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Pair tunneling of two atoms out of a trap
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A simple theory for the tunneling of two cold atoms out of a trap in the presence of an attractive contact force
is developed. Two competing decay channels, for single-atom and bound-pair tunneling, respectively, contribute
independently to the decay law of the mean atom number in the trap. The single-atom tunneling rate is obtained
through the quasiparticle wave function formalism. For pair tunneling an effective equation for the center-of-mass
motion is derived, so the calculation of the corresponding tunneling rate is again reduced to a simpler one-body
problem. The predicted dependence of tunneling rates on the interaction strength qualitatively agrees with a
recent measurement of the two-atom decay time [G. Zürn, A. N. Wenz, S. Murmann, T. Lompe, and S. Jochim,
arXiv:1307.5153].
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I. INTRODUCTION

Pairing between two-species fermions leads to fascinat-
ing superfluid properties of quantum systems as diverse as
electrons in metals [1], protons and neutrons in nuclei [2,3]
and neutron stars [4,5], 3He atoms [6], and electrons and
holes in semiconductors [7]. In the celebrated case of the
superconductivity of metals, tunneling spectroscopies played
a major role in the confirmation of the theory by Bardeen,
Cooper, and Schrieffer (BCS) [8]. Hallmark phenomena of
superconductivity such as the Josephson effect [9] and the
Andreev reflection [10] were explained in terms of correlated
tunneling of two bound electrons of opposite spin (a Cooper
pair). Recently, it became possible to confine in an optical
trap a few cold 6Li atoms behaving as fermions of spin-1/2
with an unprecedented degree of control [11]. By properly
shaping the confinement potential in time, one may prepare
exactly N atoms in their ground state, let them tunnel out of
the trap, and measure the decay time [11–13]. Contrary to the
case of loosely bound Cooper pairs, whose binding energy
is fixed by the Debye frequency of the metal, the attractive
two-body interaction between 6Li atoms may be tuned through
a Feshbach resonance [14]. This allows us, in principle, to
observe the decay due to pair tunneling in the whole regime
of interaction, from BCS-like weakly bound pairs to strongly
bound 6Li molecules undergoing Bose-Einstein condensation
[6,15–18].

Here we focus on the basic case of two atoms in a trap—the
building block of many-body states—and develop a simple
theory of the decay time in the presence of an attractive contact
interaction. Within a rate-equation approach, both single-atom
and pair tunneling independently contribute to the decay of
the average number of atoms in the trap. We compute the
single-atom tunneling rate considering the interaction of the
tunneling quasiparticle with the atom left in the trap [19]. To
obtain the pair tunneling rate, we derive an effective one-body
Schrödinger equation for the center-of-mass motion and apply
the semiclassical Wentzel-Kramers-Brillouin (WKB) formula
[cf. Eq. (21)].
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We consider the recent measurement of the decay time
reported by the Heidelberg group in Ref. [13], ignoring
complications of the actual experiment that might be important
for a quantitative comparison with the theory. These include
the effect of the trap anharmonicity on the two-body wave
function as well as the slight difference between the mag-
netic moments of the two atomic species. Nevertheless, the
dependence of the decay time on the interaction strength that
we predict qualitatively compares with the measured trend,
as shown in Fig. 6. The Heidelberg experiment could not
single out unambiguously the contribution of pair tunneling
to the decay time, due to the large uncertainty in detecting
survivor atoms in the trap for increasing attractive interactions.
Our theory highlights that the signatures of pair tunneling are
within reach of future experiments at moderate regimes of
interaction.

