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Spinor Bose-Einstein condensates provide a unique example in which the Bogoliubov theory fails to describe
the metastability associated with first-order quantum phase transitions. This problem is resolved by developing
the spinor Beliaev theory which takes account of quantum fluctuations of the condensate. It is these fluctuations
that generate terms of higher than the fourth order in the order-parameter field which are needed for the first-order
phase transitions. Besides the conventional first-order phase transitions which are accompanied by metastable
states, we find a class of first-order phase transitions which are not accompanied by metastable states. The
absence of metastability in these phase transitions holds to all orders of approximation since the metastability
is prohibited by the symmetry of the Hamiltonian at the phase boundary. Finally, the possibility of macroscopic
quantum tunneling from a metastable state to the ground state is discussed.
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I. INTRODUCTION

Quantum phase transitions have been an active field of
research in solid-state materials such as magnetic insula-
tors, heavy fermions, semiconductors, and high-temperature
superconductors [1,2]. In ultracold atoms, the superfluid–
Mott-insulator phase transition has been investigated both
theoretically and experimentally [3,4]. While many of these
studies focus on the second-order or continuous quantum phase
transitions due to their criticality, the first-order quantum phase
transitions in fermionic systems such as itinerant electron
magnets [5] and superfluid helium-3 [6] have attracted consid-
erable attention in connection with non–Fermi-liquid phases
and superconductivity [7,8]. In bosonic systems, first-order
quantum phase transitions appear in various Bose-Einstein
condensates (BECs) with special interatomic interactions such
as soft-core [9,10] and dipole-dipole [11] interactions, or
under external potentials with special geometries [12]. The
metastability associated with the first-order phase transitions
in these systems can be explained at the mean-field level by
using the Bogoliubov theory [13].

In the present study, we point out a special feature of spinor
BECs [14] in which metastable states are induced by quantum
fluctuations. In spinor BECs, there exist several ground-
state phases with different invariant symmetries, implying
a discontinuity in the order-parameter space at the phase
boundaries; therefore, the phase transitions should be first
order. The conventional wisdom suggests that there appear
metastable states around the phase boundaries. However, the
Bogoliubov analysis shows no metastable state for all of
these phase transitions. Such an inconsistency arises because
the Bogoliubov theory relies on the Gross-Pitaevskii energy
functional, which, in the case of a homogeneous system
with a contact interaction, is equivalent to Landau’s φ2 + φ4

model of continuous phase transitions, whereas a first-order
quantum phase transition requires higher-order terms in φ.
In this paper, we resolve this problem by developing the
spinor Beliaev theory for spin-2 BECs [15–18], which takes
account of higher-order terms beyond φ4 due to the quantum
depletion of the condensate. After obtaining the ground-state

phase diagram of spin-2 BECs at the level of the Lee-Huang-
Yang correction [19,20], we examine in detail the possibility
of metastable states associated with the first-order phase
transitions and show that the metastability indeed arises from
quantum fluctuations.

Besides the first-order phase transitions with fluctuation-
induced metastability, we also find in spinor BECs a class
of first-order phase transitions that have no metastable state
around the phase boundary. We show that in this case the
absence of metastability holds to all orders of approximation.
This appears to be contrary to the conventional wisdom
that every first-order phase transition is associated with a
metastable state, but in fact there are other examples of this
kind of phase transitions such as the ferromagnetic XXZ spin
model in which a level crossing occurs as the anisotropy of
the interaction is varied [21]. Such phase transitions are char-
acterized by the fact that the Hamiltonian acquires a special
symmetry at the phase boundary so that the energy landscape
becomes flat. The ground state would then abruptly change
to an unstable state without undergoing any transient regime
of metastability as the system crosses the phase boundary.
This is in contrast to the case of conventional first-order phase
transitions where the energy landscape features a double well
at the transition point, leading to the coexistence of two phases.
In this paper, we explicitly investigate the symmetries of the
Hamiltonians that underlie the flat energy landscapes in spin-1
and spin-2 BECs. The high symmetry of the Hamiltonian at
the phase boundary prohibits the metastability to all orders
of approximation. Finally, the time scale of a macroscopic
quantum tunneling (MQT) from a metastable state to the
ground state is estimated for the case of cyclic-uniaxial nematic
phase transition as it is relevant to experiments of the spin-2
87Rb BEC.

This paper is organized as follows. Section II derives the
ground-state phase diagram at the level of the Lee-Huang-Yang
correction. Section III develops the spinor Beliaev theory
for spin-2 BECs. The fluctuation-induced metastabilities of
first-order quantum phase transitions that cannot be captured
by the Bogoliubov theory are discussed in Sec. III A. The
general formalism of the spinor Beliaev theory is developed
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in Sec. III B, based on which the stability analyses of the
ferromagnetic and uniaxial-nematic phases are carried out in
Sec. III C. Section IV introduces the first-order quantum phase
transitions that are not accompanied by metastable states to
all orders of approximations. The underlying symmetry of
the Hamiltonian that prohibits the metastability is discussed
for both spin-1 and spin-2 BECs. Section V estimates the
rate of MQT near the cyclic-uniaxial nematic phase boundary.
Section VI concludes this paper. Some detailed calculations
are relegated to the Appendices to avoid digressing from
the main subject. Note that, in contrast to Refs. [22–25], in
this paper we do not make the single-mode approximation
(SMA). Consequently, the coupling between the spin and the
motional degrees of freedom of atoms is not neglected, and we
investigate the effect of quantum depletion of the condensate
on the phase diagram and phase transitions.

II. BEYOND-MEAN-FIELD GROUND-STATE PHASE
DIAGRAM OF SPIN-2 BECS

We consider a homogeneous BEC of spin-2 atoms with
mass M and described by the field operator ψ̂j , where j =
2, . . . ,−2 denotes the magnetic quantum number. The second-
quantized Hamiltonian of the system is given by Ĥ = ĥ0 + V̂ ,
where

ĥ0 =
∫

dr
2∑

j=−2

ψ̂
†
j (r)

(
−h̄2∇2

2M

)
ψ̂j (r) (1)

is the kinetic energy and

V̂ = 1

2

∫
dr[c0:n̂2: + c1:F̂2: + c2:Â†

00Â00:] (2)

is the contact interaction energy [26,27]. Here :: denotes
normal ordering of operators; i.e., the creation operators
are placed to the left of the annihilation operators, and
n̂ ≡∑j ψ̂

†
j (r)ψ̂j (r), F̂ ≡∑i,j ψ̂

†
i (r)(f)ij ψ̂j (r), and Â00 ≡

(1/
√

5)
∑

j (−1)−j ψ̂j (r)ψ̂−j (r) are the number density, the
spin density, and the spin-singlet-pair amplitude operators,
respectively, where (f)ij denotes the ij component of the spin-2
matrix vector. The coefficients c0, c1, and c2 are related to the
s-wave scattering lengths aF (F = 0,2,4) of the total spin-
F channel by c0 = 4πh̄2(4a2 + 3a4)/(7M), c1 = 4πh̄2(a4 −
a2)/(7M), and c2 = 4πh̄2(7a0 − 10a2 + 3a4)/(7M), respec-
tively. The order parameter is represented by the five-
component spinor φ = √

n0(ξ2,ξ1,ξ0,ξ−1,ξ−2)T, where n0 is
the number density of condensate atoms, T denotes transpose,
and ξj ’s are normalized to unity; i.e.,

∑2
j=−2 |ξj |2 = 1.

The ground-state phase diagram with the Lee-Huang-Yang
(LHY) correction is shown in Fig. 1. The LHY correction
is the leading-order correction to the Hartree mean-field
energy, which arises from quantum depletion of the
condensate [19,20]. Recent experiments on ultracold
atoms have demonstrated that the LHY correction can
accurately account for the deviation from the Hartree
energy up to the strongest interaction realized to
date [28]. At the Hartree mean-field level, three phases
exist for spin-2 BECs, namely, ferromagnetic, cyclic,
and nematic phases whose order parameters are given
by ξFM = (1,0,0,0,0)T, ξCL = (1,0,0,

√
2,0)T/

√
3, and

c2

c1

CyclicFerromagnetic

BN
UN

0

π2

FIG. 1. (Color online) Ground-state phase diagram of spin-2
BECs obtained with the LHY correction. The dashed lines indicate the
phase boundaries obtained with the Hartree mean-field approxima-
tion. The representative order parameters of the ferromagnetic, cyclic,
uniaxial-nematic (UN), and biaxial-nematic (BN) phases are given by
ξFM = (1,0,0,0,0)T, ξCL = (1,0,0,

√
2,0)T/

√
3, ξUN = (0,0,1,0,0)T,

and ξBN = (
√

2,0,2
√

3,0,
√

2)T/4, respectively. The inset in each
phase shows the surface plot of |ψ(θ,φ)|2 ≡ |∑2

m=−2 ξmY m
2 (θ,φ)|2,

where Y m
2 ’s are the spherical harmonic functions of rank 2 and the

hue indicates the phase of ψ(θ,φ) according to the color gauge on
the right. Note that the ground-state manifold of each phase includes
all states obtained by applying SO(3) rotations in spin space to
the representative order parameter; e.g., the order parameters ξBN =
(1,0,0,0,1)T/

√
2 and ξCL = (1,0,i

√
2,0,1)T/2 belong to the BN and

cyclic phases, respectively. The LHY correction due to quantum
fluctuations lifts the degeneracy in the manifold of the nematic
phases, rendering the ground state UN and BN for c1 > 0 and
c1 < 0, respectively. Quantum fluctuations also shift the cyclic-UN
and ferromagnetic-BN phase boundaries, as indicated by solid lines.
However, the ferromagnetic-cyclic phase boundary is not affected to
all orders of approximation (see text).

ξNM(η) = (sin η/
√

2,0, cos η,0, sin η/
√

2)T, respectively,
where the parameter η characterizes the nematicity in the
ground-state manifold of the nematic phase [29]. At the
Hartree mean-field level, the nematic phases having different
values of η are degenerate. Note that the ground-state
manifold of each phase contains all states obtained by letting
an SO(3) rotational operator U (α,β,γ ) = e−ifzαe−ifyβe−ifzγ

act on a representative order parameter. Here, α, β, and
γ denote the Euler angles of a rotation in spin space.
For example, the order parameter (1,0,i

√
2,0,1)T/2 =

U (π/3, arccos(−1/
√

3),−π/3)(1/
√

3,0,0,
√

2/3,0)T also
represents one state in the ground-state manifold of the cyclic
phase. The LHY correction to the mean-field ground-state
energy are calculated in Refs. [30–32]. With the LHY
corrections, the phase boundaries are modified as follows.
The detailed calculations are given in Appendix A.

