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Test of the He-McKellar-Wilkens topological phase by atom interferometry.
II. The experiment and its results
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In this paper, we describe an experimental test of the He-McKellar-Wilkens (HMW) topological phase with
our lithium atom interferometer. The expected value of the HMW phase shift in our experiment is small and its
measurement was difficult because of stray phase shifts due to small experimental defects. We start by describing
our setup and we characterize the effects of the electric and magnetic fields needed to observe the HMW effect.
Then we develop a model of our interferometer signals including all the defects we have identified. After various
tests of this model, we use it to suppress the majority of the stray phase shifts. We thus obtain a series of
measurements of the HMW phase: the results are 31% larger than expected and this discrepancy is probably due
to some limitations of our model.
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I. INTRODUCTION

The topological He-McKellar-Wilkens (HMW) phase in-
troduced in 1993 by He and McKellar [1] and in 1994 by
Wilkens [2] has not been tested since its theoretical discovery.
We have recently published such a test [3] using our lithium
atom interferometer. In the preceding paper [4] quoted here
as HMWI, we have recalled the theory of this topological
phase and its relations with the Aharonov-Bohm [5] and
Aharonov-Casher phases [6]. We have also discussed the
effects of phase dispersion on interferometer signals and we
have considered in detail the phase shifts induced by electric
and magnetic fields, namely, the dynamical phase shifts due to
the Stark and Zeeman Hamiltonians and the topological phase
shift due to the Aharonov-Casher effect. The present paper
is devoted to a detailed presentation of the experiment, of its
results, and of the analysis of the stray effects which have
complicated the test of the HMW phase.

In the following sections, we first describe the experiment,
the data recording procedure, and the interferometer signals
(Sec. II). Then we discuss the effects of the electric fields
(Sec. III) and of the magnetic fields (Sec. IV). Section V
presents the data set for the HMW phase measurement and
the raw results. The model describing the stray effects due to
phase shift dispersion, introduced in HMWI and developed
in the Appendix, is tested thanks to numerous and sensitive
measurements of the fringe phase and visibility (Sec. VI).
Because of this model, we have been able to reject most of
the stray effects and to measure the HMW phase, as detailed
in Sec. VII. A conclusion (Sec. VIII) summarizes what we
have learnt from this experiment, recalls the open questions
(in particular a phase shift presently not understood), and
discusses how to improve this experiment.

*jacques.vigue@irsamc.ups-tlse.fr

II. THE EXPERIMENT: THE SETUP AND THE DATA
RECORDING PROCEDURE

In this part, we briefly describe our atom interferometer
and, with greater detail, the interaction region used to observe
the HMW effect. We also describe the compensator coil used
to produce a magnetic field gradient opposite to the one due
to the HMW interaction region. Finally, we explain our data
recording procedure which rejects the interferometer phase
drifts.

A. Our atom interferometer

Our separated-arm atom interferometer (see Fig. 1) has
been previously described [7–9]. Here, we present only its
main features and some recent improvements. The atomic
source is a supersonic beam of lithium seeded in argon,
with a mean velocity vm ≈ 1065 m/s. Once collimated by
two 18-μm-wide slits, this beam has a transverse velocity
distribution with a width comparable to the recoil velocity of
lithium, vr ≈ 9 cm/s. This beam is then diffracted by three
quasiresonant laser standing waves in the Bragg regime: the
present experiment uses first-order diffraction, with only two
diffracted beams of orders 0 and +1 (or −1). We thus get a
Mach-Zehnder atom interferometer with two output beams
carrying complementary interference signals. One output
beam is selected by a slit and its intensity I , measured by
a surface ionization detector, is given by

I = I0[1 + V cos(ϕd + ϕp)]. (1)

I0 is the mean intensity and V the fringe visibility. The phase
is the sum of the phase ϕp due to perturbations and the phase
ϕd due to the diffraction process: ϕd = 2kL(x1 − 2x2 + x3),
where kL is the laser wave vector and xi the x position of
mirror Mi . The choice of the laser frequency, at about 2 GHz
on the blue side of the 2S1/2-2P3/2 transition of 7Li, and the
92.5% natural abundance of 7Li ensure that the interferometer
signal is almost purely due to this isotope [7,10]. To record
interference fringes, we sweep the phase ϕd by varying x3 with
a piezoelectric actuator. We measure the variations of x3 with
a Michelson interferometer [9]. Intense signals, with a mean
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FIG. 1. (Color online) Schematic top views (not to scale) of our
atom interferometer (a) and the interaction region for the observation
of the HMW phase (b). Our atom interferometer is a Mach-Zehnder
interferometer, with two entrances A and B (only A is used) and
two exits C and D (C is detected). An atomic beam (dotted blue
lines) entering by A is diffracted by three quasiresonant laser
standing waves produced by the mirrors Mi . The largest distance
between interferometer arms, about 100 μm, occurs just before
the second laser standing wave, where we introduce the interaction
region. The opposite electric fields necessary for the observation of
the HMW phase are horizontal. They are produced by two plane
capacitors (high-voltage electrodes in red; grounded electrodes in
black). The septum is a thin common electrode located between
the two interferometer arms represented by dotted blue lines. Two
rectangular coils (represented by the orange rectangle) produce the
vertical magnetic field.

intensity I0 ≈ 60 000 atoms/s and a high fringe visibility V ≈
70% provide a large phase sensitivity, with a value �ϕmin ≈
25 mrad/

√
Hz achieved in practice.

B. The HMW interaction region

A HMW phase is induced when an atom propagates
in crossed electric and magnetic fields, both transverse
to the atom velocity. Our experimental arrangement is inspired
by the ideas of Wei et al. [11], the electric fields are
horizontal, in the interferometer plane, and opposite on the
two interferometer arms, while the common magnetic field is
vertical and as homogeneous as possible.