Stimulated by experimental advances [11,12,20,21], a fast-
growing theoretical literature has been focusing on different
aspects of tunneling in few-atom traps. One theme regards
multiparticle noninteracting states and the so-called Fermi-
Bose duality [19,22–28]. The latter refers to the feature of
one-dimensional systems that noninteracting fermions own the
same observable properties as interacting bosons when their
interparticle contact forces acquire infinite strength [29,30].
The second theme is the tunneling dynamics in double or
multiple wells in the presence of a repulsive interaction, which
drives the competition between Josephson-like oscillations and
two-particle correlated tunneling [31–35]. A few works have
addressed the full quantum mechanical time evolution of two
interacting atoms, tunneling out of a trap into free space,
limited to repulsive interactions and idealized geometries
[34,36–38]. Within time-dependent perturbation theory [39],
Ref. [19] has computed the quasiparticle decay time of two
6Li atoms, either in their ground state with strong repulsive
interactions or in the “super-Tonks-Girardeau” excited state
[40,41], as measured in Ref. [12]. In the experiment the two
energy branches were accessed by scanning the Feshbach
resonance through the Fermi-Bose duality point. The influence
of ferromagnetic spin correlations on tunneling has been
investigated in Ref. [42] using the Fermi golden rule. We are
aware of only one theoretical study of two particles attracting
each other that tunnel out of a trap [43], although limited to
long-range Coulomb interactions.
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Our approach based on rate equations is, in principle,
subject to two types of limitations: (i) It gives an approximate
treatment of tunneling at the single-particle level, providing
an exponential decay law. The latter deviates from the exact
behavior (see, e.g., [44]) both at short (Zeno effect) [45] and
at long times [46]. (ii) It neglects higher-order correlations
between single-atom and pair tunneling channels. Such corre-
lations may be taken into account when considering the full
time evolution of the interacting wave function [36–38]. There
is presently no indication that issues i and ii are relevant for
the class of experiments we analyze here [12,13,19].

The structure of this article is the following: The model
Hamiltonian is presented in Sec. II, the decay law is derived
in Sec. III, the tunneling rates are obtained in Secs. IV and V,
and the numerical results are discussed and compared with the
Heidelberg experiment in Sec. VI.

II. TWO FERMIONS IN A TRAP

In the combined optical and magnetic potential illustrated
in Fig. 1, which is quasi-one-dimensional due to the strong
transverse confinement, two 6Li atoms behave as fermions
of spin-1/2 and interact through an attractive tunable contact
potential, g δ(x1 − x2), with g < 0 (for the regime of strong
repulsion see Ref. [47]). A finite and smooth tunnel barrier
allows atoms to escape from the trap into the unbound region
at large positive values of x. The Hamiltonian is

H = − h̄2

2m

2∑
i=1

[
d2

dx2
i

+ V (xi)

]
+ gδ(x1 − x2), (1)

with m being the mass and V (x) an effective potential.
The exact functional form of V (x) reproduces the setup
in Ref. [13] (cf. Supplemental Material) with the optical
trap depth parameter p = 0.6338 and cB|state〉 = 1. The latter
condition is equivalent to neglecting the weak dependence of
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FIG. 1. Confinement potential V (x) vs x as in Ref. [13] with
p = 0.6338 and cB|state〉 = 1. The frequency ωWKB of the single bound
state (thin solid line) computed through the WKB approximation is
ωWKB = 316.3 Hz × 2π (the trap bottom is the frequency 0). The
tunneling energy for single-atom escape is ε. Note that for attractive
interactions (g < 0) one has ε < h̄ωWKB, hence single-atom resonant
tunneling is suppressed when ε < 0. Circles with arrows schematize
atoms in the | ↑↓〉 final configuration.

the atom magnetic moment (and hence the potential profile)
on the atom spin.

The trap is approximately parabolic at low energy, the trap
bottom being the energy 0. The bound trap eigenstates φn(x)
are therefore eigenstates of the one-dimensional harmonic
oscillator (HO), with energy εn = h̄ω0(n + 1/2) and n =
0,1,2, . . .. The characteristic HO length is �HO = (h̄/mω0)1/2.
According to a WKB calculation, V (x) supports a single
bound state (cf. the thin solid line in Fig. 1), with ωWKB =
316.3 Hz × 2π .

Here only the | ↑↓〉 configuration of distinguishable
fermions is considered, with the two atoms of opposite spin be-
ing paired in their ground state. Therefore, the orbital part of the
| ↑↓〉 wave function is bosoniclike, ψ↑↓(x1,x2) = ψ↑↓(x2,x1).
The notation used throughout this article is consistent with that
in Ref. [19].