Uniaxial nematic (UN)-biaxial nematic (BN) phase bound-
ary. As shown in Refs. [30,31], zero-point fluctuations lift the
degeneracy in the nematic phase, rendering the ground states
UN (η = nπ/3) and BN (η = π/6 + nπ/3) for c1 > 0 and
c1 < 0, respectively. Therefore, the UN-BN phase transition
occurs at c1 = 0. Note that all states whose order parameters
are given by different values of n = 0, . . . ,5 are energy
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degenerate and belong to the same ground-state manifold;
especially, the BN phase includes states with order param-
eters (

√
2,0,2

√
3,0,

√
2)T/4 (η = π/6) and (1,0,0,0,1)T/

√
2

(η = π/2).
Ferromagnetic-BN phase boundary. By comparing the

ground-state energies with the LHY corrections of the
ferromagnetic and BN phases [see Eqs. (A2)–(A4)
in Appendix A], we find that the ferromagnetic-BN phase
boundary is shifted from its mean-field counterpart of
c2 = 20c1 [26] to

cFM-BN
2 � 20c1 − 1521

( |c1|
c0

)3/2 √
na3 |c1|; (3)

i.e., the region of the ferromagnetic phase is enlarged.
UN-cyclic phase boundary. Similarly, the phase boundary

between the UN and cyclic phases is given by [see Eqs. (A5)–
(A7) in Appendix A]

cUN-CL
2 � −342

(
c1

c0

)3/2 √
na3 c1. (4)

Compared with the mean-field UN-cyclic phase boundary
of c1 > 0,c2 = 0 [26], the region of the cyclic phase is
enlarged.

Ferromagnetic-cyclic phase boundary. The LHY correc-
tion does not shift the ferromagnetic-cyclic phase boundary.
Actually, this phase boundary stays at c1 = 0 to all orders
of approximation. From the order parameters ξFM =
(1,0,0,0,0)T and ξCL = (1,0,0,

√
2,0)T/

√
3, it is evident that

the ground-state energies of the ferromagnetic and cyclic
phases are independent of c2 since the excitations caused by
c2 vanish due to the absence of spin-singlet pairs in both
of these phases. Because c0 is the coupling constant of a
spin-independent interaction, the energies of these two phases
are equal at c1 = 0; i.e., the phase boundary is not shifted by
quantum fluctuations.

In the presence of an external magnetic field, the difference
in the LHY correction among different ground-state phases is
of the order of �E ≡ M3/2c

5/2
1 n3/2/π2h̄3 (see Appendix A),

and it can compete with the quadratic Zeeman energy qB .
The phase diagram, therefore, depends on the relative strength
of these two effects. In the limit of high magnetic field
qB � �E, the effect of quantum fluctuations can be ignored,
and the ground-state phase diagram is obtained by the Hartree
mean-field theory [33]. This is the case in the experiments of
a spin-2 87Rb BEC described in Ref. [34]. For 87Rb under
a high magnetic field, the BN phase becomes the ground
state, while the dynamics starting from the unstable UN phase
would populate all magnetic sublevels. In the opposite limit of
low magnetic field qB � �E, quantum fluctuations dominate,
and the quadratic Zeeman energy becomes negligible. In this
case, the ground-state phase diagram is shown in Fig. 1. The
crossover between these two distinct regimes occurs at qB ∼
�E, which corresponds to a magnetic field of the order of
7 mG for the parameters of 87Rb [35,36] with atomic density
n = 1015 cm−3. All these regimes can, in principle, be inves-
tigated since the lowest magnetic field that has been achieved
in a controllable manner in ultracold atomic experiments is as
small as 0.1 mG [37].

III. SPIN-2 BELIAEV THEORY

A. Fluctuation-induced metastable states

Since the order parameters and the associated symmetries
of different phases in Fig. 1 are not continuously transformed
at the phase boundary, we may expect that the phase transitions
between these phases must be first order. This can be confirmed
by a finite jump in the first derivative of the ground-state
energy with respect to the parameter that drives the transition
at the phase boundary (see Appendix B). First-order phase
transitions are usually accompanied by metastable states.
However, the Bogoliubov theory predicts either dynamical
instability (complex excitation energy) or Landau instability
(negative excitation energy) at the mean-field phase bound-
aries, as listed in Appendix C. This implies no metastability.
Such an inconsistency is due to the fact that the Bogoliubov
spectrum is obtained by linearizing the Gross-Pitatevskii
energy functional which, for a homogeneous system with
contact interactions, involves only terms up to the fourth
order in the order parameter [38]. Here we note that the
Gross-Pitaevskii energy functional is equivalent to that of
Landau’s φ2 + φ4 model. However, to describe the first-order
phase transitions, terms of higher orders in φ are needed [39],
and in gaseous BECs, higher-order terms can only be obtained
by taking into account quantum fluctuations. In other words,
in the system under consideration, the metastability, if it
exists, is induced by quantum fluctuations. In Sec. III C, we
analytically show that metastable states indeed appear as we
go to the next-order approximation, i.e., the spinor Beliaev
theory [15–17]. First-order phase transitions in spinor systems
have also been investigated by numerically diagonalizing an
effective Hamiltonian [40,41].

The failure of the Bogoliubov theory leads to the dis-
agreement with the ground-state phase diagram (Fig. 1)
obtained in Sec. II. For example, the ground state is the
ferromagnetic phase for c2 > cF-BN

2 and c1 < 0 [see Eq. (3)],
whereas the Bogoliubov spectrum indicates an instabil-
ity of the ferromagnetic phase for cF-BN

2 < c2 < 20c1 (see
Appendix C).

In the following sections, by using the spinor Beliaev
theory, we show that the fluctuation-induced metastable states
exist around the ferromagnetic-BN and UN-cyclic phase
boundaries (Sec. III C). At the other two phase boundaries,
we find no metastability. We show in Sec. IV that this absence
of metastability holds to all orders of approximation since it
is prohibited by the high symmetry of the Hamiltonian at the
phase boundary. Therefore, the spinor Beliaev theory gives a
fully consistent result for each of the four first-order phase
transitions in Fig. 1.

B. Formalism

In this section, we develop the spinor Beliaev theory for
spin-2 BECs based on the Green’s function formalism and
apply it to calculate the excitation energies of the ferromagnetic
and UN states. The formalism shares many similarities with
the spin-1 Beliaev theory developed in Ref. [17]. From the
obtained excitation energies, we can determine the points in
the phase diagram at which instabilities set in.
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The Dyson equation for the Green’s functions is given
by

G
αβ

jj ′(p) = (G0)αβ

jj ′(p) + (G0)αγ

jm�
γδ

mm′(p)Gδβ

m′j ′ (p), (5)

where p ≡ (ωp,p) denotes a frequency-momentum four-
vector, and G, G0, and � are the interacting Green’s function,
the noninteracting Green’s function, and the self-energy,
respectively, all of which are 10 × 10 matrices with

j,j ′,m,m′ = −2, . . . ,2 denoting the magnetic sublevels and
the values of α,β,γ,δ indicating the normal (11,22) and
anomalous (12,21) components. These normal and anomalous
components represent the propagation of a single particle
and that of a pair of particles which is created out of
the condensate, respectively. For the ferromagnetic and UN
states with respective order parameters ξFM = (1,0,0,0,0)T

and ξUN = (0,0,1,0,0)T, the self-energies are given by

�FM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11
2,2(p) 0 0 0 0 �12

2,2(p) 0 0 0 0

0 �11
1,1(p) 0 0 0 0 0 0 0 0

0 0 �11
0,0(p) 0 0 0 0 0 0 0

0 0 0 �11
−1,−1(p) 0 0 0 0 0 0

0 0 0 0 �11
−2,−2(p) 0 0 0 0 0

�21
2,2(p) 0 0 0 0 �22

2,2(p) 0 0 0 0

0 0 0 0 0 0 �22
1,1(p) 0 0 0

0 0 0 0 0 0 0 �22
0,0(p) 0 0

0 0 0 0 0 0 0 0 �22
−1,−1(p) 0

0 0 0 0 0 0 0 0 0 �22
−2,−2(p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

and

�UN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11
2,2(p) 0 0 0 0 0 0 0 0 �12

2,−2(p)

0 �11
1,1(p) 0 0 0 0 0 0 �12

1,−1(p) 0

0 0 �11
0,0(p) 0 0 0 0 �12

0,0(p) 0 0

0 0 0 �11
−1,−1(p) 0 0 �12

−1,1(p) 0 0 0

0 0 0 0 �11
−2,−2(p) �12

−2,2(p) 0 0 0 0

0 0 0 0 �21
2,−2(p) �22

2,2(p) 0 0 0 0

0 0 0 �21
1,−1(p) 0 0 �22

1,1(p) 0 0 0

0 0 �21
0,0(p) 0 0 0 0 �22

0,0(p) 0 0

0 �21
−1,1(p) 0 0 0 0 0 0 �22

−1,−1(p) 0

�21
−2,2(p) 0 0 0 0 0 0 0 0 �22

−2,−2(p)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(7)

Here �22
jj ′(p) ≡ �11

jj ′(−p) and �12
jj ′(p) = �21

jj ′(p) because the
corresponding diagrams are the same.

By solving Eq. (5), we can express the Green’s functions
for each state in terms of the self-energies, and according
to the Lehmann representation [42,43], the excitation spectra
are obtained from the poles of the Green’s functions. Since
the low-energy long-wavelength excitation modes give rise
to instabilities at the phase boundaries, in the following we
consider the zero-momentum excitation energies. The results
for the ferromagnetic and UN states are summarized as
follows.