The electric fields are produced by a double capacitor with
a septum [12] located between the interferometer arms (see
Fig. 1). Each of the two capacitors is similar to the one we used
for the measurement of the electric polarizability of lithium
[13]. The outer electrodes are made of polished 5-mm-thick
glass plates with evaporated aluminum electrodes. A central
high-voltage electrode of length 2a ≈ 48 mm is separated from
two 5-mm-long grounded guard electrodes by 1-mm-wide
gaps: these gaps withstand a voltage larger than 1 kV. The
septum is a 30-μm-thick aluminum foil. The capacitors are
assembled by gluing together the electrodes and the glass
spacers (thickness h ≈ 1.10 mm) with Epotex 301 glue (Epoxy
Technologies). The septum must remain well stretched, even if
the capacitor temperature varies. We have acquired the ability
to glue a prestretched septum on the electrode-spacer assembly
heated near 65 ◦C and, due to differential thermal expansion,

FIG. 2. (Color online) Calculated components Ex (dashed line)
and By (full line) as a function of z in the interaction region. For the
electric field, the plotted quantity is Ex/E0, where E0 = V/h is the
field of an infinite plane capacitor, with a spacing h and an applied
voltage V . For the magnetic field, the plotted quantity By/I , where
I is the coil current, is in units of 10−4 T/A.

the septum is fully stretched when the assembly has cooled
down [14]. The capacitors are as symmetric as possible and
they are powered by slightly different voltages issuing from
the same power supply, with an adjustable voltage ratio thanks
to potentiometers. This arrangement minimizes Stark phase
noise due to voltage fluctuations of the power supply. Figure 2
presents the calculated z variation of the electric field Ex

component, which is relevant for the HMW phase. Ex is
calculated at the septum surface whereas the atom-septum
mean distance is near 40 μm, but the associated correction is
very small [13].

The capacitor assembly is inserted in a brass support on
which we have coiled 1.5-mm-diameter enameled copper
wires to produce the vertical magnetic field needed for the
HMW phase. We use two rectangular coils, located below
and above the interferometer plane, each coil being made of
two layers and each layer of seven windings, glued together
and to the brass support with a high-thermal-conductivity glue
(Stycast 2850 FT). A 2-mm-internal-diameter copper pipe is
also glued on the brass support at mid-distance between the
two coils and with a 6 cm3/s flow of tap water (a low flow
rate chosen to minimize vibrations), the temperature rise is
about 0.5 K/W. Usually, we apply a current I in the coils 50%
of the time so that the maximum current I = 25 A induces
a 20 W mean Joule power and a temperature rise near 10 K.
In Fig. 2, we have plotted the calculated z variation of the
magnetic field By component which is the one relevant for the
HMW phase. As discussed in HMWI, a Zeeman phase shift
appears if the magnetic field modulus B is different on the two
interferometer arms, and we have minimized this difference by
careful coiling and design of the geometry of the connection
wires.

The HMW interaction region is placed just ahead of the
second laser standing wave, where the distance between the
center of the interferometer arms is largest, close to 100 μm.
In order not to induce vibrations of the standing-wave mirrors,
the interaction region is suspended from the top of the
vacuum chamber. Initial adjustments of the rotation around
the horizontal z axis and the vertical y axis are performed
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with optical methods. Rotation around the y axis as well as
translation in the x direction can be operated under vacuum,
and the ultimate tunings are done with the atom interferometer
running. After optimization of the interferometer signal, the
mean intensity I0 and the fringe visibility V are not modified
by the presence of the septum between the two arms.

The magnetic field produced by the HMW coil was mea-
sured with a three-dimensional Hall probe and compared to
the field calculations, showing a good agreement. Concerning
the electric field, calibration measurements using the atom
interferometer (described in Sec. III A) yield an accurate
knowledge of each capacitor geometry needed for electric field
calculations. With the electric and magnetic field components
Ex and By as functions of z, we can calculate the integral∫

ExBydz and thanks to the very accurate knowledge of the
electric polarizability of the lithium atom [13,16], we can
predict the slope of the HMW phase as a function of the
product V I :

ϕHMW(V,I )/(V I ) = −(1.28 ± 0.03) × 10−6 rad/V A, (2)

where the error bar is due to the uncertainty on the geometrical
parameters of the capacitors and of the HMW coil.

C. Compensator coil

In spite of our efforts, the magnetic field of the HMW coil is
slightly different on the two interferometer arms, with a mean
relative difference |�B|/B ≈ 10−4. This difference is most
probably due to a bad centering of the septum in the HMW
coil, with a distance between the coil symmetry plane and the
septum of the order of 250 μm. For I = 25 A, the induced
Zeeman phase shift is equal to ϕZ(F,mF ) ≈ ±11 rad for the
F = 2,mF = ±2 sublevels. We compensate these phase shifts
using a supplementary coil producing an opposite magnetic
field gradient along the x axis. This so-called compensator
coil is made of nine turns of copper wire on a 30-mm-diameter
aluminum cylinder. It is located at mid-distance between the
first and second laser standing waves, with a mean distance
between the compensator coil and the interferometer arms near
10 mm. This coil is cooled by conduction through its support
and the temperature rise limits its current IC to 5 A, if applied
only 50% of the time. Then the magnetic field experienced by
the atoms is below 2 × 10−3 T, a range for which the Zeeman
effect is linear.

