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We consider a Fermi gas at unitarity trapped by a highly elongated harmonic potential and solve the equations
of two fluid hydrodynamics at finite temperature. The propagation of sound waves as well as the discretized
solutions in the presence of weak axial trapping are considered. The relevant thermodynamic functions entering
the hydrodynamic equations are discussed in the superfluid and normal regimes in terms of universal scaling
functions. Both first sound and second sound solutions are calculated as a function of temperature and the role of
the superfluid density is explicitly pointed out. The density fluctuations in the second sound wave are found to be
large enough to be measured as a consequence of the finite thermal expansion coefficient of the gas. Emphasis is
given to the comparison with recent experimental data.
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I. INTRODUCTION

Propagation of sound is one of the most exciting features
exhibited by interacting many-body systems. It provides
crucial information on the dynamic behavior of the system as
well as on key thermodynamic quantities. The propagation of
sound is particularly interesting in superfluids where two-fluid
hydrodynamic theory predicts the occurrence of two different
sounds [1,2]: first sound, which is basically an iso-entropic
wave and whose velocity is controlled by the adiabatic
compressibility, and second sound, which corresponds to an
isobaric wave where the normal and superfluid components
oscillate with opposite phase. Second sound has attracted
much attention in the literature of superfluids mainly because
the velocity of this peculiar sound is determined by the
superfluid density. Actually in liquid 4He the most accurate
determination of the temperature dependence of the superfluid
density is obtained through the measurement of the second
sound velocity [3]. These data allowed Landau to establish the
correct form of the spectrum of the elementary excitations of
4He, including the roton minimum [4].

In ultracold atomic gases, below the critical temperature for
superfluidity, the propagation of sound has been the object of
extensive theoretical and experimental work in recent years.
A peculiar feature of ultracold gases is that they are confined,
the confinement being often of harmonic shape, which causes
the discretization of sound waves in the form of collective
oscillations. At the same time, in the case of highly elongated
configurations, it is possible to investigate directly also the
propagation of sound waves, by generating a perturbation in
the center of the trap and subsequently investigating the time
and space propagation of the resulting signal along the long
axis [5–7].

Most of the theoretical investigations in trapped atomic
gases have been so far carried out at zero temperature, where
only the first sound oscillations exist, both in Bose-Einstein
condensed gas and in interacting Fermi gases. The agreement
between theory and experiment is pretty good (for a review
see, for example, [8] and [9]). In the case of BEC gases
these studies have permitted one to check the validity of
superfluid hydrodynamic theory at zero temperature [10].
In the case of interacting Fermi gases, along the BEC-BCS

crossover, they have permitted one to investigate fine details
caused by the interactions and quantum statistical effects in
the excitation spectrum of the discretized oscillations [11,12],
including the beyond mean-field Lee-Huang-Yang effect [13].
The propagation of sound near zero temperature, and in
particular the value of the sound velocity, have also been
the object of systematic studies, and the general agreement
between theory [14,15] and experiments [5,6] is satisfying,
both for Bose and Fermi superfluids.

Much less is known about the behavior of sound at finite
temperature. This is due to various reasons. On one hand the
realization of the collisional regime in the thermal component
of a Bose gas, needed to apply the equations of hydrodynamics,
is not obvious due to the very dilute and weakly interacting
nature of the system. On the other hand the accurate control of
temperature requires sophisticated experimental techniques.
From the theoretical point of view the implementation of
dynamic theories at finite temperature is much more difficult
than at zero temperature [16], especially in the realistic case
of trapped configurations. The situation becomes particularly
challenging in the study of second sound, due to the intrinsic
difficulties in generating and monitoring temperature waves
and in providing accurate theoretical predictions for their
behavior.

Attempts to excite the relative motion between the conden-
sate and the thermal components of a harmonically trapped
Bose gas were first carried out in [17] and more recently in [18]
where the use of denser samples permitted one to explore
collisional damping effects. The propagation of second sound
waves in dilute Bose gases was explored in [19]. In dilute Bose
gas, however, second sound behaves quite differently from
the case of strongly interacting superfluids, like 4He. In dilute
Bose gases second sound actually reduces to the oscillation
of the condensate in agreement with Tisza’s original idea
except at very low temperature in the phonon regime [20].
In a strongly interacting superfluid it instead corresponds to
the oscillation of the gas of elementary excitations relative to
the superfluid component, and its observation consequently
gives important information on the excitation spectrum.

Differently from dilute Bose gases, Fermi gases at unitarity
(where atoms occupying different spin states interact with a
value of the scattering length much larger than the interparticle
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distance) behave like strongly interacting fluids and, in this
respect, are more similar to liquid 4He, despite the different
statistics. These systems actually exhibit novel and important
features and are characterized by a universal thermodynamic
behavior whose experimental determination has been the
object of recent systematic studies [7,21,22] and whose
theoretical investigation represents a stimulating challenge of
high interdisciplinary interest [9]. Collisions in the unitary
Fermi gas are more effective than in dilute Bose gases, so that
the nonsuperfluid component of the system can easily achieve
the hydrodynamic regime in a wide range of temperatures [23].
Furthermore, due to the small compressibility, the superfluid
and normal components strongly overlap in space also in the
presence of external harmonic confinement, thereby favoring
the propagation of second sound.

The achievement of the hydrodynamic regime, as well
as an efficient experimental excitation and investigation of
sound waves is favored by the use of highly elongated traps.
The discretized low frequency oscillations of first sound
nature in these elongated configurations have been recently
measured with high precision in the case of the unitary
Fermi gas as a function of temperature [24,25], exploiting
fine details of its thermodynamic behavior. The excitation
and observation of wave packets propagating along the long
(axial) direction has been also recently carried out at finite
temperature [7,26]. From the theoretical side the use of highly
elongated configurations allows for an important simplification
of the formalism, through the formulation of the so-called
one-dimensional (1D) hydrodynamic approach [27] whose
derivation and implementation in the case of the unitary Fermi
gas represent the main goal of the present paper. In this
formalism the system preserves the applicability of the local
density approximation along the axial as well as the radial
directions, but exhibits a typical 1D-like behavior in the sense
that the fluctuations of the relevant thermodynamic functions
(such as the temperature, the axial velocity, and the chemical
potential) depend uniquely on the axial coordinate [28]. The
1D-like behavior of the low-energy modes is the consequence
of the effect of viscosity and thermal conductivity and is
favored by a tight radial confinement. It is well suited to
describe relevant experimental scenarios as we will discuss
in the following sections.

Our paper is organized as follows: In Sec. II we discuss
the main features of the 1D hydrodynamic equations and
the general conditions required for their applicability. In
Sec. III we focus on the case of the unitary Fermi gas for
which we derive the relevant three-dimensional (3D) and 1D
thermodynamic functions needed to solve the hydrodynamic
equations. In Sec. IV we discuss the basic features of the
variational approach which is implemented in Secs. V and VI,
where we provide results for the first and second sound
solutions, respectively. In particular in Sec. V we calculate the
discretized frequencies which have been recently measured in
[24,25], while in Sec. VI we discuss the behavior of the second
sound solutions both in the cylindrical geometry, where they
take the form of sound waves, and in the case of axially trapped
configurations, where the eigenfrequencies are discretized. In
Sec. VII we draw our conclusions while in the Appendix we
discuss the conditions of applicability of the 1D hydrodynamic
approach.

