× [χB(p1) + χB(p2) − χB(p3) + χB(p4)],

(39)

043636-4



SCALE BREAKING AND FLUID DYNAMICS IN A . . . PHYSICAL REVIEW A 88, 043636 (2013)

where w(1,2; 3,4) is the transition rate,

w(1,2; 3,4) = (2π )3δ2

(∑
i

�pi

)
δ

( ∑
i

Ei

)
|A|2, (40)

and A is the scattering amplitude given in Eq. (2). In
order to be consistent with the calculation of the streaming
term we expand the scattering amplitude to leading order in
[ln(T/EB)]−1. We get

A = 4π

m ln(T/EB)
. (41)

To leading order in z we can approximate the quasiparticle
energy by the noninteracting result Ep � εp. The linearized
Boltzmann equation

Xp = CL[χB(p)] (42)

can be solved by expanding the off-equilibrium factor χB(p)
in Laguerre polynomials:

χB(p) =
N∑

i=2

ciL
0
i

(
εp

T

)
. (43)

Restricting the sum to terms of order i � 2 guarantees that
the orthogonality constraints [Eq. (37)] are satisfied. The
coefficients ci can be determined by taking moments of
the Boltzmann equation [Eq. (42)] with L0

i (εp/T ) for i =
2, . . . ,N . As a first approximation we can take N = 2. We
find

χB(p) = 1

4π ln(T/EB)

[
2 − 4

(
εp

T

)
+

(
εp

T

)2]
. (44)

The convergence of the expansion in Laguerre polynomials
was studied in the case of three dimensions in Ref. [9]. We
found that corrections to the leading term contribute to the
bulk viscosity at a level of less than 5%.

C. Off-equilibrium stress and bulk viscosity

In fluid dynamics the trace of the stress tensor in the fluid
rest frame is given by � ≡ 1

2�ii = P − ζ ( �∇ · �u), where ζ is
the bulk viscosity. In kinetic theory this expression has to be
matched against

�[fp] = ν

2

∫
d�p(�vp · �p)fp + ν

∫
d�p Epfp − E[fp],

(45)

where ν = 2 is the number of spin degrees of freedom,
d�p = d2p/(2π )2 is the phase space measure, fp = f ( �p,�x,t)
is the quasiparticle distribution function, Ep is the quasiparticle
energy, and �vp = �∇Ep is the quasiparticle velocity. We split
the distribution in an equilibrium and a nonequilibrium piece,
fp = f 0

p + δfp, and write the bulk stress as

�
[
f 0

p + δfp

] ≡ �
[
f 0

p

] + δ� ≡ �0 + δ�. (46)

The term δ� is then identified with viscous correction
−ζ ( �∇ · �u) in fluid dynamics. We compute �[f 0

p + δfp] by

functionally expanding Eq. (45) in powers of δfp. We find [9]

δ� = ν

∫
d�p δfp

(
1

2
�p · �∇p + μ

∂

∂μ
+ T

∂

∂T
− 1

)
�Ep.

(47)

It is interesting to note that the bulk stress is determined by
the same scale violating part of the self-energy that appears in
the streaming term (35). This ensures that in a scale invariant
gas there is no bulk viscosity irrespective of the structure of
the off-equilibrium distribution function.

We can now compute the bulk viscosity by inserting the
solution of the linearized Boltzmann equation given in Eq. (44)
into the expression for the bulk stress. Comparing the result to
δ� = −ζ ( �∇ · �u) determines the bulk viscosity. We find

ζ = 1

2π

z2λ−2

[ln(T/EB)]4
. (48)

This result is valid in the limit z � 1 and ln(T/EB) � 1.
Higher-order corrections in z require a calculation of the
pressure at the level of the third virial coefficient and the
inclusion of three-body scattering in the collision term. Higher-
order terms in [ln(T/EB)]−1 can be determined by computing
the self-energy to all orders in the logarithm of T/EB , as we
have done for the second virial coefficient. However, unless
we include bosonic quasiparticles in the kinetic theory, the
result for the bulk viscosity will still break down for T ∼ EB .
We can compare Eq. (48) to the result for the shear viscosity
obtained in [20,21]

η = λ−2

π
[ln(T/EB)]2, (49)

where we have taken the limit ln(T/EB) � 1 used in the
calculation of the bulk viscosity. We observe that ζ is sup-
pressed by two additional powers of [ln(T/EB)]−1 compared
to the expectation [9] ζ ∼ [(�P )/P ]2η, where �P = P − E
is the scale breaking part of the equilibrium pressure. The
reason for this extra suppression is related to the fact that the
leading scale violating term in the quasiparticle energy is just
a shift in the chemical potential, which does not contribute to
the bulk pressure. Finally, we can write Eq. (48) in terms of
dimensionless ratios. We find

ζ

n
= 1

4π

1

[ln(T/EB)]4

(
T loc

F

T

)
, (50)

where T loc
F is the Fermi temperature of the homogeneous gas.