D. Data recording and signals

In our previous experiments [9,10,13,17], we deduced
the effect of a perturbation by comparing fringe signals
successively recorded with and without this perturbation. The
phase measured in the absence of perturbation, which should
be constant, drifts with time, typically by several tens of
milliradians over the few minutes needed for recording a
high-quality fringe signal. These drifts are not linear in time
and they are due to minute distortions of the rail supporting
the standing-wave mirrors. Their magnitude is due to the
high sensitivity of the diffraction phase ϕd to the mirror
positions, with dϕd/dxi ≈ +20 rad/μm for M1 or M3 and
−40 rad/μm for M2. They were the main limitation of our
phase-shift measurements. For the present experiment, we
have almost canceled the sensitivity to these drifts by applying

FIG. 3. (Color online) Recorded data with six (V,I ) configura-
tions during a single fringe scan: the number of detected atoms per
second (the unit is 104 detected atoms/s and the counting period is
0.1 s) is plotted as a function of the phase of the optical Michelson
interferometer which directly maps the position x3 of mirror M3. The
signals corresponding to different field configurations are plotted
with different symbols: black squares for (0,0), red bullets for (V,0),
blue full triangles for (V,I ), open violet squares for (0,I ), open blue
triangles for (−V,I ), and open red circles for (−V,0). The top graph
represents the signal as it is recorded and the signal corresponding to
each one of the six (V,I ) configurations is plotted separately below
with its best fit.

several field configurations during each fringe recording: a
field configuration is defined by the (V,I ) values, where
V is the capacitor mean voltage and I the current in the
HMW coil (this current is accompanied by a current IC in
the compensator coil, as explained below). We have used
either four configurations (0,0), (V,0), (V,I ), and (0,I ) or
six configurations, by adding (−V,I ) and (−V,0) to this list.
A typical fringe recording with six configurations is shown
in Fig. 3. A fit of the different fringe signal systems is made
using Eq. (1), where the fringe systems of all configurations
share the same value of the diffraction phase ϕd . We thus get the
mean intensity I0(V,I ), the fringe phase ϕ(V,I ), and the fringe
visibility V(V,I ) for each field configuration. In this way, we
deduce the effects of the application of the electromagnetic
field corresponding to each configuration. I0 is independent of
the field configuration, but the visibility and the phase are both
modified. We define a relative visibility and a fringe phase
shift for each field configuration by

VE(V ) = V(V,0)/V(0,0),

ϕE(V ) = ϕ(V,0) − ϕ(0,0),

VB(I ) = V(0,I )/V(0,0),
(3)

ϕB(I ) = ϕ(0,I ) − ϕ(0,0),

VEB(V,I ) = VE+B(V,I )

VE(V )VB(I )
= V(V,I )V(0,0)

V(V,0)V(0,I )
,

ϕEB(V,I ) = ϕE+B(V,I ) − ϕE(V ) − ϕB(I )

= ϕ(V,I ) − ϕ(V,0) − ϕ(0,I ) + ϕ(0,0).
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VE(V ) and ϕE(V ) are the fringe relative visibility and phase
shift with the electric field only; VB(I ) and ϕB(I ) are the
fringe relative visibility and phase shift with the magnetic
field only; and VE+B(V,I ) and ϕE+B(V,I ) are the fringe
relative visibility and phase shift with the electric and magnetic
fields applied simultaneously. A fringe scan such as shown
in Fig. 3 lasts about 20 s, a duration sufficiently small to
ensure quasilinearity of the interferometer phase drift with
time [an exactly linear phase drift alters only ϕd and leaves
the results of Eqs. (3) unchanged]. The error bars are about
2% on the relative visibility and 30 mrad on the induced phase
shifts. We repeat about 100 successive fringe scans, taking care
that the fringe scan period and the field configuration period
are not commensurate, in order to avoid any possible bias in
the fits. The error bars on the averages of such a scan series
are near 0.2% for the relative visibility and near 3 mrad for
the phase shifts, small enough to detect fine perturbations of
the interference fringe signals and to understand systematic
effects.

III. EFFECTS OF THE ELECTRIC FIELDS ON THE
FRINGE PHASE AND VISIBILITY

A. Experimental study of polarizability phase shifts

During calibration measurements, we applied a voltage
V to one capacitor only, the other one being grounded.
Figure 4 presents typical results for the fringe visibility Vr =
V(V )/V(0) and the induced phase shift ϕS(V ) as a function
of V 2. These measurements were fitted using Eqs. (19), (20),
and (31) of HMWI, which yields the value of the parallel
speed ratio S‖ = 9.25 ± 0.08 and the values of the Stark
phase shifts induced by each capacitor for the mean atom
velocity: ϕu/V 2 = (−4.830 ± 0.005) rad/V2 and ϕl/V 2 =
(4.760 ± 0.007) rad/V2. Using the very accurate theoretical
value [16] of the lithium atom electric polarizability α, we may
deduce the geometrical parameter Leff/h2 for both capacitors
(Leff is the capacitor effective length and h the plate spacing
[13]). The effective length is the same for both capacitors
with a good accuracy, Leff ≈ 48 ± 0.5 mm, so that these
experiments provide measurements of the mean values of the

FIG. 4. (Color online) The relative visibility Vr (left scale, black
squares and line) and the fringe phase shift ϕS (rad) (right scale, blue
bullets and line) are plotted as a function of V 2, where V is the voltage
applied to one capacitor only. The points are experimental and the
curves are their best fits.

FIG. 5. (Color online) Fringe phase shifts induced by electric
fields applied to both capacitors: the measured phase shift ϕE(V ) is
plotted as a function of V 2 where V is the mean of the voltages Vu

and Vl applied to the two capacitors. The points are experimental and
the straight line is the best fit.

capacitor spacings hu = 1.101 ± 0.006 mm and hl = 1.109 ±
0.006 mm.