II. TWO-FLUID HYDRODYNAMICS

In this paper we consider atomic gases at finite temperature
confined by a harmonic potential of the form,

Vext = 1
2mω2

⊥r2
⊥ + 1

2mω2
zz

2, (1)

and we will assume highly elongated configurations with
trapping frequency satisfying the condition ωz � ω⊥, while m

is the atomic mass. Our aim is to discuss the dynamic behavior
of a trapped Fermi gas of two-spin species interacting with
infinite scattering length (unitary limit), both below and above
the superfluid transition. We will discuss the propagation of
sound in the cylindrical geometry (ωz = 0) as well as the
discretized solutions with frequency of order ωz.

In [27] it was shown that, under suitable conditions of radial
trapping, it is possible to derive simplified 1D hydrodynamic
equations starting from the usual two-fluid Landau hydrody-
namic equations defined in three dimensions [29]. The basic
point for such a derivation is the requirement that both the nor-
mal velocity field along the long zth axis and the temperature
oscillations during the propagation of sound do not depend on
the radial coordinates. This requirement is justified in the case
of tight radial confinement and is a direct consequence of the
effects of viscosity and of thermal conductivity. The condition
can be formulated in the simple form,

η � mnn1ω, (2)

where η is the shear viscosity, nn1 is the 1D normal density,
obtained by radial integration of the 3D normal density, and ω

is the frequency of the sound (see Appendix). An analogous
condition holds for the thermal conductivity. In terms of the ra-
dial trapping frequency ω⊥ the 1D hydrodynamic condition (2)
can be rewritten in the form ω � ω2

⊥τ , where τ is a typical
collisional time, hereafter assumed, for sake of simplicity,
to characterize both the effects of viscosity and of thermal
conductivity [27]. The above condition should be satisfied
together with the usual hydrodynamic condition ωτ � 1 [30]
and is satisfied by the low-frequency modes of the trapped
gas, of order of ωz, provided the radial trapping is sufficiently
tight. It is worth noticing that the above 1D condition
implies that also the fluctuations of the chemical potential are
independent of the radial variables. This follows [27] from the
condition of mechanical equilibrium along the radial direction
∂⊥P + n∂⊥Vext = 0 and from the thermodynamic identity,

dP = sdT + ndμ, (3)

where s is the entropy density, n is the particle density, and P

is the pressure of the gas. Violation of the radial mechanical
equilibrium condition would actually result in frequencies of
the order ω⊥ rather than ωz.

By radial integration of the 3D hydrodynamic equations,
and following the procedure described in [27], one obtains the
following 1D hydrodynamic equations:

m∂tn1 + ∂zjz = 0, (4)

∂t s1 + ∂z

(
s1v

z
n

) = 0, (5)

m∂tv
z
s = −∂z(μ1(z) + Vext(z)), (6)

∂t jz = −∂zP1 − n1∂zVext(z), (7)
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where the terms n1, s1,P1 are the radial integrals of their 3D
counterparts, namely the particle density, the entropy density,
and the local pressure, the integration accounting for the
inhomogeneity caused by the radial component of the trapping
potential (1). In the above equations jz = m(nn1v

z
n + ns1v

z
s ) is

the current density, ns1 and nn1 are the superfluid and normal
number densities, respectively, with n1 = ns1 + nn1 while vz

s

and vz
n are the corresponding velocity fields. The continuity

equation in Eq. (4) expresses mass conservation. Equation (5)
shows that the entropy of the fluid is carried by the normal fluid.
In Eq. (6) μ1 = μ(T ,n(r⊥ = 0,z)) is the chemical potential
calculated on the symmetry axis of the trapped gas and
is determined by the equation of state of uniform matter.
Equation (6) fixes the law for the superfluid velocity, while
Eq. (7) is the 1D version of the Euler equation for the current.
Since we are interested only in the linear solutions, in the above
equations we have omitted terms quadratic in the velocity. Here
and in the following we assume that the system is large enough
to safely carry out the radial integral using the local density
approximation.

The ingredients needed to solve the two fluid equations
require the knowledge of the equation of state μ(T ,n) and
of the superfluid density. Theoretically, the calculation of
the thermodynamic functions of the unitary Fermi gas is
a great challenge due to the absence of a small coupling
parameter. There are numerous efforts to develop strong-
coupling many-body theories for such a system (see [9] and
[31] with references therein and [32–39]). In order to probe
the hydrodynamic behavior of the two fluid hydrodynamic
equations the knowledge of thermodynamics both below and
above Tc is essential. Actually even below Tc the fluid is normal
in the peripheral region where it approaches the classical
regime. Due to the uncertainties of the theoretical calculations
in relevant temperature ranges, we have chosen the strategy
of using, for the equation of state, the data available from the
recent experimental analysis of the Massachusetts Institute
of Technology (MIT) team at unitarity [22]. Universality can
then be used to build the thermodynamic functions for all
values of T and n (see Sec. III). Actually the experimental
MIT data do not cover the whole range of temperatures and
the information on the equation of state can be implemented
and completed at high temperature by making use of the virial
expansion ([31,40] with references therein) and, at very low
temperature, by calculating explicitly the phonon contribution
which is known to give, in superfluids, the exact behavior as
T → 0 [20]. As far as the superfluid density is concerned, its
present theoretical knowledge is rather poor and we will make
use of simple ad hoc parametrizations in order to provide
explicit predictions. The recent experimental investigation of
second sound, which is particularly sensitive to the behavior
of the superfluid density, has provided the first access to this
quantity of fundamental interest [26].

III. THERMODYNAMICS OF THE UNITARY FERMI GAS:
FROM 3D TO 1D

In order to derive the relevant 1D thermodynamic quantities
needed to solve the hydrodynamic equations [Eqs. (4)–(7)] let
us first discuss the thermodynamic behavior of uniform matter.

A. 3D thermodynamic functions

At unitarity the s-wave scattering length diverges and, in
uniform matter, the remaining length scales are the thermal
wavelength,

λT =
√

2πh̄2/mkBT , (8)

and the interparticle distance n−1/3. For the same reason the
energy scales are fixed by the temperature T and by the Fermi
temperature,

TF = 1

kB

h̄2

2m
(3π2n)2/3, (9)

or, in alternative, by the chemical potential μ. It follows that
at unitarity all the thermodynamic functions can be expressed
[41] in terms of a universal function fp(x) depending on the
dimensionless parameter x ≡ μ/kBT . This function can be
defined in terms of the pressure of the gas as

P

kBT
λ3

T ≡ fp(x). (10)

Using the thermodynamic relation n = (∂P/∂μ)T , the density
of the gas can then be written as

nλ3
T = f ′

p(x) ≡ fn(x). (11)

From Eq. (11) one derives the useful expression,

T

TF

= 4π

[3π2fn(x)]2/3
, (12)

for the ratio between the temperature and the Fermi
temperature (9).

In addition to the functions fp(x) and fn(x) it is also useful
to define the function,

fq(x) =
∫ x

−∞
dx ′fp(x ′), (13)

which, as we will show soon, enters some relevant 1D
thermodynamic quantities.