Ferromagnetic state. The mF = 2 modes with finite
wavelengths, which share the same spin state with the
condensate, correspond to the phonon excitations. They are

featured by nonzero anomalous self-energies �
12;21
2,2 in Eq. (6)

and thus have a linear dispersion relation characterized by
the sound velocity as in a spinless BEC. The sound velocity
is always positive as long as c0 � |c1|,|c2|; therefore, no
instability should occur. In contrast, the mF = j 
= 2 modes
are single-particle-like excitations due to the vanishing of
the anomalous self-energies, and their Green’s functions are
given by

G11
j,j (p) = 1[

G0
j (p)

]−1 − �11
j,j (p)

, (8)

where G0
j (p) = [ωp − (ε0

p − μ)/h̄ + iη]−1 is the
noninteracting Green’s function of a particle in the magnetic
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sublevel mF = j , which is independent of j in the absence
of an external magnetic field. Here, ε0

p ≡ h̄2p2/(2M), μ is the
chemical potential, and η is an infinitesimal positive number.
From Eq. (8), the zero-momentum energy of the mF = j

excitation mode satisfies

ωj,p=0 = �11
j,j (ωj,p=0,p = 0) − μ/h̄. (9)

UN state. The Green’s function of the mF = 0 mode
describes the phonon excitation which does not bring about
any instability with c0 � |c1|,|c2|. For the mF 
= 0 modes, the
Green’s functions are given by

G11
j,j (p) = −[G0

j (−p)
]−1 + �11

j,j (−p)

Dj

, (10)

where

Dj = −[G0
j (p)

]−1[
G0

−j (−p)
]−1 + �11

j,j (p)
[
G0

−j (−p)
]−1

+�22
−j,−j (p)

[
G0

j (p)
]−1 − �11

j,j (p)�22
−j,−j (p)

+�21
−j,j (p)�12

j,−j (p) + iη. (11)

The zeros of Dj gives the excitation energy spectrum, which
is calculated for p = 0 to be

ωj,p=0 =
(
�11

j,j − �22
−j,−j

)
2

±
⎧⎨
⎩−�12

j,−j�
21
−j,j

+
[
−μ

h̄
+
(
�11

j,j + �22
−j,−j

)
2

]2
⎫⎬
⎭

1/2

. (12)

It should be noted that the self-energies on the right-hand side
of Eq. (12) are functions of ωj,p=0, and the plus and minus signs
in front of the square root result in two poles of the Green’s
function with the same absolute value and opposite signs,
corresponding to particle and hole excitations, respectively.
Since single-particle excitations of a BEC are superpositions
of particle and hole excitations with nonzero momenta, we
only need to take the plus branch for each count of excitation
modes. For the UN phase with a symmetric order parameter
ξUN = (0,0,1,0,0)T, there is an equivalence between the mF =
±j magnetic sublevels, which in turn gives

�11
j,j = �11

−j,−j , �22
j,j = �22

−j,−j , (13)

�12
j,−j = �12

−j,j = �21
j,−j = �21

−j,j , (14)

Dj = D−j . (15)

Equation (15) implies a twofold degeneracy in the excitation
energies given by Eq. (12).

In the next section, we make expansions of � and μ with
respect to na3, the characteristic dimensionless parameter of
a dilute weakly interacting Bose gas. These expansions are
represented by the sums of Feynman diagrams,

�
αβ

jj ′ =
∞∑

n=1

�
αβ(n)
jj ′ , (16a)

μ =
∞∑

n=1

μ(n), (16b)

p

p

pp -p

-p

p p

Σ11(p) +=

= =

=

μ

jj’ Σ12(p)
jj’

Σ21(p)
jj’

Γ Γ Γ

Γ Γ

j

j

jj

j’

j’

j’

j’

(a) (b)

(c) (d)

FIG. 2. (Color online) First-order Feynman diagrams for the
self-energies (a) �11

jj ′ (p), (b) �12
jj ′ (p), (c) �21

jj ′ (p), and (d) the chemical
potential μ. The two diagrams in (a) represent the Hartree (left)
and Fock (right) interactions, respectively. Here p ≡ (ωp,p) and
j denote the frequency-momentum four-vector and the magnetic
sublevel, respectively. The rectangles represent the T matrices, where
condensate particles are not explicitly shown. In fact, in (a), there
are one condensate particle moving in and another moving out; in
(b) and (c), there are two condensate particles moving in and two
moving out, respectively; in (d), all four particles belong to the
condensate.

where �
αβ(n)
jj ′ and μ(n) are the contributions to the self-energy

and the chemical potential from the nth-order Feynman
diagrams. The Bogoliubov and Beliaev theories include the
contributions from the Feynman diagrams up to the first order
(Fig. 2) and the second order (Figs. 3–5), respectively. In
comparison, there appear virtual excitations, i.e., quantum
fluctuations, of the condensate with momenta q and q − p in
the second-order diagrams, which are absent in the first-order
ones. It is these quantum fluctuations that generate higher-
order terms beyond φ4 in the energy functional which play an
essential role in first-order phase transitions in spinor BECs,
as discussed in Sec. III A.

C. Stability analysis

From the excitation energies obtained in the previous
section, we can identify the points in the phase diagram at
which instabilities occur. Together with the conditions about
the phase boundaries in Sec. II, we find that fluctuation-
induced metastable states appear in the ferromagnetic-BN and
UN-cyclic phase transitions, while there is no metastability
associated with the ferromagnetic-cyclic and UN-BN phase
transitions. In the latter case, the absence of metastability holds
to all orders of approximation due to the symmetry of the
Hamiltonian, as discussed in Sec. IV.

Ferromagnetic-BN phase transition. From the order
parameters of the ferromagnetic [ξFM = (1,0,0,0,0)T] and BN
[ξBN = (1,0,0,0,1)T/

√
2] states, it is clear that starting from

the ferromagnetic phase, the excitation mode that drives this
phase transition is the one with mF = −2. We thus evaluate
the zero-momentum energy of this mode. The expansion of
Eq. (9) up to the first-order Feynman diagrams reproduces the
Bogoliubov result:

h̄ω−2,p=0 � h̄�
11(1)
−2,−2 − μ(1) =

(
−8c1 + 2c2

5

)
n0. (17)
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FIG. 3. (Color online) Second-order Feynman diagrams for �11
jj ′ (p). The intermediate propagators are classified into three different

categories, depending on the number of noncondensed atoms. They are represented by curves with one arrow (−→), two out-pointing arrows
(←→), and two in-pointing arrows (→←), which describe the first-order normal Green’s function G11

jj ′ (p) and two anomalous Green’s
functions G12

jj ′ (p) and G21
jj ′ (p), respectively. Here, the two horizontal dashes in (e1) and (e2) indicate that the terms of noninteracting Green’s

functions are to be subtracted to avoid double counting of the contributions that have already been taken into account in the T matrix and the
first-order diagrams. As in Fig. 2, we use the convention that the condensate particles in (a1)–(e2) are not shown [17].

By summing all the contributions to �11
−2,−2 and μ from the

second-order diagrams in Figs. 3 and 5, respectively, we obtain
[see Eq. (D12) in Appendix D]

h̄�
11(2)
−2,−2 − μ(2) � (36

√
3 + 64)|c1|5/2(Mn0)3/2

2
√

2πh̄3
(18)

near the ferromagnetic-BN phase boundary where c1 < 0
and c2 � 20c1 [Eq. (3)]. From Eqs. (9) and (16)–(18), the
zero-momentum energy of the mF = −2 excitation mode
of the ferromagnetic phase is obtained up to the second

order as

h̄ω−2,p=0 �
(

−8c1 + 2c2

5

)
n0

+ (36
√

3 + 64)|c1|5/2(Mn0)3/2

2
√

2πh̄3
. (19)

From Eq. (19), we find that the Landau instability
of the ferromagnetic phase arises if h̄ω−2,p=0 < 0, or
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FIG. 4. (Color online) Second-order Feynman diagrams for �12
jj ′ (p) [17].

equivalently, if

c2 < cFM-unstable
2 ≡ 20c1 − 5(36

√
3 + 64)M3/2n

1/2
0 c

5/2
1

4
√

2πh̄3

� 20c1 − 1584

( |c1|
c0

)3/2√
n0a3 |c1|

� 20c1 − 1584

( |c1|
c0

)3/2 √
na3 |c1|. (20)

In the last (approximate) equality in Eq. (20), we have used
the relation between the condensate density and the total
atomic density n0/n = 1 − 8

√
na3/(3

√
π ) and taken only

terms up to the order of
√

na3, which is the order of magnitude
under consideration in the Beliaev theory. It follows from
Eqs. (3) and (20) that the ferromagnetic phase is metastable

for

−1584 <
c2 − 20c1( |c1|

c0

)3/2√
na3|c1|

< −1521. (21)

From the hysteretic feature of a first-order phase transition, the
BN phase is also expected to be metastable for cFM-BN

2 < c2 <

cBN-unstable
2 .

UN-cyclic phase transition. As shown in Sec. III B, starting
from the UN order parameter ξUN = (0,0,1,0,0)T, there are
two degenerate excitation modes which are superpositions
of mF = ±2 magnetic sublevels. Since the order parameter
(1,0,i

√
2,0,1)T/2, which has equal weight of the mF = ±2

components, describes a state in the cyclic phase (Sec. II), it is
evident that the instability in the mF = ±2 modes causes the
UN-cyclic phase transition. By separating the contributions to
� and μ in Eq. (12) from the first- and second-order Feynman
diagrams, the zero-momentum excitation energies of these
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(b)(a1) (a2)

q

q q -q

Γ Γ Γ

FIG. 5. (Color online) Second-order Feynman diagrams for the
chemical potential μ [17].

modes are given up to the second order by

ω±2,p=0 = �
11(2)
22 − �

22(2)
22

2
+
⎧⎨
⎩−
[
c2n0

5h̄
+ �

12(2)
2,−2

]2

+
[
−c2n0

5h̄
− μ(2)

h̄
+ �

11(2)
22 + �

22(2)
22

2

]2
⎫⎬
⎭

1/2

,

(22)

where Eqs. (13) and (14) were used. Since it is expected
that h̄ω±2,p=0 � |c1|n0 near the phase boundary which can be
justified a posteriori from the final result, we can make Taylor
series expansions of �

11(2)
2,2 , �

22(2)
2,2 , and �

12(2)
2,−2 in powers of

h̄ω±2,p=0/(|c1|n0) as (see Appendix D)

h̄�
11(2)
2,2 = A + Bh̄ω±2,p=0 + O

[(
h̄ω±2,p=0

|c1|n0

)2 ]
, (23)

h̄�
22(2)
2,2 = A − Bh̄ω±2,p=0 + O

[(
h̄ω±2,p=0

|c1|n0

)2 ]
, (24)

h̄�
12(2)
2,−2 = C + O

[(
h̄ω±2,p=0

|c1|n0

)2 ]
, (25)

where we ignore the quadratic and higher-order terms. Substi-
tuting Eqs. (23)–(25) into Eq. (22), we obtain

h̄ω±2,p=0 �
√[− c2n0

5 + A − μ(2)
]2 − [ c2n0

5 + C
]2

1 − B
. (26)

Therefore, a dynamical instability will arise if ω±2,p=0 involves
a nonzero imaginary part, i.e., if

0 >

[
−c2n0

5
+ A − μ(2)

]2

−
[
c2n0

5
+ C

]2

= [A − μ(2) + C]

[
−2c2n0

5
+ A − μ(2) − C

]
. (27)

By summing all the contributions to � and μ from the second-
order Feynman diagrams in Figs. 3–5, we find that around the
UN-cyclic phase boundary [Eq. (4)], where c1 > 0,c2 < 0 and
|c2| � c1, the coefficients A, B, and C in Eqs. (23)–(25) are
given by [see Eqs. (D32)–(D34) in Appendix D]

A − μ(2)

(Mn0)3/2
� −4

√
3c

5/2
1

π2h̄3 +
(
42

√
3c

3/2
1 − 10c

3/2
0

)
c2

15π2h̄3 , (28)

B

M3/2n
1/2
0

� −
(
c

3/2
0 + 3

√
3c

3/2
1

)
3π2h̄3 −

(
c

1/2
0 + √

3c
1/2
1

)
c2

30π2h̄3 .

(29)

C

(Mn0)3/2
� 12

√
3c

5/2
1

π2h̄3 +
(
10c

3/2
0 − 30

√
3c

3/2
1

)
c2

15π2h̄3 . (30)

By substituting Eqs. (28)–(30) into Eq. (27), we find that
the UN phase becomes dynamically unstable and the system
makes a transition to the cyclic phase if

c2 > cUN-unstable
2 ≡ −40

√
3M3/2n1/2c

5/2
1

π2h̄3

� −313

(
c1

c0

)3/2√
na3 c1. (31)

It follows from Eqs. (4) and (31) that the UN phase is
metastable for

−342 <
c2(

c1
c0

)3/2√
na3 c1

< −313. (32)

From the hysteretic feature of a first-order phase transition,
the cyclic phase is also expected to be metastable for cUN-CL

2 >

c2 > cCL-unstable
2 .

Ferromagnetic-cyclic phase transition. From the order
parameters ξFM = (1,0,0,0,0)T and ξCL =
(1,0,0,

√
2,0)T/

√
3 of the ferromagnetic and cyclic phases,

it is clear that the excitation mode that brings about
the ferromagnetic-cyclic phase transition is the one with
mF = −1. Expanding the right-hand side of Eq. (9) up to the
first-order Feynman diagrams, we reproduce the Bogoliubov
result:

h̄ω−1,p=0 � h̄�
11(1)
−1,−1 − μ(1) = −6c1n0. (33)

By summing all the contributions to � and μ from the second-
order Feynman diagrams in Figs. 3 and 5, respectively, we
obtain [see Eq. (D15) in Appendix D]

h̄�
11(2)
−1,−1 − μ(2) � −18c1c

3/2
0 (Mn0)3/2

π2h̄3 . (34)

From Eqs. (9), (16), (33), and (34), we find the zero-momentum
energy of the mF = −1 excitation mode as

h̄ω−1,p=0 = −6c1n0 − 18c1c
3/2
0 (Mn0)3/2

π2h̄3 . (35)

Equation (35) indicates that a Landau instability of the
ferromagnetic phase appears, i.e., ω−1,p=0 < 0, for c1 > 0.
This implies that there is no parameter regime for a metastable
ferromagnetic state. However, for c1 > 0, the cyclic phase
is the ground state and the ferromagnetic phase becomes an
excited state, indicating that a level crossing occurs at the
ferromagnetic-cyclic phase boundary.

UN-BN phase transition. Similar to the UN-cyclic phase
transition, since the order parameter ξBN = (1,0,0,0,1)T/

√
2

with equal weights of the mF = ±2 components describes a
BN state (Sec. II), it is evident that the dynamical instability
in the degenerate mF = ±2 excitation modes of the UN state
with order parameter ξUN = (0,0,1,0,0)T [Eqs. (26) and (27)]
also causes the UN-BN phase transition at c1 = 0,c2 < 0.
Around this phase boundary where c2 < 0 and |c2| � |c1|, the
terms in Eq. (27) are calculated to be (see Appendix D)

A − μ(2) + C

(Mn0)3/2
= 1

π2h̄3

(
8
√

3c̃
5/2
1 − 32√

3
c̃

3/2
1 c̃2 + 16

3
c̃1c̃

3/2
2

+ 8√
3
c̃

1/2
1 c̃2

2 − 16

9
c̃

5/2
2

)
, (36)
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FIG. 6. (Color online) Plot of f (x) defined in Eq. (38).

and

−2c2n0

5
+ A − μ(2) − C � −2c2n0

5
, (37)

where c̃2 ≡ −c2/5 and c̃1 ≡ c1 − c2/15. It follows from
Eqs. (27), (36), and (37) that a dynamical instability
arises if

f (x) ≡ 8
√

3x5/2 − 32√
3
x3/2 + 16

3
x + 8√

3
x1/2 − 16

9
< 0,

(38)

where x ≡ c̃1/c̃2. The function f (x) on the left-hand side
of Eq. (38) is plotted in Fig. 6, from which we find that the
UN state becomes dynamically unstable and the system is
driven towards the BN phase if x < 1/3, or equivalently, if
c1 < 0. Since the UN-BN phase boundary is at c1 = 0, there
is no parameter regime in which the UN state is metastable.
However, it should be noted that for c1 < 0, where the BN
phase is the ground state, the UN state becomes dynamically
unstable and cannot exist as an excited state since the
excitation modes would grow exponentially. In other words,
there is no level crossing in the UN-BN phase transition in
contrast to the ferromagnetic-cyclic one. It should be stressed
that this result, which was derived from the stability analysis,
is stronger than the result obtained in Refs. [30,31] since it
implies not only that the UN phase is no longer the ground
state for c1 < 0 but also that it is not even an excited state due
to the dynamical instability.

IV. SYMMETRY-PROHIBITED METASTABILITY

In the previous section, the stability analysis based on the
Beliaev theory states that the ferromagnetic-cyclic and UN-BN
phase transitions are not accompanied by metastable states.
In this section, we show that the absence of metastability
holds to all orders of approximation since the metastability
is prohibited by the high symmetry of the Hamiltonian at the
phase boundary. We investigate the underlying symmetry of
the Hamiltonian that results in a flat energy landscape at the
phase boundary in both spin-1 and spin-2 BECs. This energy
landscape prohibits a coexistence of two phases as opposed

q/|c1|n

q/|c1|n

0

0

2

Ferromagnetic Broken Axisymmetry Polar

Polar
Antiferromagnetic

(a)

(b)

FIG. 7. (Color online) Mean-field ground-state phase diagrams
of spin-1 (a) 87Rb and (b) 23Na BECs where the spin-dependent
interaction is ferromagnetic (c1 < 0) and antiferromagnetic (c1 > 0),
respectively. The ground-state phase depends on the ratio of
the quadratic Zeeman energy q to the interaction energy |c1|n.
The inset in each phase shows the surface plot of |ψ(θ,φ)|2 ≡
|∑1

m=−1 ξmY m
1 (θ,φ)|2, where Y m

1 ’s are the spherical harmonic func-
tions of rank 1. The order parameter ξBA of the BA phase varies
continuously as a function of q/|c1|n. The ferromagnetic-BA and
antiferromagnetic-polar phase transitions are first order, while the
BA-polar phase transition is second order.

to the double-well structure in conventional first-order phase
transitions.

A. Spin-1 BECs

In the presence of a quadratic Zeeman effect, the interaction
Hamiltonian of a spin-1 BEC is given by

V̂ =
∫

dr

⎛
⎝c0

2
: n̂2 : +c1

2
: F̂2 : +q

1∑
j=−1

j 2ψ̂
†
j ψ̂j

⎞
⎠ , (39)

where q denotes the quadratic Zeeman coefficient, and n̂ and F̂

are the number density and spin density operators. The linear
Zeeman energy is suppressed due to the conservation of the
total spin of an isolated system. The mean-field ground-state
phase diagrams of spin-1 BECs are shown in Fig. 7 for
the cases of 87Rb and 23Na (see, for example, Ref. [14]).
The order parameter of the ferromagnetic, antiferromagnetic,
and polar phases are ξFM = (1,0,0)T, ξAFM = (1,0,1)T/

√
2,

and ξPL = (0,1,0)T, respectively, while the order parameter
of the broken-axisymmetry (BA) phase varies continuously
as a function of q from ξBA = (1,

√
2,1)T/2 at q = 0 to

ξBA = (0,1,0)T at q = 2|c1|n. From the discontinuity in the
transformation of the order parameter at the phase boundary, it
is clear that the ferromagnetic-BA and antiferromagnetic-polar
phase transitions are first order, while the BA-polar phase
transition is second order. This is also confirmed by examining
the discontinuity in the first derivative of the ground-state
energy with respect to the quadratic Zeeman shift q that drives
these transitions (see Appendix B). We now show that these
first-order quantum phase transitions are not accompanied by
metastable states, and this holds to all orders of approximation.
At nonzero q, the Hamiltonian has the U(1)φ × SO(2)fz

symmetry involving gauge and rotational invariants along the
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A
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FIG. 8. Energy landscape against the order parameter for first-
order quantum phase transitions (a) with and (b) without metastability
[see Eq. (41)]. The transition between A and B phases is controlled
by a change in the parameter c (interaction c1 or c2 in Fig. 1 or
the quadratic Zeeman shift q in Fig. 7). Here, cA−B indicates the
phase boundary between the two phases, while cA−unstable represents
the value of c at which the A phase becomes absolutely unstable.
The energy landscape in (a) features a double well at c = cA−B ,
supporting a metastable state around the transition point, whereas
the energy landscape in (b) becomes flat at c = cA−B , allowing no
metastable state.