B. Experiments with both electric fields on:
Phase measurements

When we apply electric fields to both capacitors, with the
voltage ratio tuned to cancel the Stark phase shift ϕE(V ),
we observe a residual phase shift due to imperfect tuning:
ϕE(V ) is small and approximately proportional to V 2, but
with large fluctuations of the measured value (see Fig. 5). We
have observed that ϕE(V ) drifts with time when the interaction
region temperature varies: this behavior can be explained by
a delay of the expansion of one capacitor with respect to the
other one, a delay due to the low thermal conductivity of glass.
For V = 800 V, the Stark phase induced on each interferometer
arm can reach ϕS,u ≈ ϕS,l ≈ 307 rad. Then a typical deviation
for ϕE(V ) of 0.05 rad from its mean value corresponds to
a 1.7 × 10−4 relative variation of the geometrical parameter
Leff/h2 of one capacitor with respect to the other one. This
variation is somewhat larger than expected for a simple thermal
expansion effect with a temperature variation smaller than
10 K. The conclusion is that, because of dispersion and drift,
the residual Stark phase shift ϕE(V ) does not carry much useful
information.

In the experiments with six field configurations, we can
measure the difference of the Stark phase shifts for opposite
V values, with an error bar close to 1 mrad. Figure 6 plots
the quantity [ϕE(|V |) − ϕE(−|V |)] /2 as a function of |V |.
Equation (B4) of HMWI predicts that the only V -odd term in
〈ϕS〉 is the contact potential phase 〈ϕSc〉 so that

[ϕE(|V |) − ϕE(−|V |)] /2 = 2ϕ0
〈V̄c,u〉 − 〈V̄c,l〉

V
. (4)

We have fitted the measured values of [ϕE(|V |) −
ϕE(−|V |)]/2 by a function a + b|V |. The fitted a value,
a = 10 ± 1 mrad, is not explained by Eq. (4) but its presence
might be due to the use of different power supplies, one per
polarity, to produce opposite voltages. The fitted slope b =
(−6 ± 2) × 10−3 mrad/V can be explained by a difference of
the mean contact potentials (〈V̄c,u〉 − 〈V̄c,l〉) = 6 ± 2 mV: we
may conclude that contact potentials play a very minor role
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FIG. 6. (Color online) Fringe phase shifts induced by elec-
tric fields applied to both capacitors: the difference quantity
[ϕE(|V |) − ϕE(−|V |)] /2 is plotted as a function of |V |. The points
are experimental and the straight line is the best linear fit.

in our experiment and this idea will be supported by further
results.

C. Experiments with both electric fields on:
Visibility measurements

We now discuss the measurements of the relative visibility
VE(V ). The residual Stark phase shift ϕE is sufficiently
small to neglect any effect of the velocity dispersion on the
visibility. The relative visibility was highly dependent on the
standing-wave mirrors’ alignment. Therefore the collected
data for VE(V ) were partitioned into seven different sets:
within a given set, this interferometer alignment is identical
for all the data points. Fig. 7 presents two of these data sets. All
the sets exhibit different behaviors, but are well independently
fitted using the following equation:

VE(V ) = 1 −
∑
i=1,4

kV iV
i. (5)

As illustrated by Fig. 7, the relative visibility can become
larger than 1, a result apparently surprising. This happens
when phase dispersions which exist when no interaction is
applied are partially canceled by the phase dispersion due to

FIG. 7. (Color online) Fringe relative visibility VE(V ) as a
function of the applied mean voltage V : the points are experimental,
with different symbols (red squares and blue bullets) for two different
alignments of the atom interferometer. The data points are fitted by
Eq. (5) (red full line and blue dotted line).

the application of the electric fields. The preexisting phase
dispersions originate from the Zeeman phase shifts due to
the inhomogeneity of the laboratory magnetic field when
I = IC = 0 and from the diffraction phase which presents
a spatial dispersion because of an imperfect alignment of
the laser standing-wave mirrors Mi . The application of the
electric fields induces an Aharonov-Casher phase shift and a
Stark phase shift: the Aharonov-Casher phase shift is dispersed
because of its dependence on the F,mF sublevel, and the Stark
phase shift is dispersed because of capacitor defects. We must
describe all these effects, in order to explain the behavior of
VE(V ). Assuming a balanced hyperfine population, i.e., χ = 0
(χ is defined in Appendix A of HMWI), we use Eqs. (23), (42),
(46), and (47) of HMWI to evaluate V(0,0):

V(0,0)

V0
=

[
1 − 〈(δϕd )2〉

2

] VB0

V0
with

(6)VB0

V0
= 1 + cos (J0) + 2 cos (J0/2)

4
.

δϕd (y) is the dispersion of the diffraction phase and VB0 is
the visibility modified by the inhomogeneity of the laboratory
magnetic field. Because of these two effects, the observed visi-
bilityV(0,0) is smaller than its optimum valueV0. With electric
fields on both arms, the Stark phase shift ϕS(y) is a function of
y, and the Aharonov-Casher phase shift ϕAC (F,mF ) is given by
ϕAC(2,mF ) = −ϕAC(1,mF ) = (mF /2)ϕAC(2,2) (this formula
is valid because the Zeeman effect is linear in the laboratory
field). Using Eqs. (A9), (A15), and (A16), we deduce the fringe
visibility V(V,0):

V(V,0)

V0
= VB0

[
1 − 〈(δϕd + δϕS)2〉

2

]

− ϕAC(2,2)

4

[
sin(J0) + sin

(
J0

2

)]
. (7)

The last term of the right-hand side is a first-order Taylor
expansion of the trigonometric functions of ϕAC , valid because
|ϕAC | � 70 mrad in the present experiment. We get the relative
visibility VE(V ) = V(V,0)/V(0,0):

VE(V ) = 1 − 〈(δϕS)2 + 2δϕdδϕS〉
2

− ϕAC(2,2)

4VB0

[
sin(J0) + sin

(
J0

2

)]
. (8)

The dispersion δϕS of the Stark phase shift is given by
δϕS = δϕS,g + δϕS,c with the geometrical defect term δϕS,g ∝
V 2 and the contact potential term δϕS,c ∝ V . ϕAC(2,2) ∝ V

while δϕd and J0 are independent of V . We thus deduce the
values of the kV i coefficients:

kV 1 = 〈δϕdδϕS,c〉 + ϕAC(2,2)

4VB0

[
sin(J0) + sin

(
J0

2

)]
,

kV 2 = 〈(δϕS,c)2/2〉 + 〈δϕdδϕS,g〉,
(9)

kV 3 = 〈δϕS,gδϕS,c〉,
kV 4 = 〈(δϕS,g)2/2〉.