III. DECAY LAW

In the experiment in Ref. [13] two atoms are initially
prepared in the ground state of the optical trap where the
coupling constant g is set by a Feshbach resonance tuning
the magnetic offset field to a fixed value. A magnetic field
gradient is then applied along x for a given hold time t , whose
effect is to add a linear term to the confinement potential. The
net result, shown in Fig. 1, is to lower the potential barrier
allowing for atoms to tunnel out of the trap. The measurement
cycle ends by ramping the potential barrier back up and then
counting the N (t) survivor atoms left in the trap. Averaging
over many measurement cycles provides the probabilities
P2(t), P1(t), and P0(t) of finding two, one, and zero atoms,
respectively, in the trap after the hold time t . From the
conservation of probability one has P2(t) + P1(t) + P0(t) = 1
at all times, therefore only two quantities are independent, say
P2(t) and P1(t). The measured mean atom number in the trap
is 〈N (t)〉 = 2P2(t) + P1(t).

In this section we derive the decay law of 〈N (t)〉 on the basis
of simple rate equations, recalling the treatment in Ref. [13]
for the sake of clarity. The decay is due to the combined
effect of two qualitatively different tunneling processes, either
the tunneling of a single atom or the correlated escape of
two bound atoms at once. Both mechanisms may eventually
empty the trap. We assume that the two tunneling rates, γs and
γp, respectively, for single-atom and pair tunneling, may be
computed independently.

At time t , P2(t) may decrease due to either single-atom or
pair tunneling, so one has

dP2(t)

dt
= −(γs + γp)P2(t). (2)

Here the low probability that two consecutive single-atom
tunneling events occur in the infinitesimal time interval dt is
neglected. Moreover, it is assumed that γs and γp are constant
in time and add independently, as well as that the decay process
is irreversible. The decay law is then simply

P2(t) = e−(γs+γp)t . (3)

If g = 0, there is no pair tunneling (γp = 0) and γs is twice the
rate γs0 for the decay of a single atom in the trap, γs = 2γs0

[13,19,37].
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The variation in time of P1(t) is more complex,

dP1(t)

dt
= Fin(t) + Fout(t), (4)

as P1(t) may either increase due to the one-atom decay of the
state with two atoms, Fin(t) = γsP2(t), or decrease due to the
decay of the one-atom state, Fout(t) = −γs0P1(t), so

dP1(t)

dt
= γse

−(γs+γp)t − γs0P1(t). (5)

Solving Eq. (5) with the initial condition that there are two
atoms in the trap [P2(0) = 1, P1(0) = P0(0) = 0], the decay
law is

P1(t) = γs

γs + γp − γs0
[e−γs0t − e−(γs+γp)t ]. (6)

Therefore, the decay law for the mean particle number in the
trap is

〈N (t)〉 =
[

2 − γs

γs + γp − γs0

]
e−(γs+γp)t

+ γs

γs + γp − γs0
e−γs0t . (7)

In the noninteracting case one has

P2(t) = e−2γs0t , (8)

P1(t) = 2e−γs0t [1 − e−γs0t ], (9)

P0(t) = [1 − e−γs0t ]2, (10)

and it is easy to show that

P1 = 〈N〉 − 1

2
〈N〉2 (11)

at all times t , which is the dashed black parabola in Fig. 3
in [13]. At finite g it is not possible to work out a relation
similar to (11) in closed form.

The next two sections explain the calculation of the
tunneling rates γs , γs0, and γp that enter expressions (3) and
(6) for P2(t) and P1(t), respectively.

IV. SINGLE-ATOM TUNNELING

This section focuses on the elementary tunneling event of a
single atom transferred out of the trap. In the case where there
are initially two atoms in the trap, i.e., the tunneling transition
is N = 2 → N = 1, the tunneling rate γs is computed by
means of the quasiparticle wave function theory developed in
Ref. [19]. This approach fully takes into account the interaction
between the escaping atom and the companion left in the trap.
The single-atom tunneling rate γs is 1/τ in the notation of [19].