In terms of fn and fp we can calculate directly the thermo-
dynamic functions of the uniform Fermi gas at unitarity. For
example, using the thermodynamic relation S = V (∂P/∂T )μ
for the entropy, we find

S

NkB

= s

nkB

= 5

2

fp

fn

− x, (14)

while the specific heats at constant volume and pressure
become

CV

NkB

= cv

nkB

= 15

4

fp

fn

− 9

4

fn

f ′
n

, (15)

CP

NkB

= cp

nkB

=
(

15

4

fp

fn

− 9

4

fn

f ′
n

)
5

3

f ′
nfp

f 2
n

. (16)

According to thermodynamics the ratio between CP and CV

coincides with the ratio between the isothermal (κT ) and the
adiabatic (κS) compressibilities,

CP

CV

= κT

κS

= 5

3

f ′
nfp

f 2
n

, (17)
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FIG. 1. (Color online) Equation of state μ/kBT vs T/TF . The
blue dash-dotted line corresponds to the phonon contribution to
thermodynamics (Sec. III C). The red solid circles correspond to the
experiment data in higher T regime, while the black solid line to
the virial expansion in classical limit (Sec. III D). The green arrow
indicates the critical point Tc/TF = 0.167(13). The inset on the upper
right corner is an amplification in the lower T regime.

with κT and κS given, respectively, by

κT = 1

n

(
∂n

∂P

)
T ,N

= λ3f ′
n

kBTf 2
n

, (18)

κs = 1

n

(
∂n

∂P

)
S,N

= 3

5

λ3

kBTfp

. (19)

In Eqs. (14)–(16) we have introduced the entropy (s) and the
specific heat (cv , cP ) densities.

The scaling function fp(x) (and hence the various thermo-
dynamic functions) can be determined through microscopic
many-body calculations or extracted directly from experi-
ments. In Figs. 1 and 2 we show, respectively, the equation of
state μ/kBT as a function of T/TF and the universal functions
fn(x) and fp(x) as a function of x, determined according to the

FIG. 2. (Color online) Universal scaling functions fn and fp as
a function of the dimensionless variable μ/kBT . See Fig. 1 for the
notation.

FIG. 3. (Color online) Entropy and specific heats per particle in
uniform matter, evaluated using Eqs. (14)–(16). In the lower panel,
the red square-guided line corresponds to Cp/NkB ; the black full-
circle-guided line to Cv/NkB ; the inset is for the specific heats in a
large temperature interval. The vertical green line indicates the critical
temperature.

procedures discussed in the following sections. In Fig. 3 we
show the relevant thermodynamic functions S/NkB , CV /NkB

and CP /NkB as a function of T/TF .
Differently from the previous thermodynamic quantities,

the superfluid density ns instead requires the knowledge
of another independent function. According to dimensional
arguments, at unitarity ns can be written in terms of a universal
function fs(x) as

ns(T ,x) = 1

λ3
T

fs(x). (20)

Its behavior is known at low temperature, in the phonon regime
(see Sec. III C) [42], and near the critical point where it is
predicted to vanish as ns ∝ (1 − T/Tc)2/3 [43]. Here Tc is the
critical temperature for superfluidity which, at unitarity can be
written in the form,

Tc = αTF , (21)

with α a dimensionless universal number.

B. 1D thermodynamic functions

Starting from the above 3D thermodynamic quantities one
can calculate the relevant 1D quantities entering the hydro-
dynamic equations [Eqs. (4)–(7)], whose solution is the main
goal of the present paper. In the presence of radial harmonic
trapping the chemical potential varies along the radial direction
according to the law μ(r⊥) = μ1 − (1/2)mω2

⊥r2
⊥, predicted by

the local density approximation, so that one can easily reduce
the radial integrals to integrals in the variable x. The following
results hold for the 1D density, pressure, entropy, and specific
heats per particle:

n1(x1,T ) =
∫

dr⊥2πr⊥n = 2π

mω2
⊥

kBT

λ3
T

fp(x1), (22)

P1(x1,T ) =
∫

dr⊥2πr⊥P = 2π

mω2
⊥

(kBT )2

λ3
T

fq(x1), (23)
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FIG. 4. (Color online) 1D entropy s̄1/kB and specific heats c̄1/kB

evaluated using Eqs. (22) and (24)–(26). In the lower panel, the red
dashed line corresponds to c̄p1/kB ; the black dash-dotted line to
c̄v1/kB . The vertical green line indicates the critical temperature.

s1(x1,T )

kB

=
∫

dr⊥2πr⊥s

= 2π

mω2
⊥

kBT

λ3
T

[
7

2
fq(x1) − x1fp(x1)

]
, (24)

c̄v1(x1)

kB

= T

(
∂s̄1/kB

∂T

)
n1

= 35

4

fq(x1)

fp(x1)
− 25

4

fp(x1)

fn(x1)
, (25)

c̄p1(x1)

kB

= T

(
∂s̄1/kB

∂T

)
P1

= c̄v1(x1)
7

5

fq(x1)fn(x1)

f 2
p (x1)

, (26)

where x1 = μ1/kBT is the value of the chemical potential, in
units of kBT , calculated on the symmetry axis of the trap, and
s̄1 = s1/n1 is the entropy per particle.

Since s̄1 depends only on the variable x1 one finds that the
adiabatic derivative of the 1D pressure with respect to the 1D
density takes the form,(

∂P1

∂n1

)
s̄1

= 7

5

P1

n1
, (27)

differently from the uniform case where one has, at unitarity,
(∂P/∂n)s̄ = (5/3)P/n with s̄ = S/N . From the comparison
between Eq. (10) and Eq. (22) one also finds the relationship,

n1 = 2π

mω2
⊥

P (r⊥ = 0), (28)

between the 1D density and the pressure calculated at r⊥ = 0.
This relationship holds in the local density approximation for
a general fluid radially confined with harmonic trapping [44].
It actually follows directly from the radial integration of the
general thermodynamic equation n = (∂P/∂μ)T .

In Fig. 4 we show the relevant 1D thermodynamic functions
calculated as a function of the ratio,

T

T 1D
F

=
(

16

15
√

πfp(x1)

)2/5

, (29)

where

T 1D
F = 1

kB

(
15π

8

)2/5

(h̄ω⊥)4/5

(
h̄2n2

1

2m

)1/5

(30)

is the natural definition for the Fermi temperature in 1D
cylindrical configurations [27]. If n1 is calculated for an ideal
Fermi gas at zero temperature, T 1D

F coincides with the usual
3D definition (9) of Fermi temperature with n calculated
on the symmetry axis. If one instead calculates n1 in the
unitary Fermi gas at zero temperature one finds the relationship
T 1D

F = ξ 2/5TF where ξ is the so-called Bertsch parameter
( [45], [9]), accounting for the interaction effects of the unitary
Fermi gas.

As concerns the 1D superfluid density, starting from
Eq. (20) we find the expression,

ns1(x1,T ) =
∫

dr⊥2πr⊥ns = 2π

mω2
⊥

kBT

λ3
T

fs1(x1), (31)

with

fs1(x1) =
∫ x1

−∞
dxfs(x). (32)

From the knowledge of the 1D thermodynamic functions
one can also easily calculate the equilibrium properties in
the presence of axial harmonic trapping, using the local
density approximation μ1(z) = μ0 − Vext(z) for the chemical
potential along the zth direction, with μ0 fixed by the
normalization condition

∫
dzn1(z) = N . For example, the 1D

density profile is available from Eq. (22) by replacing x1 with
[μ0 − (1/2)mω2

zz
2]/kBT . It is then natural to express the value

of x0 = μ0/kBT in terms of the Fermi temperature T
trap
F =

(3N )1/3h̄ω̄ho/kB of the 3D trapped Fermi gas, where ω̄ho is
the geometrical average of the three oscillator frequencies and
N is the total number of atoms. One finds

T/T
trap
F =

(
6√
π

∫ x0

−∞
dx(x0 − x)1/2fn(x)

)−1/3

. (33)

This temperature scale will be used to discuss the temperature
dependence of the discretized frequencies of the elementary
excitations in the presence of 3D harmonic confinement.