Discussed below is a comparison of Eqs. (9) with the results
of fits of VE(V ) for the seven available data sets: at the same
time, we test the validity of our description of experimental
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defects and we get some insights into the nature of the
systematic effects. All kV 4 values are positive and compatible
with their mean, kV 4 = (6.0 ± 0.5) × 10−14 V−4. This is in
agreement with Eqs. (9) which predicts that kV 4 is positive and
depends solely on the geometrical defects of the capacitors and
not of the interferometer alignment. From this result, we may
estimate the geometrical defects of the capacitors if we assume
that the spacing difference �h = hu − hl is the main defect
and that it varies linearly with y. We then find that �h varies
by about 1.4 μm over the y range sampled by the atoms (about
2 mm). This �h value appears to be quite small for capacitors
assembled by gluing parts together but, when V = 800 V,
this small defect is sufficient to induce a total dispersion of
the Stark phase shift along the atomic beam height equal to
0.8 rad.

All kV 3 values (excepted one) are compatible with 0, with a
very small mean value kV 3 = (0.04 ± 1.7) × 10−12 V−3, cor-
responding to 〈δϕS,gδϕS,c〉 < 10−6 rad2 for V = 800 V. The
dispersions δϕS,g and δϕS,c are not correlated, in agreement
with the idea that contact potentials fluctuate on small scales
and that geometrical defects are smooth functions of y.

Each kV 2 value has a small error bar but kV 2 varies strongly
from one set of data to the next, covering the range from
−5 × 10−8 to +13 × 10−8 V−2. These large variations prove
that the dominant contribution comes from the interferometer
alignment, i.e., from the 〈δϕdδϕS,g〉 term. When δϕd and
δϕS,g have opposite variations, the electric fields increase the
visibility, as observed in Fig. 7.

All kV 1 values are compatible with their mean kV 1 =
(1.40 ± 0.07) × 10−5 V−1. The first term 〈δϕdδϕS,c〉, which
involves the contact potential term, is expected to be very
small for the same reasons which explain the weakness of
kV 3 and, if this term is not negligible, kV 1 should vary
with the interferometer alignment like kV 2. The second term,
which is due to the Aharonov-Casher phase shift in the
laboratory magnetic field, must be dominant. Assuming that
the laboratory magnetic field B0 is constant over the capacitor
length and that the electric fields are equal to E0 = V/h over a
length Leff ≈ 48 mm, we estimate the Aharonov-Casher phase
shift given in Eqs. (2) and (49) of HMWI:

ϕAC(2,2) = 2μBE0Leff

h̄c2
y · u0, (10)

where u0 = B0/B0 points in the direction of B0. The mea-
surements presented in the next section give access to J0 ≈
−0.61 rad and to VB0 ≈ 0.93. We thus deduce y · u0 ≈ −0.7,
i.e., B0 points downward, at about 45◦ from the vertical, in
agreement with direct measurements of the local laboratory
field.

IV. EFFECTS OF THE MAGNETIC FIELD ON THE
FRINGE PHASE AND VISIBILITY

A. Experiments with the compensator coil only

We have measured the relative visibility VB(IC) and the
phase shift ϕB(IC) of the interference fringes as a function
of the compensator coil current IC . The results are plotted in
Fig. 8 with fits based on Eqs. (42) and (45) of HMWI, with
J1 = AJ1,C |IC − I0,C | + J0,C and assuming balanced sublevel
populations (see Appendix A of HMWI).

FIG. 8. Relative visibility (upper panel) and phase shift (lower
panel) as functions of the compensator current IC (A). The
points are experimental and the curves represent their best fit,
with AJ1,C = 1.52 ± 0.02 rad/A, I0,C = 0.09 ± 0.02 A, and J0,C =
−0.63 ± 0.03 rad. The minor deviations which appear when IC >

4 A are probably due to the arbitrary assumption of balanced sublevel
populations (χ = 0) for this particular example.

B. Experiments with the HMW coil only

The relative visibility VB(I ) and the phase shift ϕB(I ) were
measured as functions of the HMW coil current I . Some of
the results are plotted in Fig. 9. Equation (41) of HMWI gives
ϕZ(F,mF ) as a function of J1, J2, and J3, and we use J1 =
AJ1|I − I0| + J0,I , J2 = AJ2I

2, and J3 = AJ3|I |3 to fit the
data. The hyperfine population imbalance parameter χ is also
fitted, with a different value for each data set corresponding to
a slightly different laser frequency.

C. Experiments with both coils and global fit

With a HMW coil current I and a compensator coil current
IC , optimum compensation of the linear part of the Zeeman
phase shift is obtained with IC ≈ |I |/3. When |I | > 15 A,
it is impossible to use IC > 5 because the compensator coil

FIG. 9. (Color online) Real and imaginary parts of the complex
fringe visibility as functions of the HMW coil current I [note the
expanded scale for Im(VB (I )]. The points are experimental and the
curves are the results of best fits, with three different χ values: χ =
0.077 for I = 0–4 A; χ = −0.014 for I = 5–10 A; χ = −0.062
for I = 11–15 A. When these experiments were done, we had not
understood that the laser frequency must be tightly controlled in
order to keep χ very small and this explains why large χ values are
observed. We get AJ1 = −0.46 ± 0.02 rad/A, AJ2 = (−110 ± 8) ×
10−4 rad/A2, AJ3 = (−20 ± 4) × 10−5 rad/A3, I0 = 0.32 ± 0.05 A,
and J0,I = −0.55 ± 0.13 rad.