For attractive interactions, the relevant tunneling transition
is the one between the initial trap ground state �0(x1,x2) and
the final noninteracting configuration �0,ε(x1,x2), with one
atom left in the lowest HO orbital φ0(x) and the other one in
the continuum state χε(x) outside the trap (Fig. 1). If the total
energy of the interacting state with two atoms in the trap is
W0(g), from energy conservation it follows that the tunneling
energy is ε = W0(g) − ε0. Here the two-atom energies and
wave functions are computed in the harmonic approximation
following the exact solution of Ref. [48].
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FIG. 2. (Color online) Inverse tunneling rates 1/γ vs coupling
constant g for ω0 = 2ωWKB = 632.6 Hz × 2π . g is in units of
h̄ω021/2�HO.

When the tunneling energy is lower than the trap bottom,
i.e., ε < 0, the resonant tunneling process is forbidden. This
is illustrated in Fig. 2, where 1/γs is plotted vs g [blue (gray)
line] for a trap with HO frequency ω0 = 2ωWKB = 632.6 Hz
× 2π . The tunneling energy ε and γs decrease with increasing
values of |g|, as the potential barrier faced by the escaping
atom becomes higher and thicker. At g ≈ −0.65 the energy ε

reaches the bottom of the trap where the channel of single-atom
resonant tunneling closes.

In general, there may be final states other than �0,ε allowed
by energy conservation, like the (n = 1)(ε = W0 − ε1) con-
figuration. However, the corresponding matrix elements may
be neglected since wave function tails drop exponentially with
energy in the barrier.

In the case where there is initially only one atom in the
trap, the tunneling rate γs0 of the transition N = 1 → N = 0
is given by the WKB formula [12],

γs0 = ε0

2π
exp

(
− 2

∫ xb

xa

k(x)dx

)
, (12)

with xa < xb being the classical turning points and k(x) =
[(2m/h̄2)|ε0 − V (x)|]1/2. Here it is assumed that the atom in
the trap occupies the lowest HO orbital φ0(x).

In the case there are two noninteracting atoms one has γs =
2γs0 and all decay laws assume a simple form, as shown in Sec.
III. In particular, the mean atom number 〈N (t)〉 is given by

〈N (t)〉 = 2e−γs0t ,

as obtained from Eq. (7) with γp = 0. Figure 3 compares
such theoretical curve (continuous line), computed for
ε0 = h̄ωWKB = 316.3 Hz × h, with the experimental data [13]
(points) obtained for an almost negligible value of the coupling
constant, g = −0.01 h̄ω0(2h̄/mω0)1/2 (ω0 = 2ωWKB = 632.6
Hz × 2π ), nicely showing the exponential decay whose time
constant is given by the WKB prediction.

V. PAIR TUNNELING

In order to derive the pair tunneling rate γp, we rewrite
the full Hamiltonian (1) in center-of-mass and relative-motion
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FIG. 3. (Color online) Mean atom number 〈N (t)〉 vs hold time t .
Circles with their error bars are the measured values taken from
Fig. 1 in Ref. [13] for g = −0.01 h̄ω0�HO21/2, with ω0 = 632.6 Hz
× 2π . The theoretical curve (solid line) is a decaying exponential
with time constant 1/γs0 = 35.24 ms, as obtained from Eq. (12) with
ε0 = h̄ωWKB = 316.3 Hz × h, with h̄ωWKB being the WKB energy of
the bound state shown in Fig. 1.

coordinates,

H = −h̄2

m

d2

dx2
+ gδ(x) − h̄2

4m

d2

dX2
+ V (X + x

2
)

+V (X − x

2
), (13)

with X = (x1 + x2)/2 and x = x1 − x2. The time-independent
Schrödinger equation reads

H�(X,x) = W�(X,x), (14)

with �(X,x) being the two-atom ground state over the whole
space (not to be confused with Bardeen’s solution �0(x1,x2)
of section IV, which is the ground state in the trap region and
vanishes outside the potential barrier [19]). In the following
we are concerned with solutions of the eigenvalue problem
(14) such that the two atoms form a bound state—a pair—both
inside and outside the trap.