D. Damping of monopole oscillations

The damping of the monopole mode is determined by the
amount of energy dissipated by viscous effects. Note that
the cloud remains approximately isothermal so that thermal
conductivity does not contribute to dissipation. The rate of
energy dissipation is

Ė = −1

2

∫
d2r ζ (r)( �∇ · �u)2, (51)

and the damping constant is � = −Ė/(2E), where E is energy
of the collective mode. Using the velocity profile �u ∼ �r of the
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FIG. 2. (Color online) Damping of the collective monopole mode
in a two-dimensional Fermi gas. The figure shows �/ω0, the damping
rate in units of the trap frequency, as a function of ln(kF a) for T/TF =
0.42 and N = 4 × 103.

monopole mode we find

� =
[ ∫

d2r ζ (r)

]/[
m

∫
d2x n0(r)�r 2

]
. (52)

Note that, in contrast to the shear case [20,21], there is no
difficulty in carrying out the integral over ζ (r) because the bulk
viscosity is proportional to a positive power of the fugacity.
The result in Eq. (52) can be evaluated in the same way as the
frequency shift considered in Sec. III. We get

�

ω0
= 1

32πN1/2

1

[ln(T/EB)]4

(
TF

T

)
, (53)

where N is the number of particles and TF = √
Nω0 is the

Fermi temperature of the trap. The result is plotted in Fig. 2.
We consider the conditions explored in the experiment of Vogt
et al. [3], N = 4 × 103 and T/TF = 0.42. Based on our results
for the frequency shift we assume that Eq. (53) is reliable for
ln(kF a) � 2. We observe that the damping constant in this
regime is extremely small, �/ω0 < 10−4. This is consistent
with the measurements of Vogt et al. [3], who find �/ω0 <

5 × 10−2, but our result implies that it will be very difficult
to measure the bulk viscosity of the two-dimensional gas in
the BCS limit. We also note that the source of the background
damping rate remains poorly understood (see Ref. [25]).

V. OUTLOOK

The main results obtained in this work are the scaling of
the pressure anomaly (�P )/P ∼ z/[ln(T/EB)]2 and the bulk
viscosity ζ/η ∼ z2/[ln(T/EB)]6 in the high-temperature limit
z � 1 and ln(T/EB) � 1. These results quantitatively explain
the observed frequency shift of the monopole mode and the
failure of the experiment to detect a nonzero damping rate.

It would be interesting to extend the calculation to the
regime T ∼ EB . In the context of kinetic theory this would
presumably require the inclusion of explicit bosonic degrees
of freedom. Alternatively, one might try to compute the
pressure and the bulk viscosity using purely diagrammatic
methods. At weak coupling the mechanism for generating bulk
viscosity is related to a finite relaxation time for rearranging
the internal energy of the gas among noninteracting and

interacting terms in the single-particle energy. For T ∼ EB the
physical mechanism is likely to be related to the formation of
molecules. This involves three-body collisions and is therefore
suppressed in the low-density limit z � 1, but the process may
be enhanced by powers of ln(T/EB).

It is also important to consider the frequency dependence
of the bulk viscosity. Taylor and Randeria [5] proved the sum
rule

2

π

∫ ∞

0
dω ζ (ω) = 3P − E − ρc2

s . (54)

At high temperature the right-hand side scales as
z2mT 2/[ln(T/EB)]3. On the left-hand side the contribution
of the transport peak is (�ω)z2mT/[ln(T/EB)]4, where �ω

is the width of the transport peak. Consistency with the
sum rule then requires that �ω � T ln(T/EB). This bound
can be compared to the width of the transport peak in
the shear channel, which is �ω ∼ zT /[ln(T/EB)]2 � T .
Taylor and Randeria [5] also studied the tail of the spec-
tral function (see also Ref. [26]). They found ζ (ω) ∼
z2λ−2T/{ω[ln(ω/EB)]2[ln(T/EB)]2}, where we have used the
high-temperature limit of the contact. This result matches the
kinetic theory prediction for ω ∼ T .
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APPENDIX A: THERMODYNAMICS

In this Appendix we compute thermodynamic properties
like the scale breaking contributions to the equation of state
and the speed of sound using the virial equation of state. We
follow the methods used in Ref. [9]. At second order in the
virial expansion we have P = νT

λ2 (z + b2(T )z2). At this order
the scale breaking contribution to the equation of state is

P − E
P

= −zT b′
2(T ). (A1)

The enthalpy per particle is

h = 2T
{
1 − z

[
b2(T ) − 1

2T b′
2(T )

]}
(A2)

and the specific heats are given by

cV = νz

λ2
{1 + z[2b2(T ) + T 2b′′

2(T )]}, (A3)

cP = cV + νz

λ2
{1 + z[4b2(T ) − 2T b′

2(T )]}. (A4)

The speed of sound at constant T and s/n as well as the thermal
expansion coefficient are as follows:

c2
T = T

m
[1 − 2zb2(T )], (A5)

c2
s = 2T

m

{
1 − z

[
b2(T ) + T b′

2(T ) + 1

2
T 2b′′

2(T )

]}
, (A6)

α = 1

T
{1 + z[2b2(T ) − T b′

2(T )]}. (A7)
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Using these results we can compute the scale breaking
parameter γ2:

γ2 = 2P − ρc2
s = mT 2z2

π
[2T b′

2(T ) + T 2b′′
2(T )]. (A8)

APPENDIX B: ASYMPTOTIC EXPANSION OF ν(x)

The asymptotic expansion of ν(x) can be found by writing

ν(x) =
∫ ∞

0
dt

exp[−t ln(1/x)]

�(t + 1)
(B1)

and Taylor expanding the γ function, �(t + 1)−1 = 1 + γEt +
( γ 2

E

2 − π2

12 )t2 + O(t3). We find

ν(x) = 1

ln(1/x)
+ γE

[ln(1/x)]2
+ γ 2

E − π2

6

[ln(1/x)]3
+ · · · . (B2)

We can now apply this results to the thermodynamic quantities
studied in Appendix A. We find, in particular,

P − E = mT 2z2

π [ln(T/EB)]2

{
1 + 2γE

ln(T/EB)
+ · · ·

}
, (B3)

γ2 = − mT 2z2

π [ln(T/EB)]2

{
1 + 2γE − 2

ln(T/EB)
+ · · ·

}
. (B4)
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