043628-6



TEST OF THE He- . . . . II. THE EXPERIMENT . . . PHYSICAL REVIEW A 88, 043628 (2013)

FIG. 10. (Color online) Real part of the complex relative visibility
Re

(
VB

)
(I ) plotted as a function of the HMW current I , the

compensator current IC having the value described in the text. The
points are experimental and the curve is calculated using the global fit
results, Eqs. (11), with the population imbalance parameter fixed at
χ = 0. We have not represented the imaginary part Im(VB )(I ) which
is very small (<0.03) and very sensitive to χ .

temperature rises too much and, thus, we have used IC =
5 A. Figure 10 presents the relative visibility VB as a function
of I . Comparison with Fig. 9 proves the efficiency of the
compensator: when IC = 0,VB(I ) vanishes for I ≈ 6 A while,
with the compensator in operation, it remains larger than 80%
if |I | � 12 A and vanishes only for |I | ≈ 18 A. The revival
observed for I = 23 A, with a relative visibility near −70%
and a phase shift close to π , is explained in Ref. [15].

In order to have the best estimate of the Zeeman phase
shifts induced during the HMW effect measurements, we
performed a single global fit of all the data recorded while
testing the effects of magnetic fields. This data set was
collected during the HMW effect measurements using both
coils (with IC related to I for optimum compensation) as
well as during calibration measurements using either both
coils (with different relative tuning of I and IC) or only
one coil. As introduced in HMWI, the Zeeman phase shifts
are calculated using J1 = AJ1|I − I0| + AJ1,C |IC − I0,C | +
J0,I+C , with J0,I+C = J0 − AJ1|I0| − AJ1,C |I0,C |. The data
set for VB (I,IC) and ϕB (I,IC) includes about 150 data points
which belong to 31 series corresponding to slightly different
laser frequencies, and a different χ value is fitted for each
series. Here are the fitted values of J0, I0, AJi , I0,C , and AJ1,C

provided by this global fit:

J0 = −0.61 ± 0.01 rad,

I0 = 0.31 ± 0.03 A,

AJ1 = −0.430 ± 0.005 rad/A,

AJ2 = (−662 ± 5) × 10−5 rad/A2, (11)

AJ3 = (−180 ± 5) × 10−6 rad/A3,

I0,C = (22 ± 9) × 10−3 A,

AJ1,C = 1.43 ± 0.015 rad/A.

V. DATA SET FOR THE HMW PHASE MEASUREMENT
AND RAW RESULTS

Figure 11 presents the data set collected for the HMW phase
measurement. As ϕHMW is very small and proportional to the

FIG. 11. Data set collected for the measurement of the HMW
phase. Each run is represented in the I ,V plane by a triangle (a
bullet) for a four-field (six-field) experiment.

product V I , we have chosen to record data with large values
either of V or of I , so that we have no data point near the
origin.

The measured values of the phase shift ϕEB (V,I ) are plotted
as a function of the product V I in Fig. 12: these results do not
agree with the predicted variations of ϕHMW and we explain
this discrepancy by stray phase shifts which appear when the
electric and magnetic fields are simultaneously applied. The
origins of these stray phases have been explained on general
grounds in HMWI and the detailed calculation is presented
in the Appendix of the present paper. We are going to test
these calculations first on the relative visibility VEB(V,I ) and
afterward on the phase shift ϕEB(V,I ). The various stray
effects differ by their symmetry with respect to the reversal
of the electric and/or magnetic fields and, in order to test
these effects separately, it is necessary to extract the even and
odd parts of these quantities with respect to field reversals by
combining measurements for opposite V or I values. For any
quantity f (V,I ), the mean MXf (V,I ) and the half difference
�Xf (V,I ) for opposite values of V (then X = E) or of I (then

FIG. 12. (Color online) Measured values of ϕEB (V,I ) given by
Eq. (3) as a function of the V I product measured in V A. The (red) full
line represents the expected value of the HMW phase, ϕHMW(V,I ) =
−(1.28 ± 0.03) × 10−6V I rad.
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X = B) are equal to

MEf (V,I ) = [f (V,I ) + f (−V,I )]/2,

�Ef (V,I ) = [f (V,I ) − f (−V,I )]/2,
(12)

MBf (V,I ) = [f (V,I ) + f (V, − I )]/2,

�Bf (V,I ) = [f (V,I ) − f (V, − I )]/2.

Most experiments were done with six field configurations
and they provide simultaneous measurements ofVEB (V,I ) and
ϕEB(V,I ) for opposite voltages, with exactly the same current
I and the same value of the population imbalance parameter
χ : we thus have very sensitive tests of the effects of electric
field reversal.

VI. SOME EXPERIMENTAL TESTS OF THE EFFECTS
OF STRAY PHASES

We are going to test the predictions of the calculations
described in the Appendix of the present paper.

A. Tests involving the fringe visibility

Following Eq. (A13), four combinations of VEV (V,I )
separate the contributions of the four D±,±(V,I ) terms.
However, as shown by Eq. (A18), the quantity VEB also
includes a contribution due to the Aharonov-Casher effect in
the corresponding (V,0) field configuration. It is given by the
term DAC,B0(V )/D0,B0, with a value close to 1.1% for V =
800 V. Because it involves the AC phase, this effect is an odd
function of the voltage V . We eliminate this contribution by
using the measured values of VE(±V ) to calculate �EVE(V ),
from which we deduce a corrected fringe visibility given
by V ′

EB(V,I ) = VEB(V,I )/ [1 − �EVE(V )]. This quantity is
now simply expressed by Eq. (A11) (obviously, this correction
is necessary only when studying V -odd terms).