C. Phonon regime in the low T limit

At very low temperatures, corresponding to T � Tc,
phonons provide the leading contribution to the thermody-
namic behavior of uniform superfluids. In this regime one
can easily calculate the relevant thermodynamic functions
introduced in the previous section.

Starting from the free energy associated with the phonon
excitations in a uniform 3D superfluid [see, for example,
Eq. (4.40) in [20]], one can easily evaluate the other ther-
modynamic functions via standard thermodynamic identities.
We find the following results for the entropy,

S

NkB

=
(

3

ξ

)3/2
π4

60

(
T

TF

)3

, (34)

the chemical potential,

μ = kBTF

[
ξ + π4

240

(
3

ξ

)3/2 (
T

TF

)4
]

, (35)
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as well as the large x expansions for fp and fn:

fp(x) = 2

5

(4π )3/2

3π2

[
ξ

(
x

ξ

)5/2

+ π4

96

(
3

x

)3/2
]

, (36)

and

fn(x) = (4π )3/2

3π2

[(
x

ξ

)3/2

− π4

480

(
3

x

)5/2
]

. (37)

The first terms in the x expansions determine the T = 0
value of the thermodynamic functions, while the second ones
account for the first contribution due to the thermal excitation
of phonons.

Using Landau equation for the calculation of the phonon
contribution to the normal density [Eq. (6.11) in [20]] one also
finds the result,

nn

n
= 3

√
3π4

40ξ 5/2

(
T

TF

)4

. (38)

An interesting consequence of the expansions (36) and (37)
concerns the explicit low T behavior of the 1D thermodynamic
functions. The 1D entropy (24), as well as the 1D specific
heats (25) and (26) and the 1D normal density nn1 = n1 − ns1

[see Eq. (31)] exhibit a different T dependence as compared
to the corresponding bulk quantities [see Eqs. (34), (35),
and (38)]. For example, the 1D entropy behaves as

s1(T )

kB

= 2π (kBT )5/2

mω2
⊥

(
m

2πh̄2

)3/2

γ, (39)

with γ = ∫ +∞
−∞ dx ′[ 5

2fp(x ′) − x ′fn(x ′)], the integral being
convergent since (5/2)fp(x) − xfn(x) decays like x−3/2 for
large x [46]. Analogously the 1D pressure and the 1D normal
density at low temperature behave as

P1(n1,T ) = 2

7
ξ 3/5n1kBT 1D

F (n1)

+ 4π (kBT )7/2

7mω2
⊥

(
m

2πh̄2

)3/2

γ, (40)

and

nn1(T ) = 2π (kBT )5/2

mω2
⊥

(
m

2πh̄2

)3/2 ∫ +∞

−∞
dxνn(x), (41)

with the quantity νn(x) vanishing as π7/2

45 ( 3
x

)5/2 at large x, in
the phonon regime. The above equations reveal that in order
to determine the coefficient of the T 5/2 law in the entropy (39)
and the normal density (41) the knowledge of the functions fn,
fp, and fq are needed for all values of x. This is physically due
to the fact that in the radial integration the whole temperature
range (and not only the large x phonon region) enters the
calculation.

It is finally interesting to calculate the low-temperature
expansion of the 1D chemical potential. Equation (28) relates
the 1D density to the pressure of the gas calculated on
the symmetry axis so that the equation of state μ1(n1,T )
corresponds to the equation of state of uniform matter as a
function of P and T . We can consequently derive the low T

expansion,

μ1(n1,T ) = kBT 1D
F

[
ξ 3/5 −

√
3π4

80ξ 3/10

(
T

T 1D
F

)4
]

. (42)

It is worth pointing out that, differently from the case of
Eqs. (39) and (40), the first contribution due to thermal effects
to μ1 is determined by the phonon contribution and exhibits
the typical T 4 dependence. It is also interesting to notice
the opposite sign exhibited by the thermal correction with
respect to the bulk Eq. (35) which implies that these 1D-like
configurations will exhibit a different thermomechanical effect
as compared to uniform gases [47].

D. Virial expansion at high T

The high T behavior of the thermodynamic functions is
determined by the virial expansion which takes the form of
an expansion in terms of the fugacity (ex � 1) and applies to
very large and negative values of x. The function fp(x) can be
expanded as

fp(x) = 2(b1e
x + b2e

2x + · · ·), (43)

where bj are the so-called virial coefficients and the factor “2”
comes from spin degeneracy. The value b1 = 1 is fixed by the
classical equation of state, while theoretical calculations have
provided the values b2 = 3

√
2

8 [48] and b3 = −0.29 [49] for
the second and third coefficients, respectively. These values
are consistent with the measurement of the equation of state at
high temperature [7,21,22].

By taking the derivative of the pressure with respect to x,
we obtain, for the function fn(x), the expansion,

fn(x) = 2(b1e
x + 2b2e

2x + · · ·). (44)

E. The intermediate temperature regime

Through high-precision measurements of the local com-
pressibility, density, and pressure, the MIT team measured
the universal thermodynamic behavior of the unitary Fermi
gas with high accuracy both below and above the critical
temperature for superfluidity overcoming, in particular, the
problem of the direct measurement of the temperature of the
gas [22]. These measurements provide an important bench-
mark for many-body calculations at finite temperature applied
to this strongly interacting system. They have permitted, in
particular, to identify the superfluid phase transition at the
temperature Tc = αTF with α = 0.167(13), corresponding to
the value xc = μc/kBT = 2.48. Also the relevant Bertsch
parameter ξ , giving the ground-state energy in units of the
ideal Fermi gas value, was determined with high accuracy
[ξ = 0.376(4)]. These values are in good agreement with
the best theoretical predictions based on accurate many-body
calculations [32,33,36,37]. It is worth stressing that in [22] the
experimental value of the critical temperature was identified
by exploring the peaked structure exhibited by the specific heat
at constant volume near the transition (see Fig. 3), by taking
explicitly into account finite resolution effects. This yields a
value of Tc slightly higher than the value where the measured
specific heat exhibits its maximum. Figure 3 shows that the
peak exhibited by the specific heat at constant pressure is even
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more pronounced, in agreement with the general behavior of
the specific heats near a second-order phase transition [50].
The matching between the values extracted using the MIT
data and the predictions provided by phonon thermodynamics
of Sec. III C is also reasonably good, especially as concerns
the 1D thermodynamic quantities. At high temperatures these
experiments also confirm with high accuracy the validity of
the virial expansion (see Figs. 1 and 2) so that, for the goals
of the present paper, the equation of state of the unitary Fermi
gas can be considered known with reasonably good accuracy
at all temperatures. In the following we will adopt the MIT
equation of state, together with the low- and high-temperature
behavior discussed in Secs. III C and III D, to implement the
calculation of the frequency of the collective oscillations and
of the sound velocities within the hydrodynamic formalism.