z axis in spin space. Only at q = 0 does the Hamiltonian
possess a larger symmetry of U(1)φ × SO(3)f , corresponding
to a full rotational invariant in spin space. On the other
hand, the order parameters of each pair of two phases in the
above first-order phase transitions at q = 0 can be transformed
between each other via an SO(3) rotation: ξBA(q = 0) =
eifyπ/2ξFM,ξPL = eifyπ/2ξAFM. Therefore, the two phases are
degenerate at q = 0 to any order of approximation. Namely,
the phase boundary at q = 0 remains unchanged even when
quantum corrections are added to the ground-state energy.
Furthermore, if we use a parameter θ to represent the order
parameters of the intermediate states in the transforma-
tion from the ferromagnetic (antiferromagnetic) to the BA
(polar) phase, eifyθξFM = [cos2(θ/2), sin θ/

√
2, sin2(θ/2)]T

[eifyθξAFM = (sin θ/
√

2, cos θ, sin θ/
√

2)T] (0 � θ � π/2),
all these intermediate states are energy degenerate; i.e., E(θ )
is independent of θ , resulting in a flat energy landscape at
q = 0. As q crosses the phase boundary from the negative
to the positive side, the ferromagnetic and antiferromagnetic
phases immediately change from the ground state (the global
minimum in the energy landscape) to an unstable state (a local
maximum in the energy landscape if existing), leading to no
parameter regime of metastability. Similarly, no metastable
regime exists for the BA and polar phases as q crosses
the phase boundary from the positive to the negative side.
This can be understood by looking at the mean-field energy
landscape

EFM-BA(θ )/V = (c0 + c1)n2

2
+ qn

(
1 − sin2 θ

2

)
, (40)

EAFM-PL(θ )/V = c0n
2

2
+ qn sin2 θ, (41)

where the maximum and minimum at θ = 0 and θ = π/2,
respectively, are exchanged as q crosses zero. A comparison
with the conventional first-order phase transitions whose
energy landscapes feature a double well and thus support
metastability is illustrated in Fig. 8. However, the absence
of metastability holds not only at the mean-field level but also
to all orders of approximation since the above argument of the

T

4
2,0,

2
3,0,

4
2

( )T0,0,1,0,0T

2
sin,0,cos,0,

2
sin ηηη

(a)

( )T0,0,0,0,1

T

0,
3
2,0,0,

3
1(b)

SO(5)

SO(5)

UN

Ferromagnetic Cyclic

BN

T(cos ,0,0,sin ,0)η η

FIG. 9. (Color online) SO(5) rotations connecting (a) UN and BN
phases and (b) ferromagnetic and cyclic phases. The order parameters
and the spherical harmonic representations of the initial, final, and
intermediate states are displayed.

flat energy landscape at the phase boundary is based on the
symmetry of the Hamiltonian.

B. Spin-2 BECs

Now we show that the absence of metastability in the
ferromagnetic-cyclic and UN-BN phase transitions, which was
proved up to the second order by the stability analysis in
Sec. III C, holds to all orders of approximation due to the
symmetry of the Hamiltonian. For finite c1, the Hamiltonian
of spin-2 BECs [Eq. (2)] has the U(1)φ × SO(3)f symmetry.
Only at c1 = 0 is its symmetry enlarged to U(1)φ × SO(5)f
due to the invariance of the spin-singlet-pair interaction
c2 : Â

†
00Â00 : under a rotation in the Hilbert space com-

posed of five magnetic sublevels [32]. On the other hand,
from the order parameters ξFM = (1,0,0,0,0)T and ξCL =
(1,0,0,

√
2,0)T/

√
3, the ferromagnetic and cyclic phases both

have zero spin-singlet-pair amplitude 〈Â00〉 = 0. Similarly, the
UN [ξUN = (0,0,1,0,0)T] and BN [ξBN = (1,0,0,0,1/)T/

√
2]

phases both have the maximum value of the spin-singlet-pair
amplitude 〈Â00〉 = 1. In other words, the ferromagnetic and
cyclic phases (UN and BN phases) belong to the same
group of the minimum (maximum) value of spin-singlet-pair
amplitude whose elements can be transformed between each
other by SO(5) rotations. Therefore, these pairs of phases are
degenerate at c1 = 0, where the Hamiltonian possesses the
same symmetry. That the degeneracy holds to all orders of
approximation makes the phase boundary at c1 = 0 remain
unchanged even when quantum corrections to the ground-state
energy are taken into account. Furthermore, similar to the spin-
1 BECs, if the order parameters of the intermediate states in the
transformation from the ferromagnetic (UN) to the cyclic (BN)
phase are parametrized as U (η)ξFM = (cos η,0,0, sin η,0)T

[U ′(η)ξUN = (sin η/
√

2,0, cos η,0, sin η/
√

2)T], where U (η)
[U ′(η)] is an SO(5) rotation operator, all these intermediate
states are energy degenerate; i.e., E(η) is independent of η,
resulting in a flat energy landscape at c1 = 0 (see Fig. 9). As
c1 crosses the phase boundary from the negative to the positive
side, the ferromagnetic and BN phases abruptly changes from
the ground state (the global minimum in the energy landscape)
to an unstable state (a local maximum, if it exists), leading to no
region of metastability. Similarly, no metastable regime exists
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for the cyclic and UN phases as c1 crosses the phase boundary
from the positive to the negative side. This is illustrated by
the energy landscape of the ground-state manifold of nematic
phase [31,32] [see Eq. (B1)]

EUN-BN(η)

V
= ω

2∑
j=0

[
1 − 2c1

2c1 − c2/5
cos

(
2η + 2πj

3

)] 5
2

+ η-independent terms, (42)

where ω ≡ 8M3/2[n(2c1 − c2/5)]5/2/(15π2h̄3). Equation (42)
takes the minimum (maximum) value at η = nπ/3 (η =
π/6 + nπ/3) (n = 0,1, . . . ) corresponding to the UN (BN)
phase for c1 > 0 and the maximum (minimum) value for
c1 < 0. It means that the UN phase changes abruptly from
the ground state to an unstable state as the phase boundary is
crossed at c1 = 0, implying no parameter regime of metastable
states. Since the above argument of the flat energy landscape
is based on the symmetry of the Hamiltonian, the absence of
metastability is valid to all orders of approximation.

V. MACROSCOPIC QUANTUM TUNNELING

The presence of a metastable state (Sec. III C) implies
an interesting possibility of a decay of the metastable state
into the lower energy state via MQT; i.e., all atoms tunnel
simultaneously from one phase to the other. We consider
this possibility for the metastable state near the UN-cyclic
phase boundary, as the parameters of the spin-2 87Rb BEC are
thought to lie near this phase boundary [35]. Equation (32)
shows that there is a parameter regime in which the UN phase
is metastable, and the cyclic phase is the ground state. By
neglecting quantum depletion, these states are described by

|UN〉 � (â†
0)N |vac〉, (43a)

|Cyclic〉 �
(

â
†
2

2
+ â

†
0√
2

+ â
†
−2

2

)N

|vac〉, (43b)

where â
†
m is the creation operator of a particle with zero

momentum and magnetic quantum number mF = m. Since
these states are not the exact eigenstates of the many-body
Hamiltonian (2), they will undergo quantum diffusions in spin
space [44–47] and induce MQT. We now estimate the time
scale of MQT by restricting the Hilbert space to the two states
at local energy minima. The time scale of MQT is then given by
τ = h̄/� with � = 2〈Cyclic|V̂ |UN〉. Using Eqs. (43) and (2),
we obtain

τ � h̄
2N/2

c0n(N − 1)
, (44)

where N is the total number of particles. The exponentially
large factor of 2N/2 reflects macroscopic magnification in a
BEC. To observe MQT, τ must be equal to or smaller than
the lifetime of the BEC, which is of the order of a second.
Substituting parameters of 87Rb into Eq. (44), we can estimate
an upper bound for the total number of particles: Nmax � 36
for τ � 1 s. A similar time scale is expected for MQT across
the ferromagnetic-BN transition.

VI. CONCLUSION

We have shown that spinor BECs exhibit two distinct
types of first-order quantum phase transitions: one in which
metastable states are induced by quantum fluctuations and the
other in which the metastability is prohibited by the symmetry
of the Hamiltonian at the phase boundary. By developing the
spinor Beliaev theory which takes account of the effect of
quantum fluctuations, the appearance of the metastability in
the former that cannot be captured by the Bogoliubov theory
has been revealed. In contrast, for the latter, the absence
of metastability has been deduced from a general argument
of the energy landscape which becomes flat at the phase
boundary. The absence of metastability holds to all orders of
approximation due to the symmetry of the Hamiltonian. Some
of these first-order phase transitions in spin-1 and spin-2 BECs
are within reach of current experiments. The present study
has shed light on the pivotal role of quantum fluctuations in
the first-order quantum phase transitions. With the importance
of the effect of quantum fluctuations shown above, it is
worth investigating the implication of this study to closely
related problems such as the Coleman-Weinberg mechanism
of quantum symmetry breaking [48], quantum anomaly [49],
and quasi-Nambu-Goldstone modes [50]. It would also be of
interest to study the dynamics of the first-order quantum phase
transitions without metastability since criticality might arise
from the flat energy landscape at the phase boundary.
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APPENDIX A: GROUND-STATE ENERGIES
WITH THE LHY CORRECTIONS

For a dilute homogeneous system of spinless bosons, the
ground-state energy density up to the LHY correction is given
by [19,20]

E

V
= 2πh̄2an2

M

(
1 + 128

15
√

π

√
na3

)
, (A1)

where n, a, and M are the particle-number density, the s-
wave scattering length, and the atomic mass, respectively. The
first term on the right-hand side of Eq. (A1) is the Hartree
mean-field energy, while the second term gives the leading-
order correction first derived by Lee, Huang, and Yang [19,
20]. The LHY correction arises from virtual excitations (i.e.,
quantum fluctuations) of the condensate and is proportional to
the fraction of quantum depletion: nqd/n = 8

√
na3/(3

√
π ).