The variations of MB�EV
′
EB(V,I ) give a test of the∑

D−,+ term. We do not plot these results here because all the
values are very small, in the (−1 to + 5) × 10−3 range, with
error bars near ±2 × 10−3, with one exception, for I = ±19 A
(the visibility is then very low and some approximations of
our calculations of the Appendix are no longer valid). The
variations of �BMEVEB(V,I ) give a test of the

∑
D+,− term.

We do not plot these results here because all the values are also
very small, in the (−2 to + 4) × 10−3 range, with error bars
near ±2 × 10−3. These two results prove that the

∑
D−,+ term

and the
∑

D+,− term are very small, in good agreement with
our calculations, which predict that these terms should vanish
if the contact potential terms are negligible.

Having verified that the D−,+ terms are negligible, the
quantity �EV

′
EB(V,I ) reduces to

∑
D−,−/D0 [see Eq. (A12)].

The leading terms of D−,− given by Eq. (A8) are proportional
to the Aharanov-Casher phase:

�EV
′
EB(V,I ) ≈ −

∑
ϕAC sin(φZ)∑

cos(φZ)
. (13)

Thanks to our knowledge of the Zeeman phases [Eqs. (11)],
we can evaluate all the terms of Eq. (13), and we compare its
prediction to our measurements in Figs. 13 and 14. The good
agreement, obtained without any fitted parameter, proves that
the dominant V -odd effect is due to the AC phase shift, and
confirms the validity of our calculations.

FIG. 13. Plot of �EV
′
EB (V = 800 V,I) as a function of the

current I : the measured data points (squares) are compared to
the result of our model (full line). The visibility, proportional to
D0 = ∑

cos(φZ), vanishes when I ≈ ±18 A indicated by vertical
lines: this induces a divergence of the prediction of our model, which
uses a first-order calculation in D±,±/D0. Our model explains well the
main variations of �EV

′
EB (V,I ), even if some imperfections appear

clearly.

B. Tests involving the fringe phase

We first discuss the combination MB�EϕEB(V,I ) given
by

MB�EϕEB(V,I ) = −
∑

N−,+
D0

. (14)

As N−,+ is nonzero only if the contact potentials are not negli-
gible, we expected this quantity to be negligible. MB�EϕEB

is plotted as a function of I on Fig. 15 and as a function
of V on Fig. 16. These experimental results are surprising:
MB�EϕEB(V,I ) is almost independent of the current I and it
rapidly increases with the voltage V . The measured values are
well fitted as the sum of two terms, one term in V and one in
V 3 (odd powers of V have been chosen because this quantity
is V odd).

Contact potentials can in principle explain nonzero values
of MB�EϕEB (the calculation is made in Ref. [15]), but the
predicted effect depends on the current I with divergences
similar to those visible in Fig. 13, in complete disagreement

FIG. 14. Plot of difference of visibility for opposite V values,
�EV

′
EB (V,I = 19 A), as a function of V . The current value I = 19 A,

chosen close to the cancellation of D0 = ∑
cos(φZ), enhances the

sensitivity of the visibility to the AC phase. The measured values
(squares) are well represented by a linear function of V , as predicted
by our model.
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FIG. 15. Plot of the quantity MB�EϕEB (V,I ) in radians as a
function of the current I for several values of the voltage V applied
to the capacitors. The dotted lines are simply connecting values
measured for the same V values. The vertical line for I ≈ 18 A
indicates the place where the fringe visibility vanishes.

with the measurements plotted in Fig. 15. Moreover, the
observed magnitude ofMB�EϕEB(V,I ) would require values
of contact potentials that are ruled out by the measurements
of VE(V ) and VEB(V,I ) previously presented. This effect
is strange because ϕEB(V,I ) given by Eq. (3) is already a
difference of phase shifts measured with and without the
magnetic field, so that MB�EϕEB(V,I ) must vanish when
the applied magnetic field goes to zero: as a consequence, the
independence of MB�EϕEB(V,I ) from the current I cannot
extend to I → 0. However, if the transition occurs for instance
when the laboratory field and the HMW field are comparable
in magnitudes, it should be observed with a current I of the
order of 0.1 A, a range of I values we have not studied.

We have investigated several possible explanations which
were shown to be unsatisfactory for different reasons: usually,
either the symmetry with respect to V and I reversals or the
order of magnitude of the observed phase are not in agreement
with our observations. Moreover, most attempts cannot explain
why the effect is sensitive to the presence of the magnetic field
but independent of its value in the studied range in Fig. 15.

FIG. 16. Plot of the quantity MB�EϕEB (V,I ) as a function of
the voltage V applied to the capacitors for all the values of the current
I in the HMW coil. The dotted line is a fit with a single V 3 term while
the full line is a fit with a term in V and a term in V 3.

FIG. 17. Plot of the quantity �BMEϕEB (V,I ) as a function of
the product V I : the different symbols represent results for |I | �
12 A or |I | > 12 A.

We will not discuss here these failed explanations, for lack of
space. The origin of this phase shift remains mysterious but
because of its independence with regard to I , it can be easily
eliminated by combining data with opposite I values.