IV. 1D VARIATIONAL EQUATIONS

The frequencies ω corresponding to the solutions of the
two-fluid hydrodynamic equations [Eqs. (4)–(7)] with time
dependence proportional to e−iωt can be derived using the
variational procedure,

δω2/δun = δω2/δus = 0, (45)

where [51]

ω2 =
( ∫

dz

[
1

n1

(
∂P1

∂n1

)
s̄1

(δn1)2 + 2n1

(
∂T

∂n1

)
s̄1

δn1δs̄1

+ n1

(
∂T

∂s̄1

)
n1

(δs̄1)2

])/∫
dzm

[
ns1u

2
s + nn1u

2
n

]
,

(46)

and us , un are the displacement field of the superfluid and
the normal fluid, related to the velocity fields via u̇s = vz

s

and u̇n = vz
n. This variational procedure is the 1D version of

the 3D approach previously developed in [52–54]. Keeping
s̄1 constant in the derivatives of Eq. (46) corresponds to
considering 1D isentropic transformations. The density and
entropy fluctuations δn1 and δs̄1 with respect to equilibrium are
given, in terms of the displacement fields un and us , by δn1 =
−∂z[ns1us + nn1un] and δs̄1 = −un∂zs̄1 + (s̄1/n1)∂z[ns1(us −
un)]. Equations (45) and (46) hold in both uniform and trapped
configurations, the effect of the trapping potential entering
through the position-dependent thermodynamic functions at
equilibrium.

While in uniform configurations one can directly solve
the hydrodynamic equations [Eqs. (4)–(7)], the use of the
variational procedure is particularly convenient in trapped con-
figurations where analytic solutions of the full hydrodynamic
equations are not available.

In order to provide a first quantitative solution of the
variational approach, we will make simple assumptions for
the displacement fields of the two fluids. For first sound,
we will assume that the two fluids move in phase with
equal displacement fields, i.e., us = un = u. For second sound
we will instead make the assumption that the total current,
proportional to unnn1 + usns1, vanishes during the oscillation.
The coupling between the two modes will be discussed in detail
in Sec. VI. Differently from the case of dilute BEC gases,
where the coupling strongly affects the sound velocities in

almost the whole temperature domain [20], in the case of Fermi
gases the coupling does not introduce important changes in the
value of the collective frequencies, but is important because
it releases the assumption that the total current vanishes in
second sound, allowing for significant density fluctuations and
hence providing important perspectives for its experimental
detection [55].

V. FIRST SOUND

Employing the first sound ansatz un = us ≡ u the expres-
sion (46) for the frequency to be used in the variational
calculation takes the simplified form,

ω2 =
∫

dzn1
(

∂P1
∂n1

)
s̄1

(
∂u
∂z

)2∫
dzmn1u2

+ ω2
z , (47)

where we have employed the thermodynamic relation ∂zP1 =
−n1∂zVext(z) holding at equilibrium [see Eq. (7)]. In the unitary
Fermi gas, where the 1D thermodynamic relation (27) holds,
the variational procedure δω2/δu = 0 yields the following
equation for the displacement field:

m
(
ω2 − ω2

z

)
u = 7

5
mω2

zz
∂u

∂z
− 7

5

P1

n1

∂2u

∂z2
. (48)

The above equations explicitly reveal that the 1D pressure
P1 is the relevant thermodynamic quantity for describing first
sound dynamics. Equation (48) implies that the center-of-mass
oscillation (dipole mode) characterized by the displacement
field u = const is independent of the equation of state and
that the axial breathing mode (u ∝ z) takes the temperature-
independent value ω = √

12/5ωz.
For axially uniform configurations (ωz = 0) Eq. (48) pre-

dicts the propagation of isentropic sound waves with dispersion
ω = c1q and

mc2
1 = 7

5

P1

n1
. (49)

This differs from the sound velocity in uniform Fermi gases
at unitarity, given by mc2 = (5/3)P/n, the difference being
caused by the presence of the radial trapping which gives
rise to a different condition of adiabaticity. In Fig. 5 we
show the value of the first sound velocity c1 as a function of
T/T 1D

F using the thermodynamic results for P1/n1 discussed
in the previous sections. Using the expansion (40) for the
1D pressure one finds that at T = 0 the first sound velocity
approaches the value c1 =

√
ξ 3/5(v1D

F )2/5 =
√

ξv2
F /5 where

v1D
F =

√
2kBT 1D

F /m and vF = √
2kBTF /m are, respectively,

the 1D and 3D Fermi velocities. The quenching of the sound
velocity by the factor

√
3/5 with respect to the bulk value√

ξv2
F /3 was first pointed out in [15], in analogy with a similar

behavior exhibited by Bose-Einstein condensed gases [14].
The figure shows that the 1D iso-entropic prediction (49)
well agrees with the experimental data [26] for the first sound
velocities.

Let us now discuss the behavior of the discretized collective
oscillations in the presence of axial harmonic trapping. At T =
0 the 1D pressure exhibits the position dependence P1/n1 =
(2/7)(μ0 − 1

2mω2
zz

2), while at high temperatures, in the classi-
cal limit, one has P1/n1 = kBT . In both cases, it is immediate

043630-7



YAN-HUA HOU, LEV P. PITAEVSKII, AND SANDRO STRINGARI PHYSICAL REVIEW A 88, 043630 (2013)

FIG. 5. (Color online) 1D first and second sound velocity in units
of v1D

F . Upper branch (first sound) the blue dashed line corresponds to
Eq. (49); the experiment data (red dots) in the pink shaded region are
taken from [26]. Lower branch (second sound): the theoretical lines
calculated using Eq. (60) with two different models for the superfluid
density. The red dashed line corresponds to the phenomenological
ansatz: ns/n = 1 − (T/Tc)4 while the black dash-dotted line to the
choice: ns/n = (1 − T/Tc)2/3. The blue dots are the experimental
data from [26]. The shaded area indicates the uncertainty range
of experimental data. The vertical green line indicates the critical
temperature. At low temperature the 1D second sound velocity is
expected to vanish like

√
T .

to find that the solutions of the hydrodynamic equation (48)
are polynomials of the form, u = akz

k + ak−2z
k−2 + · · · with

integer values of k. At zero temperature one finds the following
dispersion relation:

ω2

ω2
z

= 1

5
(k + 1)(k + 5), (50)

while in the high-temperature limit one finds

ω2

ω2
z

= 7k + 5

5
. (51)

As expected, Eqs. (50) and (51) coincide for k = 0
(center-of-mass oscillation) and k = 1 (lowest axial breathing
mode), while they predict different values for the higher nodal
solutions. The result for the k = 0 mode follows from the
universality of the center-of-mass oscillation in the presence
of harmonic trapping. The fact that the frequency of the lowest
axial breathing oscillation does not depend on temperature is
instead a peculiarity of the unitary Fermi gas. It is consistent
with the exact scaling solutions exhibited by the two fluid
hydrodynamic equations at unitarity [56]. The discussion then
reveals that only the k = 2,3 . . . modes are useful in order
to explore the effects of the temperature dependence of the
equation of state.