In the following, we calculate the ground-state energies of the
four possible phases of spin-2 BECs, from which the beyond-
mean-field phase boundaries in Fig. 1 are determined.
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Ferromagnetic and BN phases. With the LHY corrections
for spinor Bose gases, the ground-state energy densities of the
ferromagnetic and BN phases for c1 < 0 and c2 � 20c1 are
given by [32]

EFM

V
=
(

c0

2
+ 2c1

)
n2

[
1 + 16M3/2

15π2h̄3

√
n(c0 + 4c1)3

]
(A2)

and

EBN

V
=
(

c0

2
+ c2

10

)
n2

[
1 + 16M3/2

15π2h̄3

√
n (c0 + 4c1)3

]

+ 8M3/2

15π2h̄3 (32 + 18
√

3)(|c1|n)5/2

+O

[
M3/2n5/2max

{
c

3/2
0 ,|c1|3/2

}|c2 − 20c1|
h̄3

]
,

(A3)

respectively. By noting that |c2 − 20c1| ∼ M3/2n1/2|c1|5/2/h̄3

near the phase boundary [see Eq. (3)], the last term in Eq. (A3)
is smaller than the other terms by a factor of

√
na3 � 1

with a ≡ (4a2 + 3a4)/7 = c0M/(4πh̄2) and thus is negligible.
Consequently, the boundary between the ferromagnetic and
BN phases is shifted from its Hartree mean-field boundary at
c2 = 20c1 to

cFM-BN
2 � 20c1 − 32(16 + 9

√
3)M3/2n1/2|c1|5/2

3π2h̄3

� 20c1 − 1521

( |c1|
c0

)3/2 √
na3 |c1|. (A4)

Thus, we have derived Eq. (3).
Cyclic and UN phases. Similarly, the ground-state energy

densities of the cyclic and UN phases with the LHY corrections
for c1 > 0 and c2 � 0 are respectively given by [32]

ECL

V
= c0n

2

2
+ 8M3/2

15π2h̄3 [(nc0)5/2 + 12
√

2(nc1)5/2] (A5)

and

EUN

V
=
(

c0 + c2

5

)
n2

2
+ 8M3/2

15π2h̄3 [(nc0)5/2 + 18
√

3(nc1)5/2]

+O

[
M3/2n5/2max

{
c

3/2
0 ,c

3/2
1

}|c2|
h̄3

]
. (A6)

Here, EUN is expanded in powers of c2/c0 and c2/c1, which
are expected to be small near the UN-cyclic phase boundary.
In fact, since |c2| ∼ M3/2n1/2c

5/2
1 /h̄3 at the phase boundary

[see Eq. (4)], the last term in Eq. (A6) is smaller than the
others by a factor of

√
na3 � 1, and thus can be ignored. By

comparing the energies in Eqs. (A5) and (A6), we find that the
phase boundary between the UN and cyclic phases is given by

cUN-CL
2 � −16(18

√
3 − 12

√
2)M3/2n1/2c

5/2
1

3π2h̄3

� −342

(
c1

c0

)3/2 √
na3 c1. (A7)

Thus, we have derived Eq. (4).

APPENDIX B: FINITE JUMP IN THE FIRST
DERIVATIVE OF ENERGY

Thermal phase transitions are identified to be first order
if there is a discontinuity in the first derivative of the free
energy with respect to temperature. Similarly, a quantum
phase transition is first order if there is a discontinuity in
the first derivative of the ground-state energy with respect to
the parameter that drives the transition. In the following, the
first derivative of the energy will be calculated at each of
the phase boundaries in Fig. 1. The ground-state energies of
the ferromagnetic and cyclic phases are given by Eqs. (A2)
and (A5), respectively, while those of the UN and BN phases
are obtained from the expression for the energy of the manifold
of nematic phase [31,32],

E(η)

V
=
(

c0 + c2

5

)
n2

2

[
1 + 16M3/2n1/2

15π2h̄3

(
c0 + c2

5

)3/2]

+ 8M3/2n5/2

15π2h̄3

⎧⎨
⎩
( |c2|

5

)5/2

+
(

2c1 − c2

5

)5/2

×
2∑

j=0

[
1 − 2c1

2c1 − c2/5
cos

(
2η + 2πj

3

)5/2]⎫⎬
⎭ ,

(B1)

where η = nπ/3 (η = π/6 + nπ/3) corresponds to the UN
(BN) phase.

Ferromagnetic-BN phase transition. We have

∂(EFM/V )

∂c2
= 0, (B2a)

∂(EBN/V )

∂c2

∣∣∣∣
c2=cFM-BN

2

= n2

10
[1 + O(

√
na3)], (B2b)

where cFM-BN
2 is given by Eq. (3). Equation (B) implies that

there is a jump in ∂E/∂c2 at the phase boundary of the
ferromagnetic-BN transition. Therefore, it can be identified
as the first-order phase transition.

UN-cyclic phase transition. Similarly, the first derivatives
of the ground-state energies at the phase boundary cUN-CL

2 given
by Eq. (4) are

∂(ECL/V )

∂c2
= 0, (B3)

∂(EUN/V )

∂c2

∣∣∣∣
c2=cUN-CL

2

= n2

10
[1 + O(

√
na3)]. (B4)

Therefore, the cyclic-UN phase transition is first order.
Ferromagnetic-cyclic phase transition. The first derivatives

of the energies with respect to c1 at the phase boundary c1 =
0,c2 > 0 are obtained as

∂(EFM/V )

∂c1

∣∣∣∣
c1=0

= n2[2 + O(
√

na3)], (B5)

∂(ECL/V )

∂c1

∣∣∣∣
c1=0

= 0. (B6)

This implies that the ferromagnetic-cyclic phase transition is
first order.
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UN-BN phase transition. The first derivatives of the
energies with respect to c1 at the phase boundary c1 = 0,c2 < 0
up to the level of the LHY correction are given by

∂(EUN/V )

∂c1

∣∣∣∣
c1=0

= 8M3/2n5/2|c2|3/2

π2h̄3 , (B7)

∂(EBN/V )

∂c1

∣∣∣∣
c1=0

= 8M3/2n5/2|c2|3/2

π2h̄3 . (B8)

Up to this order, the first derivative changes continuously.
However, since there is a discontinuity in the transformation
of the order parameters at the UN-BN phase boundary, the
phase transition must be first order, and thus, it is expected
that with higher-order corrections to the ground-state energy,
a jump in ∂E/∂c1 should appear at c1 = 0. The difference
in the order of approximation at which a jump in the energy
derivative appears between the UN-BN and the other phase
transitions in spin-2 BECs is related to the fact that the
UN-BN phase transition only appears for the first time as the
zero-point-energy fluctuations is taken into account. This will
be investigated in a future publication.

Similarly, the fact that the ferromagnetic-BA and
antiferromagnetic-polar phase transitions in spin-1 BECs are
first order can also be confirmed by a finite jump in the
first derivative of the ground-state energy with respect to the
quadratic Zeeman shift q that drives these transitions [14,32].
Both of these phase transitions occur at q = 0.

Ferromagnetic-BA phase transition. The first derivatives of
the ground-state energy with respect to q at the phase boundary
are given for the two phases as follows.

∂(EFM/V )

∂q

∣∣∣∣
q=0

= n, (B9)

∂(EBA/V )

∂q

∣∣∣∣
q=0

= n

2
[1 + O(

√
na3)]. (B10)

Antiferromagnetic-polar phase transition. Similarly, we
have

∂(EAFM/V )

∂q

∣∣∣∣
q=0

= n[1 + O(
√

na3)], (B11)

∂(EPL/V )

∂q

∣∣∣∣
q=0

= 0 + O(
√

na3). (B12)

APPENDIX C: BOGOLIUBOV EXCITATION SPECTRA

The Bogoliubov excitation spectra of the four phases of
spin-2 BECs in Fig. 1 at zero magnetic field and the associated
possible instabilities are listed as follows [14,32]. For spin-2
BECs, there are five excitation modes for each phase.

Ferromagnetic phase. The excitation spectra are given by√
ε0

p

[
ε0

p + 2(c0 + 4c1)n
]
, (C1)

ε0
p, (C2)

ε0
p − 4c1n, (C3)

ε0
p − 6c1n, (C4)

ε0
p − (8c1 − 2c2/5)n. (C5)

From Eq. (C5), a Landau instability with a negative
excitation energy would occur if c2 < 20c1. Note that
c1 < 0, c2 = 20c1 is the Hartree mean-field phase boundary
of the ferromagnetic-BN phase transition, which is indicated
by a dashed line in Fig. 1 [26].

Cyclic phase. The excitation spectra are given by√
ε0

p

(
ε0

p + 2c0n
)
, (C6)√

ε0
p

(
ε0

p + 4c1n
)
, (C7)

ε0
p + 2c2n/5, (C8)√

ε0
p

(
ε0

p + 4c1n
)
, (C9)√

ε0
p

(
ε0

p + 4c1n
)
. (C10)

From Eq. (C8), a Landau instability would occur if c2 < 0.
Note that c1 > 0,c2 = 0 is the Hartree mean-field phase
boundary of the UN-cyclic phase transition (dashed line in
Fig. 1) [26].

UN phase. The excitation spectra are given by√
ε0

p

[
ε0

p + 2(c0 + c2/5)n
]
, (C11)√

ε0
p

[
ε0

p + 2(3c1 − c2/5)n
]
, (C12)√

ε0
p

[
ε0

p + 2(3c1 − c2/5)n
]
, (C13)√

ε0
p

(
ε0

p − 2c2n/5
)
, (C14)√

ε0
p

(
ε0

p − 2c2n/5
)
. (C15)

From Eq. (C14), a dynamical instability, whose excitation
energy involves a nonzero imaginary part, would occur if
c2 > 0.

BN phase. The excitation spectra are given by√
ε0

p

[
ε0

p + 2(c0 + c2/5)n
]
, (C16)√

ε0
p

[
ε0

p + 2(4c1 − c2/5)n
]
, (C17)√

ε0
p

[
ε0

p + 2(c1 − c2/5)n
]
, (C18)√

ε0
p

[
ε0

p + 2(c1 − c2/5)n
]
, (C19)√

ε0
p

(
ε0

p − 2c2n/5
)
. (C20)

From Eq. (C17), a dynamical instability would occur if
c2 > 20c1.

APPENDIX D: SECOND-ORDER SELF-ENERGIES

In this Appendix, we show the derivations of the contri-
butions to the self-energies from the second-order Feynman
diagrams that are used in Sec. III C.