Close to the bottom of the trap the anharmonic terms of the
potential are negligible, hence V (X + x/2) + V (X − x/2) ≈
mω2

0X
2 + mω2

0x
2/4 and the Hamiltonian (13) becomes sepa-

rable with respect to coordinates x and X, the wave function
being �(X,x) = �CM(X)�r (x). In this region one may use
the exact solution for �r (x) [19,48] whereas �CM(X) is just a
Gaussian. We write the total energy as W0 = Etrap + ε0, with
only the relative-motion energy Etrap depending on g. Figure 4
shows �r (x) for different values of g (solid lines). Here the
energy unit is h̄ω0, the length unit is �HO, and g is expressed
in units of h̄ω0�HO21/2.

Even well outside the trap the wave function is decoupled,
�(X,x) = �CM(X)�r (x). In this case �CM(X) is a continuum
state whereas �r (x) is finite and normalizable, with wave
function

�r (x) =
√−g

21/4
exp (g|x|/

√
2) (15)

and energy Efree = −g2/2 (here �HO = h̄ω0 = 1). The pair
wave function �r (x) is compared inside (solid lines) and
outside (dashed lines) the trap in Fig. 4. For weak attraction
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FIG. 4. (Color online) Relative-motion wave function �r (x) vs
x for different values of g. The solid curves represent the ground
states in a harmonic trap [48], whereas the dashed lines show the
corresponding bound states in free space. The length unit is �HO =
(h̄/mω0)1/2 and g is expressed in units of h̄ω0�HO21/2.

(g = −0.1 and −0.5) the size of the pair outside the trap
is much larger than inside the trap, the trap confinement
potential squeezing �r (x) and forcing it to have Gaussian
tails. However, for stronger attraction (g = −1.5), the two
wave functions overlap almost completely.

A. Effective Schrödinger equation from ansatz wave function

In the case the two atoms tunnel as a pair, a reasonable
assumption is that the atoms form a bound state over the whole
space. A possible ansatz wave function is then

�(X,x) ≈ �CM(X)�r (x) ∀ X, (16)

with �r (x) being the bound state wave function in the relative-
motion frame obtained from Busch’s theory [48].

By multiplying both sides of Eq. (14) for �∗
r (x), using

Eqs. (13), (16), and integrating over x, one obtains an effective
Schrödinger equation for the center-of-mass motion:

− h̄2

4m

d2�CM(X)

dX2
+ VCM(X)�CM(X) = εCM�CM(X). (17)

Here the effective potential VCM(X) is defined as

VCM(X) =
∫ ∞

−∞
dx |�r (x)|2

×
[
V (X + x

2
) + V (X − x

2
) − m

4
ω2

0x
2
]
, (18)

and the center-of-mass energy εCM is the total energy W minus
the relative-motion energy Etrap, εCM = W − Etrap. The energy
Etrap is the eigenvalue of the equation

[
− h̄2

m

d2

dx2
+ m

4
ω2

0x
2 + gδ(x)

]
�r (x) = Etrap�r (x). (19)

Equation (17) takes into account the internal degree of freedom
of the two-atom bound state through the potential VCM(X),
which is the original potential V smeared by the relative-
motion probability density |�r (x)|2 appearing in (18).

To shed light on the structure of VCM(X), it is useful to
consider two limiting cases. In case the potential profile is
purely parabolic, V (x) = mω2

0x
2/2, Eq. (18) simply reduces
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to VCM(X) = mω2
0X

2 and the ansatz wave function (16) is the
exact result. The other exact limit is the case g → −∞. Then
the pair binding energy goes to −∞ and the spatial extension of
�r (x) becomes negligible, hence |�r (x)|2 ≈ δ(x) and Eq. (18)
becomes VCM(X) = 2V (X). Equation (17) then takes the form

− h̄2

4m

d2�CM(X)

dX2
+ 2V (X)�CM(X) = εCM�CM(X), (20)

which is the single-particle Schrödinger equation for a particle
of coordinate X and mass 2m seeing the potential 2V (X).