In order to provide a simple quantitative prediction for the
temperature dependence of the k = 2 and k = 3 frequencies
we develop a variational approach to the solution of the
hydrodynamic equations with the ansatz u = a2z

2 + a0 and
u = a3z

3 + a1z. This ansatz reproduces exactly the frequen-
cies in both the T = 0 and high T limits. Carrying out the
variation with respect to the parameters characterizing the
displacement fields, after a straightforward algebra one finds

FIG. 6. (Color online) Frequency for the k = 2 (upper panel) and
k = 3 (lower panel) first sound collective frequencies. Experiment
data are from [24,25]. The green lines are the theoretical predictions
based on Eqs. (52) and (53) using the equation of state of the unitary
(solid) and ideal (dashed) Fermi gas. The thin horizontal dashed lines
mark the zero-T superfluid limit (50) and the classical hydrodynamic
limit (51), respectively. The red dash-dot vertical lines in (a) and (b)
indicate the critical temperature. In this figure and Fig. 7 the Fermi
temperature corresponds to the definition T

trap
F = (3N )1/3h̄ω̄ho/kB

introduced in the text.

the results,

ω2
k=2 = 129t2 − 25

45t2 − 25
ω2

z , (52)

and

ω2
k=3 = 440t3 − 252

5(25t3 − 21)
ω2

z , (53)

for the k = 2 and k = 3 frequencies, respectively, where t2 ≡
M0M4/M

2
2 and t3 ≡ M2M6/M

2
4 and we have introduced the

dimensionless moments,

Ml =
∫ x0

−∞
dx(x0 − x)

l+1
2 fn(x), (54)

where x0 is related to the value of T/T
trap
F by Eq. (33). The

integrals can be calculated using the data for the thermody-
namic function fn(x) discussed in Sec. III which include the
proper interpolation between the experimental data from [22],
the low-temperature phonon regime as well as the classical
regime, relevant to describe the low-density region on the tails.

The resulting predictions for the temperature dependence of
the frequencies are shown in Fig. 6, together with the asymp-
totic zero temperature and classical values as well as with the
recent experimental results of [24,25]. The results are plotted
as a function of T/T

trap
F [see Eq. (33)]. The nonmonotonic

temperature dependence in the higher temperature region is
caused by the presence of the second virial correction into the
equation of state. One can also verify [24] that the variational
predictions for the collective frequencies of the k = 2 and
k = 3 modes are practically indistinguishable from the exact
numerical solution of Eq. (48).

Using the same ansatz for the velocity field and the equation
of continuity we can also calculate the density fluctuations

of each mode given by δn1 = −∂z[n1u] with a2
a0

= − 3
2

mω2
z

kBT

M0
M2
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FIG. 7. (Color online) Equilibrium profiles (upper figure) and
density oscillations for the k = 2 (middle figure) and the k = 3 (lower
figure) first sound collective modes at different temperatures from
[25]. See Fig. 6 for the definition of the Fermi temperature.

and a3
a1

= − 5
6

mω2
z

kBT
M2
M4

. The equilibrium density profile n1(z) is
available from Sec. III B, while the moments M� are given
by Eq. (54). In Fig. 7 we show the comparison between the
theoretical predictions for the k = 2 and the k = 3 modes
and the corresponding experimental value at T = 0.1T

trap
F and

T = 0.45T
trap
F (for the k = 2 mode) and at T = 0.11T

trap
F and

T = 0.40T
trap
F (for the k = 3 mode) [24,25].

The comparison between theory and experiment is in
general quite satisfying, confirming the validity of the 1D
hydrodynamic approach used to predict the temperature depen-
dence of these low-frequency modes as well as the correctness
of the equation of state employed in the calculation of the
integrals M�. In particular the relatively small damping shown
by experiments in the case of the k = 2 mode confirms that
the main assumption needed to derive the 1D hydrodynamic
equations is reasonably well satisfied.

VI. SECOND SOUND

Second sound corresponds to an out-of-phase oscillation of
the normal and superfluid components of the fluid. As a first
ansatz we assume that the total current be zero (jz = mnn1v

z
n +

mns1v
z
s = 0) which implies that the oscillation corresponds

to a pure temperature (or entropy) oscillation, without any
fluctuation of the density. Differently from first sound the
superfluid density ns plays a crucial role in the propagation
of second sound. In superfluid 4He the measurement of the
second sound velocity has actually provided the accurate
determination of ns as a function of temperature [3]. At present
the theoretical knowledge of ns is rather poor in the unitary
Fermi gas. The first experimental information on ns has been
recently provided by the measurement of the second sound
velocity [26]. In the following we will make use of simple
ansatz for ns in order to provide a first estimate of the frequency
of the second sound oscillations. Under the assumption that
the total current vanishes, the expression (46) for the frequency
of second sound to be used in the variational calculation takes

the simplified form:

ω2 =
∫

dz
(

∂T
∂s1

)
n1

[
∂
∂z

(
uss1ns1

nn1

)]2∫
dzmns1n1

nn1
u2

s

, (55)

and the variational condition δω2/δus = 0 yields the following
equation for the displacement field of the superfluid compo-
nent:

ω2us = − s1

mn2
1

∂

∂z

[(
∂T

∂s̄1

)
n1

∂

∂z

(
s1ns1us

nn1

)]
. (56)

The above equations reveal that the key thermodynamic
quantities characterizing the propagation of second sound are
the 1D density, entropy, specific heat, and superfluid density.
The presence of axial trapping is indirectly present through
the value of the equilibrium quantities.

From Eq. (56) one immediately recovers the second sound
velocity for an axially uniform system by considering a plane
wave solution of the form eiqz for us . One finds ω = c2q

with (see Sec. III B for the definitions of the thermodynamic
quantities entering below):

mc2
2 = T

s̄1
2

c̄v1

ns1

nn1
. (57)

For uniform configurations it is actually possible to solve
exactly the two-fluid hydrodynamic (HD) equations [Eqs. (4)–
(7)] and it is interesting to check the accuracy of the approx-
imate prediction (57). Using straightforward thermodynamic
relations it is possible to show that the solutions for the sound
velocity emerging from the HD Eqs. (4)–(7) with Vext(z) = 0
should satisfy the following equation:

c4 − c2

[
1

m

(
∂P1

∂n1

)
s̄1

+ 1

m

ns1T s̄2
1

nn1c̄v1

]

+ 1

m2

ns1T s̄2
1

nn1c̄v1

(
∂P1

∂n1

)
T

= 0, (58)

yielding two solutions for the sound velocity, corresponding
to the first (c1) and second (c2) sound velocities. Accurate
expressions for the solutions of Eq. (58) are derived under the
condition,

c2
2

c2
1

c̄p1 − c̄v1

c̄v1
� 1. (59)

For the upper solution (first sound) we recover the isentropic
velocity mc2

1 = (∂P1/∂n1)s̄1 already derived in the previous
section. For the lower solution (second sound) we instead find

mc2
2 = T

s̄1
2

c̄p1

ns1

nn1
, (60)

which differs from Eq. (57) because of the presence of the
specific heat at constant pressure rather than at constant
density. The two specific heats actually exhibit a different
behavior for temperatures close to Tc (see Fig. 4). When T →
0 the specific heat at constant pressure and at constant volume
coincide and, as a consequence of the temperature dependence
of the 1D thermodynamic functions in the low-temperature
regime (see Sec. III B), the second sound velocity vanishes
like

√
T , differently from what happens in the bulk where
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FIG. 8. (Color online) Ratio (61) between the relative density and
temperature fluctuations calculated for 1D second sound. The vertical
green line indicates the critical temperature.

it approaches a constant value [20]. At finite temperature
expression (60) is very accurate in reproducing the lower
solution of (58) for all temperatures, the condition (59) being
always well satisfied. Second sound can be actually regarded as
an oscillating wave at constant pressure, rather than at constant
density, as previously assumed in the derivation of (57). In fact,
under the condition c2 � c1, the ratio between the relative
density and temperature fluctuations for second sound takes
the simple expression,

δn1/n1

δT /T
= T

n1

(
∂n1

∂T

)
p1

= 5

2
− 7

2

fnfq

f 2
p

, (61)

where we have used the expression α1 = − 1
n1

( ∂n1
∂T

)P1 =
5

2T

c̄p1−c̄v1

c̄v1
for the 1D thermal expansion coefficient at unitarity.