Ferromagnetic-BN phase transition. The instability in the
mF = −2 excitation mode of the ferromagnetic state causes
the phase transition. Therefore, we calculate the self-energy
�

11(2)
−2,−2 and the chemical potential μ(2) of the ferromagnetic
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state. The contribution to �11
−2,−2 from each of the second-order Feynman diagrams in Fig. 3 can be calculated straightforwardly

in a manner similar to our previous work on spin-1 BECs [17]. By summing all these contributions, we obtain

h̄�
11(2)
−2,−2(ωp,p)=

[
(c0 − 4c1)2 + 4c2

2

25
+ 4c0c2

5
− 16c1c2

5

]
n0

∫
d3q

(2π )3

[
A2,k + B2,k − 2C2,k

h̄
(
ωp − ω

(1)
−2,q − ω

(1)
2,k

)+ iη
− P

1

ε0
p − ε0

q − ε0
k + iη

]

+ 4

(
c1 − c2

5

)2

n0

∫
d3q

(2π )3

[
1

h̄
(
ωp − ω

(1)
−1,q − ω

(1)
1,k

)+ iη
− P

1

ε0
p − ε0

q − ε0
k + iη

]

+ 2c2
2n0

25

∫
d3q

(2π )3

[
1

h̄
(
ωp − ω

(1)
0,q − ω

(1)
0,k

)+ iη
− P

1

ε0
p − ε0

q − ε0
k + iη

]
+
(

c0 − 4c1 + 2c2

5

)∫
d3q

(2π )3
B2,q,

(D1)

where k ≡ q − p and P denotes the principal value of
the integral. Here the first-order, i.e., the Bogoliubov,
excitation spectra of the ferromagnetic phase are given
by

h̄ω
(1)
2,p =

√
ε0

p

[
ε0

p + 2(c0 + 4c1)n0
]
, (D2)

h̄ω
(1)
1,p = ε0

p, (D3)

h̄ω
(1)
0,p = ε0

p − 4c1n0, (D4)

h̄ω
(1)
−1,p = ε0

p − 6c1n0, (D5)

h̄ω
(1)
−2,p = ε0

p − 8c1n0 + 2c2n0

5
, (D6)

and

A2,k ≡ h̄ω
(1)
2,k + ε0

k + (c0 + 4c1)n0

2h̄ω
(1)
2,k

, (D7)

B2,k ≡ −h̄ω
(1)
2,k + ε0

k + (c0 + 4c1)n0

2h̄ω
(1)
2,k

, (D8)

C2,k ≡ (c0 + 4c1)n0

2h̄ω
(1)
2,k

. (D9)

In order to find the zero-momentum excitation energy, we
take p = 0. Moreover, since it is expected that |ω−2,p=0 −
ω

(1)
−2,p=0| � |c1|n,|c2|n, which is justified by Eq. (19), we

can replace the argument ω−2,p=0 in �
11(2)
−2,−2 by ω

(1)
−2,p=0.

Equation (D1) then can be evaluated straightforwardly, and
we obtain

h̄�
11(2)
−2,−2 = (Mn0)3/2

h̄3

{
4(c0 + 4c1)1/2

3π2

[
(c0 − 4c1)2 + 4c2

2

25
+ 4c0c2

5
− 16c1c2

5

]
+

√
2

π

(
c1 − c2

5

)5/2

+ 1√
2π

(−c2

5

)5/2

+ 1

3π2
(c0 + 4c1)3/2

(
c0 − 4c1 + 2c2

5

)}
. (D10)

Similarly, the total contribution to the chemical potential μ from the second-order Feynman diagrams is calculated to be

μ(2) = 2(c0 + 4c1)
∫

d3q
(2π )3

B2,q + (c0 + 4c1)
∫

d3q
(2π )3

[
−C2,q + (c0 + 4c1)n0

2ε0
q

]
= 5(Mn0)3/2(c0 + 4c1)5/2

3π2h̄3 . (D11)

Near the ferromagnetic-BN phase boundary where c1,c2 < 0 and c2 � 20c1, from Eqs. (D10) and (D11) we have

h̄�
11(2)
−2,−2 − μ(2) = (36

√
3 + 64)|c1|5/2(Mn0)3/2

2
√

2πh̄3
+ O[|c1|5/2(Mn0)3/2

√
na3/h̄3]. (D12)

Here, we use na3 � 1 with a ≡ c0M/(4πh̄2) so that the second term in Eq. (D12) can be ignored. Thus, we have derived Eq. (18).
Ferromagnetic-cyclic phase transition. The instability in the mF = −1 excitation mode of the ferromagnetic phase drives the

phase transition. Therefore, we calculate �
11(2)
−1,−1 of the ferromagnetic phase. By summing all the contributions to �11

−1,−1 from
the second-order Feynman diagrams in Fig. 3, we obtain

h̄�
11(2)
−1,−1(ωp,p) = n0(c0 − 2c1)2

∫
d3q

(2π )3

[
A2,k + B2,k − 2C2,k

h̄
(
ωp − ω

(1)
−1,q − ω

(1)
2,k

)+ iη
− P

1

ε0
p − ε0

q − ε0
k

]
+ (c0 − 2c1)

∫
d3q

(2π )3
B2,q

+ 12n0c
2
1

∫
d3q

(2π )3

[
1

h̄
(
ωp − ε0

q − ε0
k

)+ iη
− P

1

ε0
p − ε0

q − ε0
k

]
, (D13)
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where ω
(1)
−1,q,ω

(1)
2,k,A2,k,B2,k,C2,k are given by Eqs. (D2)–(D9). By the reason similar to that below Eq. (D9), the arguments ωp

and p of �
11(2)
−1,−1 can be replaced by ω

(1)
−1,p=0 and 0, respectively. Each term in Eq. (D13) then can be calculated straightforwardly,

and we obtain

h̄�
11(2)
−1,−1 = c

5/2
0 (Mn0)3/2

h̄3

[
4

3π2

(
c0 + 4c1

c0

)1/2 (
c0 − 2c1

c0

)2

+ 1

3π2

(
c0 + 4c1

c0

)3/2 (
c0 − 2c1

c0

)
+ 6

π

( |c1|
c0

)5/2 ]
. (D14)

With the second-order chemical potential μ(2) given by Eq. (D11), we have

h̄�
11(2)
−1,−1 − μ(2) = c

5/2
0 (Mn0)3/2

π2h̄3 (−18x + 6π |x|5/2), (D15)

where x ≡ c1/c0. Since |c1| � c0 for typical alkali-metal atoms, the second term inside the bracket in Eq. (D15) is negligible
compared to the first term. We thus have derived Eq. (34).

UN-cyclic phase transition. The excitation mode that drives the UN-cyclic phase transition is a superposition of magnetic
sublevels mF = ±2, whose zero-momentum energy is given by Eq. (22). Now we evaluate the second-order self-energies in
Eq. (22). By summing the contributions to �11

22 from the second-order Feynman diagrams in Fig. 3, we obtain

h̄�
11(2)
22 (ωp,p) = n0c

2
0

∫
d3q

(2π )3

{
(A0,k + B0,k − 2C0,k)

[
A2,q

h̄
(
ωp − ω

(1)
2,q − ω

(1)
0,k

)+ iη
− B2,q

h̄
(
ωp + ω

(1)
2,q + ω

(1)
0,k

)− iη

]

−P
1

ε0
p − ε0

q − ε0
k

}
+ 6n0c

2
1

∫
d3q

(2π )3

[
A1,q(2A1,k + B1,k − 4C1,k) + C1,qC1,k

h̄
(
ωp − ω

(1)
1,q − ω

(1)
1,k

)+ iη

− B1,q(2B1,k + A1,k − 4C1,k) + C1,qC1,k

h̄
(
ωp + ω

(1)
1,q + ω

(1)
1,k

)− iη
− 2P

1

ε0
p − ε0

q − ε0
k

]
+ 4n0c0c2

5

∫
d3q

(2π )3

×
[

(C0,q − A0,q)C2,k

h̄
(
ωp − ω

(1)
0,q − ω

(1)
2,k

)+ iη
− (C0,q − B0,q)C2,k

h̄
(
ωp + ω

(1)
0,q + ω

(1)
2,k

)− iη

]
+ 4n0c

2
2

25

∫
d3q

(2π )3

×
[

A0,qB2,k

h̄
(
ωp − ω

(1)
0,q − ω

(1)
2,k

)+ iη
− B0,qA2,k

h̄
(
ωp + ω

(1)
0,q + ω

(1)
2,k

)− iη

]
+ c0

∫
d3q

(2π )3
(3B2,q + 2B1,q + B0,q)

+ c1

∫
d3q

(2π )3
(2B1,q + 4B2,q) + 2c2

5

∫
d3q

(2π )3
B2,q, (D16)

where k ≡ q − p and P denotes the principle value of the integral. Here, the first-order, i.e., the Bogoliubov, excitation spectra
of the UN phase are given by

h̄ω
(1)
±2,p =

√
ε0

p

[
ε0

p − 2c2n0/5
]
, (D17)

h̄ω
(1)
±1,p =

√
ε0

p

[
ε0

p + 2(3c1 − c2/5)n0
]
, (D18)

h̄ω
(1)
0,p =

√
ε0

p

[
ε0

p + 2(c0 + c2/5)n0
]
, (D19)

and

A2,p ≡ h̄ω
(1)
2,p + ε0

p − c2n0/5

2h̄ω
(1)
2,p

, B2,p ≡ −h̄ω
(1)
2,p + ε0

p − c2n0/5

2h̄ω
(1)
2,p

, C2,p ≡ c2n0/5

2h̄ω
(1)
2,p

, (D20)

A1,p ≡ h̄ω
(1)
1,p + ε0

p + (3c1 − c2/5)n0

2h̄ω
(1)
1,p

, B1,p ≡ −h̄ω
(1)
1,p + ε0

p + (3c1 − c2/5)n0

2h̄ω
(1)
1,p

, C1,p ≡ (3c1 − c2/5)n0

2h̄ω
(1)
1,k

, (D21)

A0,p ≡ h̄ω
(1)
0,p + ε0

p + (c0 + c2/5)n0

2h̄ω
(1)
0,p

, B0,p ≡ −h̄ω
(1)
0,p + ε0

p + (c0 + c2/5)n0

2h̄ω
(1)
0,p

, C0,p ≡ (c0 + c2/5)n0

2h̄ω
(1)
0,p

. (D22)
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The self-energy �
22(2)
22 satisfies �

22(2)
22 (ωp,p) = �

11(2)
22 (−ωp,−p). Similarly, we obtain �

12(2)
2,−2 and μ(2) as

h̄�
12(2)
2,−2 (ωp,p) = n0c

2
0

∫
d3q

(2π )3
C2,q(2C0,k − A0,k − B0,k)

[
1

h̄
(
ωp − ω

(1)
2,q − ω

(1)
0,k

)+ iη
− 1

h̄
(
ωp + ω

(1)
2,q + ω

(1)
0,k

)− iη

]

+ 6n0c
2
1

∫
d3q

(2π )3
[−C1,k(2A1,q + 2B1,q − 3C1,q) + A1,qB1,k]

[
1

h̄
(
ωp − ω

(1)
1,q − ω

(1)
1,k

)+ iη

− 1

h̄
(
ωp + ω

(1)
1,q + ω

(1)
1,k

)
− iη

⎤
⎦+ 2n0c0c2

5

∫
d3q

(2π )3
[A2,qB0,k + A0,kB2,q − (A2,q + B2,q)C0,k]

×
[

1

h̄
(
ωp − ω

(1)
2,q − ω

(1)
0,k

)+ iη
− 1

h̄
(
ωp + ω

(1)
2,q + ω

(1)
0,k

)− iη

]
+ 4n0c

2
2

25

∫
d3q

(2π )3
C2,qC0,k

×
[

1

h̄
(
ωp − ω

(1)
2,q − ω

(1)
0,k

)+ iη
− 1

h̄
(
ωp + ω

(1)
2,q + ω

(1)
0,k

)− iη

]
+ c0

∫
d3q

(2π )3

(
−C2,q + c2n0

10ε0
q

)

+ 2c1

∫
d3q

(2π )3

[
−C1,q + (3c1 − c2/5)n0

2ε0
q

]
− 4c1

∫
d3q

(2π )3

(
−C2,q + c2n0

10ε0
q

)
+ c2

5

∫
d3q

(2π )3

×
{

2

(
−C2,q + c2n0

10ε0
q

)
− 2

[
−C1,q + (3c1 − c2/5)n0

2ε0
q

]
+
[
−C0,q + (c0 + c2/5)n0

2ε0
q

]}
, (D23)

and

μ(2) = 2c0

∫
d3q

(2π )3

(
B2,q + B1,q + B0,q

)+ 6c1

∫
d3q

(2π )3
B1,q + 2c2

5

∫
d3q

(2π )3
B0,q

+ c0

∫
d3q

(2π )3

[
−C0,q + (c0 + c2/5)n0

2ε0
q

]
+ 6c1

∫
d3q

(2π )3

[
−C1,q + (3c1 − c2/5)n0

2ε0
q

]

+ c2

5

∫
d3q

(2π )3

{
2

[
−C2,q + c2n0

10ε0
q

]
− 2

[
−C1,q + (3c1 − c2/5)n0

2ε0
q

]
+
[
−C0,q + (c0 + c2/5)n0

2ε0
q

]}
. (D24)

To find the zero-momentum energy of the excitation mode, we evaluate the above self-energies at p = 0. Furthermore, since
ω±2,p=0 � |c1|n0 near the phase boundary, we make Taylor series expansions of �

11(2)
22 , �

22(2)
22 , and �

12(2)
2,−2 in powers of

ω±2,p=0/(|c1|n0) and ignore the quadratic and higher-order terms as shown in Eqs. (23)–(25). Then, the second-order self-energies
and chemical potential can be evaluated straightforwardly, and we obtain

h̄4�
11(2)
22 (ω±2,p=0,p = 0)

M3/2

= n0c
2
0

π2

√
n0c̃0 + 12n0c

2
1

π2

√
3n0c̃1 + n0c0

π2

√
n0c̃

3
2 + 2n0c0

3π2

√
n0(3c̃1)3 + n0c0

3π2

√
n0c̃

3
0

+ 2n0c1

3π2

√
n0(3c̃1)3 + 4n0c1

3π2

√
n0c̃

3
2 + 2n0c2

15π2

√
n0c̃

3
2 + 3

√
2n0c

2
1

π2

[√
6n0c̃1 − 1√

6n0c̃1
h̄ω±2,p=0

]

+ n0c
2
0√

2π2

{√
10n

1/2
0 [5c0

√
5c̃0 + c2(

√
5c̃0 + √

5c̃2)]

75c0 + 30c2
−

√
10[5c0

√
5c̃0 + 4c2

√
5c̃0 + 2(5c̃2)3/2]

3(5c0 + 2c2)2n
1/2
0

h̄ω±2,p=0

}

+ 2
√

2n0c0c2

5π2

{
c2n

1/2
0√

10(
√

5c̃2 + √
5c̃0)

+
(

c̃2
[
(
√

c̃0 + √
c̃2)2 ln

(
c̃0
c̃2

)− 4(c̃0 − c̃2)
]

4
√

2(
√

c̃0 + √
c̃2)(c̃0 − c̃2)2n0

− n0c̃2
√

c̃0√
c̃0 + √

c̃2
α
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h̄ω±2,p=0

}

+ 2
√

2n0c
2
2

25π2
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−

√
n0(

√
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c̃2)2

3
√

2(
√

c̃0 + √
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− c̃0c̃2n
2
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[

3(
√

c̃0 + √
c̃2)(c̃0 + c̃2) ln

(
c̃0
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(
2c̃

3/2
0 − 3c̃0c̃

1/2 + 3c̃
1/2
0 c̃2 − 2c̃

3/2
2

)
12

√
2(c̃0 − c̃2)2n

1/2
0
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√
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√
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c̃0 + √
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α
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h̄ω±2,p=0

}
,

(D25)
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where c̃0 ≡ c0 + c2/5,c̃1 ≡ c1 − c2/15,c̃2 ≡ −c2/5, and

α ≡ 1

n
3/2
0

∫ ∞

0
dx

1

2x
√

(x + 2c̃0)(x + 2c̃2)(
√

x + 2c̃0 + √
x + 2c̃2)

. (D26)

Note that α is infrared divergent, but it does not affect the final results, as shown below. Similarly, we have

h̄4�
12(2)
2,−2 (ω±2,p=0,p = 0)

M3/2
= 3

√
2n0c

2
1

π2

√
6c̃1n0 + n

3/2
0 c2

0c2

5π2(
√

c̃2 + √
c̃0)

− c0(c̃2n0)3/2

π2
+ 2c1(3c̃1n0)3/2

π2
+ 4c1(c̃2n0)3/2

π2

+ c2

5π2
[−2(c̃2n0)3/2 − 2(3c̃1n0)3/2 + (c̃0n0)3/2] + 2

√
2n3

0c
2
2 c̃2c̃0

25π2
α

+ 2c0c2

5π2

[10c0n0
√

c̃0n0 + 5c2n0
√

c̃0n0 + (5c̃2n0)3/2]

15c0 + 6c2
, (D27)

and

h̄3μ(2)

M3/2
= 2c0n0

3π2

[√
n0c̃

3
2 +

√
n0(3c̃1)3 +

√
n0c̃

3
0

]+ 2c1n0

π2

√
n0(3c̃1)3 + 2c2n0

15π2

√
n0c̃

3
0 + c0(c̃0n0)3/2

π2
+ 6c1(3c̃1n0)3/2

π2

+ c2

5π2
[−2(c̃2n0)3/2 − 2(3c̃1n0)3/2 + (c̃0n0)3/2]. (D28)

Around the UN-cyclic phase boundary [see Eq. (4)], where
c2 < 0,c1 > 0,|c2| � c1, we can make expansions in powers
of |c2|/c1 and ignore the quadratic and higher-order terms.
Then, �

11(2)
2,2 , �

22(2)
2,2 , and �

12(2)
2,−2 reduce to

h̄�
11(2)
2,2 (ω±2,p=0,p = 0) = A + Bh̄ω±2,p=0, (D29)

h̄�
22(2)
2,2 (ω±2,p=0,p = 0) = A − Bh̄ω±2,p=0, (D30)

h̄�
12(2)
2,−2 (ω±2,p=0,p = 0) = C, (D31)

with

A − μ(2)

(Mn0)3/2
� −4

√
3c

5/2
1

π2h̄3 +
(
42

√
3c

3/2
1 − 10c

3/2
0

)
c2

15π2h̄3 , (D32)

B

M3/2n
1/2
0

� −
(
c

3/2
0 + 3

√
3c

3/2
1

)
3π2h̄3 −

(
c

1/2
0 + √

3c
1/2
1

)
c2

30π2h̄3 .

(D33)

C

(Mn0)3/2
� 12

√
3c

5/2
1

π2h̄3 +
(
10c

3/2
0 − 30

√
3c

3/2
1

)
c2

15π2h̄3 .

(D34)

Thus, we have derived Eqs. (28)–(30).
UN-BN phase transition. The degenerate mF = ±2 excita-

tion modes of the UN phase also cause the UN-BN phase

transition at c1 = 0,c2 < 0. By using Eqs. (D16), (D23),
and (D24) for �

11(2)
2,2 , �

12(2)
2,−2 , and μ(2), respectively, we obtain

the coefficients A,B,C defined in Eqs. (23)–(25). However,
around the UN-BN phase boundary where c2 < 0,|c2| � |c1|,
we cannot make Taylor series expansions in powers of c2/|c1|
and ignore higher-order terms as for the case of the UN-cyclic
transition. Instead, we have

A − μ(2) + C

(Mn0)3/2
= 1

π2h̄3

(
8
√

3c̃
5/2
1 − 32√

3
c̃

3/2
1 c̃2 + 16

3
c̃1c̃

3/2
2

+ 8√
3
c̃

1/2
1 c̃2

2 − 16

9
c̃

5/2
2

)
, (D35)

where c̃1,c̃2 > 0 are defined below Eq. (D25). On the other
hand, the other term in Eq. (27) is calculated to be

−2c2n0

5
+ A − μ(2) − C

= −2c2n0

5
+ O

[
c̃1c̃

3/2
1 (Mn0)3/2/h̄3

]
+O

[
c̃2c

3/2
0 (Mn0)3/2/h̄3

]
. (D36)

Here, the last two terms in Eq. (D36) are smaller than the first
term by a factor

√
na3 � 1 and are thus negligible. Thus, we

have derived Eqs. (36) and (37).
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