In order to compute the pair tunneling rate γp, it suffices
to note that the tunneling problem is reduced through (17)
to that of a single particle of mass 2m escaping through the
effective potential barrier defined by VCM(X). Then γp may be
computed trough the WKB formula

γp = εCM

2πh̄
exp

(
−2

∫ Xb

Xa

K(X)dX

)
. (21)

Here Xa < Xb are the classical turning points for the effective
potential VCM(X), K(X) = [(4m/h̄2)|εCM − VCM(X)|]1/2, and
the center-of-mass energy εCM is the WKB bound level in the
trap defined by VCM(X).

The dashed line in Fig. 2 shows 1/γp obtained for
ω0 = 2ωWKB = 632.6 Hz × 2π . The inverse decay rate
1/γp increases with |g|, the smaller the pair size the lower
the tunneling rate. For strong attraction 1/γp tends to the
asymptotic exact limit of a point-like particle of mass 2m.
However, for g → 0 the decay time 1/γp disturbingly tends
to a finite value, whereas one would expect it to be suppressed
as the atoms become unbound. Such difficulty is due to the
approximate form (16) for �(X,x).

Alternatively, one may replace in the ansatz (16) the trap
pair wave function with the bound state in free space [Eq. (15)].
The corresponding values obtained for 1/γp are shown by the
dotted curve in Fig. 2. Reassuringly, for strong attraction the
dotted and dashed curves overlap, as the pair wave functions
tend to coincide. However, as g → 0 the value of 1/γp

becomes unphysically low, since the ansatz wave function now
overestimates the pair size.

The missing piece of information in the ansatz (16) is the
link between the pair wave function inside and outside the
trap. Indeed, one expects 1/γp to interpolate between the upper
and lower bounds represented respectively by the dashed and
dotted curves in Fig. 2. An additional physical requirement is
that 1/γp → ∞ as g → 0. In the next subsection we propose a
refined effective potential for the center-of-mass motion which
complies with the required physical features.

B. Effective center-of-mass potential from time-dependent
perturbation theory

As a preliminary step, we recall the result of time-dependent
first-order perturbation theory [19,39] for the noninteracting
single-atom tunneling rate γs0. Such rate is given by Fermi’s
golden rule,

γs0 = 2π

h̄

∑
ε

∣∣M0ε

∣∣2
δ(ε0 − ε)

= 2π

h̄

∣∣M0ε0

∣∣2
(ε0), (22)

with (ε0) being the density of continuum states at energy ε0

and

M0ε =
∫ ∞

−∞
dx φ∗

0 (x)

[
− h̄2

2m

d2

dx2
+ V (x) − ε

]
χε(x). (23)

For the following development, we remark that the practical
evaluation of γs0 relies on the WKB formula (12). Therefore,
we associate the matrix element (23) with the expression (12)
for the decay of a particle of energy ε and mass m through the
potential barrier V (x).

Considering now the interacting case, the pair-tunneling
matrix element M0f between the initial state �0(X,x) with
two atoms in the trap and the final state �f (X,x) with the pair
outside the trap is a straightforward extension of (23):

M0f =
∫ ∞

−∞
dX

∫ ∞

−∞
dx �∗

0 (X,x)[H − Wf ]�f (X,x). (24)

Both initial and final states are written as �(X,x) =
�CM(X)�r (x), the relative and center-of-mass motions being
decoupled. For the initial state, �0(X,x) = �0

CM(X)�0
r (x), the

relative-motion wave function �0
r (x) is Busch’s solution with

energy Etrap(g) [48] and �0
CM(X) is the lowest HO state in

the center-of-mass frame with energy ε0, the total energy
being W0 = Etrap(g) + ε0. For the final state, �f (X,x) =
�

f

CM(X)�f
r (x), the relative-motion wave function �

f
r (x) is

the free-space wave function (15) with energy Efree = −g2/2
and �CM(X) is the continuum state with energy εCM, the total
energy being Wf = −g2/2 + εCM.