The ratio (61) turns out to be negative [60] and is shown
in Fig. 8. It should be compared with the result δn1/n1

δT /T
=

T
n1

( ∂n1
∂T

)s̄1 = 5
2 characterizing the propagation of first sound,

where the derivative is calculated at constant entropy rather
than at constant pressure. It is remarkable that the ratio (61) is
significantly large in a useful range of temperatures, thereby
revealing that second sound can be observed by looking at the
density fluctuations of the propagating signal [26,58,59].

In Fig. 5 we show the prediction for the second sound
velocity (60) using two different models for ns (see Fig. 9).
The first model employs the formula ns/n = (1 − T/Tc)2/3,
accounting for the correct critical exponent 2/3 characterizing
the vanishing of ns near the critical point. A second model em-
ploys the phenomenological expression ns/n = 1 − (T/Tc)4

which also vanishes at T = Tc and exhibits, at low temperature
the correct T 4 behavior, although the coefficient of the T 4 law
is about 8 times larger than the one predicted by the phonon
contribution to the normal density [see Eq. (38)]. The second
sound velocity depends in a crucial way on the choice of
the model for ns so that the measurement of c2 is expected to
provide useful information on its temperature dependence. The
ansatz ns/n = 1 − (T/Tc)4 provides a better description of the
measured data in the relevant temperature regime explored in
the recent experiment of [26] as explicitly shown by Figs. 5
and 9.

FIG. 9. (Color online) Uniform superfluid density; the red
dashed line corresponds to the phenomenological ansatz, ns/n =
1 − (T/Tc)4 while the black dash-dotted line to the choice, ns/n =
(1 − T/Tc)2/3. The blue dots are the experimental data [26]. The
shaded area indicates the uncertainty range of experimental data.

In the presence of harmonic trapping along the zth direction,
the second sound modes are discretized and we use the
variational approach (55) to obtain first estimates for the
collective frequencies. The lowest frequency mode of second
sound nature is expected to be of dipolar nature for which we
make the simplifying assumption that the displacement field us

of the superfluid component is constant in space and un is fixed
by the condition nsus + nnun = 0 of vanishing total current.
In Fig. 10 we show the resulting prediction for the temperature
dependence of the lowest second sound mode, using the
two models for the superfluid density discussed above. We
have checked that the inclusion of higher order terms in the
polynomial ansatz for us introduces minor corrections (less
than 10%).

An important feature of the second sound frequency is
that it vanishes when the temperature approaches the critical
value. This result differs from the one predicted in 3D isotropic
configurations [54,61] and can be understood noticing that an
estimate for the discretized frequency can be obtained using

FIG. 10. (Color online) Frequency for the lowest discretized
second sound mode in an axially trapped configuration with ωz � ω⊥.
See Fig. 5 for the notations. The vertical green line indicates the
critical temperature.
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the expression ω ∼ c2q with q ∼ 1/Rs,z where Rs,z is the size
of the superfluid along the zth direction. On the other hand the
main temperature dependence of the second sound velocity,
as T → Tc, is given by the the 1D superfluid velocity that
behaves like

√
ns1 ∼

√
nsR

2
s,⊥ and is hence proportional to

the bulk superfluid density calculated in the center of the trap
and the size of the superfluid along the radial direction. Since
the ratio Rs,⊥/Rs,z in the LDA is given by ωz

ω⊥
and ns vanishes

as one approaches the transition temperature, the second sound
frequencies will vanish, too.

The coupling between the two unperturbed second sound
and first sound discussed above and in Sec. V can be estimated
using a variational approach. To this purpose we will look
for solutions of the variational hydrodynamic equations in the
form us = au(1) + u(2)

s and un = au(1) + u(2)
n for the superfluid

(us) and normal (un) displacement fields, respectively. Here
u(1) ≡ u(1)

n = u(1)
s corresponds to the velocity field of the first

sound solutions discussed in Sec. V, while u(2)
n and u(2)

s are
the velocity fields of the uncoupled second sound solutions
satisfying the condition of vanishing total current. By inserting
the ansatz in (46) we find, after a straightforward calculation,
the expression,

ω2 = a2ω2
1 + ω2

2
K2
K1

− a
U1,2

K1

a2 + K2
K1

, (62)

for the collective frequency as a function of the
variational parameter a, where K1 = (1/2)

∫
dzmn1u

2
1,

K2 = (1/2)
∫

dzm(u(2)
s )2n1ns1/nn1, and U1,2 =

(2/5)T
∫

dz ∂u1
∂z

∂s1ns1u
(2)
s /nn1

∂z
and we have used the identity

n1( ∂T
∂n1

)s̄1 = 2
5T holding at unitarity. By imposing the

variational condition δω2/δa = 0 we find the result,

ω2 =
ω2

1 + ω2
2 ±

√(
ω2

1 − ω2
2

)2 + U 2
1,2

K1K2

2
, (63)

for the frequency of the two coupled modes. When applied to
uniform matter, using results (49) and (57) for the uncoupled
first (ω1) and second (ω2) sound frequencies, the above proce-
dure reproduces exactly the two decoupled solutions given by
roots of Eq. (58). As an example of application in the presence
of harmonic trapping we have considered the coupling between
the dipole second sound solution discussed above and the
k = 2 first sound solution discussed in Sec. V. The k = 2 mode
is actually the lowest frequency first sound mode that can be
coupled to the dipole second sound mode, being characterized
by the same parity symmetry. The numerical calculation shows
that the changes in the value of the second sound frequency
caused by the coupling are very small.

Let us finally point out that the discretized second sound
oscillations discussed above are expected to be more damped
than the first sound ones discussed in the previous section.
The reason is that the thermal conductivity in the normal
phase tends to infinity near the transition point [62] and is
consequently large near the boundary between the superfluid
and the normal phases. This is expected to result in the
penetration of the temperature fluctuations into the normal
phase, resulting in an increase of damping.

VII. CONCLUSIONS

We have provided a systematic discussion of the two-fluid
hydrodynamic behavior exhibited by the unitary Fermi gas in
the presence of a highly elongated harmonic potential. The
main achievements contained in the paper are summarized
below.

(i) We have presented an exhaustive discussion of the rel-
evant 3D and 1D thermodynamic functions, like the pressure,
the entropy, and the specific heats at constant density and
at constant pressure, whose knowledge is required in order
to solve the hydrodynamic equations. The thermodynamic
functions are identified using the most recent experimental
data obtained at MIT, through the introduction of universal
scaling functions which emphasize the universality of the
unitary Fermi gas. The matching of the MIT data with the
low T behavior of the 3D thermodynamic functions fixed by
the thermal excitation of phonons and with the high T virial
expansion has been explicitly discussed. Particularly interest-
ing results concern the behavior of the 1D quantities which
are calculated by radial integration of the 3D thermodynamic
functions using the local density approximation. The behavior
of the 1D thermodynamic functions at low temperature is not
uniquely fixed by the thermal excitation of phonons as happens
in uniform superfluids, but involves also the thermal regimes at
higher temperature in the peripheral radial region. Their tem-
perature dependence at low T has been explicitly calculated.

(ii) We have solved the 1D hydrodynamic equations derived
in [27] using a variational formulation of the hydrodynamic
equations. Explicit results are given for both the first and
second sound modes. While the first sound solutions are
basically determined by the 1D adiabatic compressibility the
second sound solutions are sensitive, in addition to the entropy
and the specific heat, to the superfluid density of the system,
a rather elusive quantity which cannot be determined by the
knowledge of the equation of state of the system.

(iii) We have provided results for both 1D uniform and axi-
ally trapped configurations. In the first case the solutions of the
hydrodynamic equations take the form of sound wave whose
velocity has been systematically investigated for both first and
second sound, employing different models for the superfluid
density. In the presence of axial trapping the lowest excitations
take the form of collective oscillations whose discretized fre-
quencies are calculated as a function of temperature. The the-
oretical predictions for the first discretized sound solutions are
compared with recent experiments carried out both below and
above the critical temperature for superfluidity [24]. A system-
atic discussion of the propagation of first and second sound in
1D uniform configurations was also carried out and a detailed
analysis of recent experimental results was presented [26].

(iv) An important feature emerging from our studies is
that in highly elongated configurations the finite value of the
thermal expansion coefficient makes the second sound mode
an oscillation at constant 1D pressure, rather than at constant
1D density and an explicit formula for the resulting density
fluctuations has been derived as a function of temperature.
This has the important consequence that, except at very low
temperature, the density fluctuations characterizing second
sound are sizable, thereby making this mode observable in
experiments.
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(v) The applicability of the 1D hydrodynamic approach
employed in the present paper is based on the assumption that
the dependence of the temperature fluctuation and of the veloc-
ity field on the radial coordinates can be safely ignored. In the
Appendix we have discussed the validity of this assumption by
properly including the effects of viscosity in the hydrodynamic
equations and calculating the first corrections to the velocity
of sound. Explicit estimates near the critical temperature and
in the classical regime show that these corrections are small in
the experimentally available trapping conditions.

(vi) A still open question concerns the theoretical cal-
culation of the temperature dependence of the superfluid
density near the superfluid transition. Ab initio Monte Carlo
calculations could provide a quantitative estimate of the
superfluid fraction in this relevant region, now accessible
experimentally, where fermionic quasiparticle excitations are
expected to provide the dominant contribution, as recently
discussed in [63].
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APPENDIX: APPLICABILITY OF THE
1D APPROXIMATION

In this appendix we will discuss the applicability of the 1D
approximation employed in the present paper. This approx-
imation demands that the shear viscosity η and the thermal
conductivity κ are large enough to make the radial gradients of
the normal velocity and of the temperature oscillations small.
To produce a quantitative estimate, one should calculate the
first correction to some observable quantity and confirm that
the correction is small. We will actually calculate the first
correction δc/c to the velocity of sound, propagating in the
zth direction in the absence of axial trapping. The calculations
are cumbersome and we consider here only the case of unitary
Fermi gas above the transition temperature. It is easy to show
that the correction is imaginary and corresponds to damping.
Thus it is more convenient to calculate the correction through
the energy dissipation due to the radial gradients of the velocity
field v and of the temperature fluctuations δT .

The dissipation of the energy of the oscillation due to the
shear viscosity (we keep only the leading term) is given by
(see Sec. 49 in [64])

Ėosc = −
∫ ∞

0
η(r⊥)(∂r⊥v)22πr⊥dr⊥. (A1)

The correction we are looking for is

|δc|
c

= |Ėosc|
2ωEosc

, (A2)

where Eosc = 2Ekin
osc = mn1v

2. The relevant hydrodynamic
equation, needed to calculate ∂r⊥v, is the equation of momen-
tum conservation along the zth direction given, with proper
accuracy, by

1

r⊥
∂r⊥ [r⊥(η∂r⊥v)] = −iω(mnv − δP/c), (A3)

where, to the lowest order, the velocity v in the right-hand side
can be considered r⊥- independent and the pressure changes
δP can be evaluated in terms of v using Eqs. (3)–(7). The
proper solution is given by

∂r⊥v(r⊥) = −v
1

η(r⊥)r⊥

∫ ∞

r

F (r⊥)r⊥dr⊥, (A4)

where, for the unitary gas, function F can be expressed through
the universal functions introduced in Sec. III as

F (r⊥) = iω
kBT

c2λ3
T

[
2

5
(x1 − x)fn − mc2

T
fn + fp

]
, (A5)

with x = x1 − r2
⊥/R2

⊥ and R2
⊥ ≡ 2kBT /mω2

⊥.
The correction to the speed of sound is finally given by

|δc|
c

= π

ωmn1

∫ ∞

0

(∫ ∞

r

F (r⊥)r⊥dr⊥

)2
dr⊥

η(r⊥)r⊥
. (A6)

Further calculations demand concrete knowledge of the vis-
cosity. It is reasonable to assume that, in the relevant region
around the critical temperature, the value of the shear viscosity
is close to the “minimal quantum value” [65] ηQ = h̄s/4πkB .
Experimental data by [57] confirm this ansatz. A simple
calculation then gives the result,

|δc|
c

�
( |δc|

c

)
Q

= A

8 × 49π

mn1ω

ηQ(xc)
, (A7)

with A ≈ 0.5 near Tc and ηQ(xc) the value of the minimum
quantum viscosity calculated on the symmetry axis at Tc. It
occurs that for experimental conditions [24,25] |δc|/c ∼ 0.01
with the parameters: N = 3 × 105, ωz = 2π × 23.31 Hz,
and ω⊥ = 2π × 1226 Hz. Notice that the condition |δc|

c
� 1

actually requires a less stringent condition as compared to
Eq. (2) because of the small prefactor A/(8 × 49π ).

It is interesting also to produce calculations in the classical
regime of high temperatures. Here η = ηCl does not depend on
density nor, consequently, on r⊥. The result is given by (A7)
with ηQ replaced by ηCl and A = 1. We find that also in this
case |δc|/c is small enough and that the condition for the 1D
approximation is satisfied.

A condition analogous to Eq. (A2) should be also satisfied
for the thermal conductivity κ . We do not present here the
corresponding calculation, because there are no reliable data
on κ from experiments. It is, however, important to point out
that the temperature fluctuations are always r⊥ independent
in the superfluid phase due to the conditions of mechanical
equilibrium of the superfluid component in the radial direction.
Furthermore, the thermal conductivity κ diverges at transition
temperature [62] so that there are good reasons to believe that
the corresponding corrections to the sound velocity are less
important than the ones due to the shear viscosity.
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