The next step is to trace out the relative-motion degree of
freedom in (24) by integrating over x. One obtains

M0f =
∫ ∞

−∞
dX �0∗

CM(X)

[
− Sh̄2

4m

d2

dX2

+ VCM(X) − SεCM

]
�

f

CM(X), (25)

with S being the overlap integral between relative-motion wave
functions,

S =
∫ ∞

−∞
dx �0∗

r (x) �f
r (x), (26)

and VCM(X) being the effective potential for center-of-mass
motion,

VCM(X) =
∫ ∞

−∞
dx �0∗

r (x) �f
r (x)

×[V (X + x/2) + V (X − x/2)]. (27)

By inspection we see that the formula (25) is the matrix
element for the decay of a particle of mass 2m/S and energy
SεCM through the potential barrier VCM(X). The latter effective
potential is smeared by the overlap density �0∗

r (x) �
f
r (x)

instead of the probability density |�r (x)|2 that appears in (18).
The potential barrier induced by VCM(X) depends on the

coupling constant g, as shown in Fig. 5. For strong attraction,
g → −∞, the overlap density �0∗

r (x) �
f
r (x) tends to the

probability density |�r (x)|2 and S → 1, hence one recovers
the results of subsection V A. In fact, the effective particle of
mass 2m/S → 2m and energy SεCM → εCM sees a potential
barrier VCM(x) → 2V (x) (compare thin and thick solid lines in
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FIG. 5. Effective confinement potential for the center-of-mass
motion VCM(x) vs x, as defined in Eq. (27), for a few values of
the coupling constant g. Here the HO frequency is ω0 = 250 Hz ×
2π (the trap bottom is the frequency zero). The coupling constant g is
expressed in units of h̄ω0�HO21/2, with �HO = (h̄/mω0)1/2. The thick
solid line is the original single-particle bare potential V (x).

Fig. 5). However, for g → 0 the effective one-particle problem
strongly deviates from that of subsection V A, as now the
particle acquires infinite mass since S → 0.

The above discussion shows that γp may be evaluated by
means of the WKB formula (21) using the expression (27)
for VCM(X) and replacing 2m with 2m/S as well as εCM with
SεCM. The result for ω0 = 2ωWKB = 632.6 Hz × 2π is shown
in Fig. 2 (black solid line). One recovers the previous results
of subsection V A for g → −∞, as all black curves tend to
the same line asymptotically.

The small discrepancy between solid and dashed / dotted
lines for large values of |g| is due to the different method to
determine εCM. In fact, for the black solid curve εCM is fixed
by energy conservation, εCM = ε0 + Etrap(g) + g2/2, whereas
for the dashed and dotted curves εCM is the WKB energy of
the bound state in the effective potential. Nevertheless, in the
limit g → −∞ one has εCM → ε0 and the curves are expected
to merge.

For moderate attraction the behavior of the black solid
curve in Fig. 2 strongly departs from those of the dashed
and dotted curves. In fact, 1/γp interpolates between dashed
and dotted curves, first showing a minimum as |g| is decreased
and then going to +∞ as g → 0. Such trend complies with the
physical expectation that correlated tunneling is forbidden in
the absence of interaction and that it is favored by the extension
of the pair, the larger the pair size the fatter the wave function
tail in the barrier.

C. Discussion

In principle pair tunneling may be investigated numerically
simulating the full quantum mechanical time evolution of two
atoms that are allowed to escape from the trap, as it was done
for repulsive interactions in Refs. [34] and [36–38]. However,
the present case of attractive interactions raises a computa-
tional issue regarding the accuracy of the interacting wave
function. In fact, the two-body wave function in the relative
frame collapses in space with increasing attraction [48]. Hence,
a larger basis set is needed in typical variational methods

[34,36–38,49] to provide a certain numerical accuracy, which
implies either a higher-energy cutoff or a higher resolution in
real space, as we discuss at length elsewhere [50].

Besides, it is difficult to treat numerically realistic tunnel
barriers, which are typically shallow, such as the one shown
in Fig. 1. As a matter of fact, previous numerical approaches
for repulsive interactions [34,36–38] considered only idealized
functional forms of potential profiles. The approximate theory
presented in this work is fit to any potential profile and
interaction strength.

VI. COMPARISON WITH THE HEIDELBERG
EXPERIMENT

Since the tunneling rates in the experiment [13] are the
outcome of a complex fitting procedure involving different
measurements, for the sake of clarity we consider a single
observable, that is, the decay time of P2(t). This quantity is
easily obtained in both theory and experiment. In the former
it is simply 1/(γs + γp) according to Eq. (3), whereas in the
latter it is a straightforward exponential fitting to measured
data, as shown in Fig. 3 for the noninteracting case.

Figure 6 compares the measured and predicted values of
1/(γs + γp) as a function of the coupling constant g. We
remark that in our theory the fitting parameter is the HO
frequency ω0. This fixes the interaction energy for a certain
value of g [48], whereas in Ref. [13] the interaction energy
is the output of the fitting procedure, the fitting parameters
being the tunneling rates. Besides, the determination of ω0 is
a nontrivial experimental task, being specific to the type of
spectroscopy [13,51].

The natural choice for the free parameter ω0 would be
ω0 = 2ωWKB, as one may regard h̄ωWKB as the zero-point
energy of the HO. This was also the value chosen to compute
the tunneling rates in the interacting case shown in Fig. 2.
However, the predicted values of the tunneling rates turn out to
be systematically low with respect to the measured values [13].

-2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0

g  (units of  hω0lHO 2
1/2

 )  

10

100

1000

1 
/ γ

  (
m

s)

1 / (γs + γp )

1 / γs

1 / γp

experiment

FIG. 6. (Color online) Inverse tunneling rates 1/γ vs coupling
constant g for ω0 = 250 Hz × 2π . g is in units of h̄ω0(2h̄/mω0)1/2.
Circles with their error bars are the measured values of 1/(γs + γp),
extracted from Table III in Ref. [13] (column γ2,fit) except for the
rightmost point, which is taken from our Fig. 3. The light-gray (red)
curve is the theoretical estimate, as explained in the main text.
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The chosen value of ω0 in Fig. 6 is ω0 = 250 Hz ×
2π , with ε0 = h̄ωWKB and Etrap(g) = h̄ω0[Ẽtrap(g) − 1/2] +
h̄ωWKB, Ẽtrap(g) being the relative-motion energy in units of
h̄ω0 according to Ref. [48]. The darker gray (blue) curve
is the quasiparticle prediction for 1/γs , which deviates only
slightly (within 10%) from the noninteracting WKB value
1/(2γs0). The black curve is 1/γp calculated following the
method outlined in Sec. V B. Circles are the measured values
of 1/(γs + γp) with their error bars, taken from Table III in
Ref. [13] (column γ2,fit) except for the rightmost point, which
is taken from our Fig. 3. Note that the values of g were rescaled
due to the different HO reference frequency.

The theoretical value of 1/(γs + γp) [solid light-gray (red)
curve] fairly compares with the measured points, exhibiting
the same qualitative trend. We note that at small values of
|g| the measured values of 1/(γs + γp) are smaller than the
theoretical ones, whereas at large |g| the opposite holds.
This suggests that the effective frequency ω0 increases with
|g|, since the smaller ω0 is, the smaller 1/(γs + γp). Such
behavior appears reasonable, as the HO frequency obtained
by expanding V (x) around the trap bottom is larger than
2ωWKB. Therefore, one expects larger anharmonic effects at
higher energies, i.e., at smaller values of |g|. This confirms a
posteriori that neglecting the effects of the anharmonic terms
of the potential on the two-body wave function is a reasonable
approximation.

All data measured in Ref. [13] were explained assuming
no pair tunneling, γp = 0. However, the error of the mea-

surements performed in the regime of strong attraction was
too large to exclude unambiguously the occurrence of pair
tunneling. Figure 6 shows that the channel associated with
the usual single-atom tunneling [darker gray (blue) solid line]
closes already at moderate values of g ∼ 1. This prediction
paves the way for future experiments in the regime of moderate
attraction, where only pair tunneling is expected to survive.

VII. CONCLUSIONS

In this article we have developed a theory of the pair
tunneling of two fermions out of a trap that is based on
simple and physically transparent formulas. We predict that
the observation of pair tunneling is within the reach of present
experiments with 6Li atoms. Intriguingly, it was recently
shown [13,52] that pairing emerges already with very few
atoms in tight low-dimensional traps. Therefore, pair tunneling
may provide an important spectroscopic tool for addressing
pairing in many-body states.
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