We now discuss the quantity �BMEϕEB(V,I ) which
vanishes if the contact potentials are negligible. If they are
taken into account, this quantity is given by [15]

�BMEϕEB(V,I ) ≈
∑

ϕAC〈δϕS,cδϕZ〉 cos(φZ)∑
cos(φZ)

. (15)

Because of the presence of a contact potential term δϕS,c,
�BMEϕEB(V,I ) is expected to be small, and we have not
included higher-order terms in Eq. (15), because they should
be even smaller. The measured values of �BMEϕEB(V,I )
are plotted in Fig. 17, with different symbols for data points
depending if |I | is smaller or larger than 12 A. When |I | �
12 A, the measured values are very small and compatible with
0: in this range of I values, the Zeeman phases φZ are small
because of the compensator, the systematic effects are weak,
and the approximations done in our model are good. When
|I | > 12 A, the Zeeman phases increase rapidly with |I |, and
several effects decrease the accuracy of our model. First, the
polynomial expansion of the Zeeman phases in powers of the
current I is poorly convergent for some sublevels (see HMWI)
while the systematic effects are very sensitive to the value of the
Zeeman phases. Second, with increasing Zeeman phases, the
systematic effects which involve the dispersion δϕZ increase
(this point is discussed below). Finally, increasing Zeeman
phases induce a rapid decrease of the visibility which cancels
for I ≈ 18 A, and higher-order terms in Ni/D0 or Di/D0 are
no longer negligible.

The tests on the fringe phase presented up to now have
detected stray phase shifts not larger than 35 mrad. We end
this part by considering the quantity MEϕEB , which includes
the largest stray phase shifts. MEϕEB(V,I ) is an even
function of the current I , because we have just shown that
�BMEϕEB(V,I ) = [MEϕEB(V,I ) − MEϕEB(V, − I )] /2
is negligibly small. MEϕEB is given by

MEϕEB(V,I ) = −
∑

N+,+
D0

≈ −
∑〈δϕS,gδϕZ〉 sin(φZ)∑

cos(φZ)
, (16)
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FIG. 18. Plot of the quantity MEϕEB (V,I ) for V = 800 V, as a
function of the current I . The points are measured values, the line is
a best fit for all the measurements of MEϕEB (see discussion). As
for Fig. 13, vertical gray lines indicate cancelation of the visibility.

where we have neglected higher-order terms [see Eq. (A8)].
The measured values of MEϕEB(V,I ) for V = 800 V are
plotted in Fig. 18. The Stark phase dispersion δϕS,g(y) ∝
V 2 has been characterized thanks to the study of VE(V )
(Sec. III C). The evaluation of the variations of δϕZ(y) with
I is done at the expense of a supplementary approximation,
assuming a rectangular profile for the field of the HMW coil
along the atom trajectory (compare Fig. 2). It then becomes
possible to perform a fit of the measured values of MEϕEB

[taking into account the terms neglected in Eq. (16)]. The
result of this fit is also shown in Fig. 18: a good agreement is
found for the behavior of this quantity, and the fitted parameter
values are compatible with the expected dispersion of δϕZ(y)
along the atomic beam height according to the calculations of
the magnetic field. This result confirms the importance of the
spatial dispersion δϕZ(y) of the Zeeman phase shifts and it
proves that the main systematic effects are due to these spatial
phase dispersions.

FIG. 19. (Color online) Measured values of �BϕEB (V,I ) as a
function of the product V I . The data points with |I | � 12 A are
plotted in red as well as their fit represented by a dotted line. The
data points with |I | > 12 A are plotted in black as well as their fit
represented by a dashed line. The expected dependence of ϕHMW(V,I )
on the V I product is represented by a black full line.

C. Conclusion concerning systematic effects

Here are the main results of our study of these effects:
(a) The effects of the spatial dispersions δϕS,g and δϕZ

of the Stark and Zeeman phase shifts respectively are well
identified.

(b) The effects of the the dispersion δϕS,c of the Stark phase
due to contact potentials appear to be below our experimental
sensitivity.

(c) Our model provides a qualitative understanding of
the systematic effects for all values of the current I . The
visibility decreases rapidly and vanishes for |I | ≈ 18 A: this
circumstance has been used to enhance the sensitivity to certain
terms but clearly, as soon as |I | > 12 A, our model describing
the systematic effects is less accurate.

(d) As the visibility presents a revival for |I | ≈ 23 A with
the Zeeman phases φZ being close to ±π , we have made
several series of measurements in this range of I values but
we cannot expect our model to be accurate.

(e) We have observed an unexpected phase shift which
is independent of the current I in the range 8–23 A and
which is odd with respect to V reversal. We presently have no
explanation for this effect and we continue our investigations
into its possible sources. It may be either a systematic effect
forgotten in our analysis or a fundamental physical effect, for
instance such as the effects discussed by Anandan [18] but, as
far as we can judge, either these fundamental effects are too
small or they have not the correct symmetry with respect to V

and I .

VII. MEASUREMENT OF THE HMW PHASE

We now use our knowledge of the stray phase shifts in
order to eliminate their contributions to the measurement of
the HMW phase. The HMW phase ϕHMW is proportional to the
product V I , i.e., it is odd with respect to V and I reversals. The
main contribution in the stray phase shifts to the measurements
of ϕEB are even with respect to V and I , but because of the
existence of a V -odd phase of unknown origin, we choose
to use the I -odd character of ϕHMW to cancel the maximum
amount of systematic effects. Accordingly, we plot in Fig. 19
the quantity �BϕEB(V,I ) as a function of the product V I . We
have used different symbols for the measurements depending
on whether |I | is smaller or larger than 12 A, and we have made
separate fits of these two sets of data using �BϕEB(V,I ) =
αV I + β:

α = (−1.94 ± 0.06) × 10−6 rad/V A,
(17)

β = (7 ± 4) × 10−4 rad if |I| � 12 A

and

α = (−2.16 ± 0.14) × 10−6 rad/V A,
(18)

β = (−26 ± 19) × 10−4 rad if |I| > 12 A.

In both fits, the intercept β for V I = 0 is compatible
with a vanishing value. The error bar on the slopes α is
substantially smaller when |I | � 12 A than when |I | > 12
A: this is visible on the data which are more dispersed
when |I | > 12 A. For both fits, the fitted slopes are larger
(in modulus) than the predicted value ϕHMW(V,I )/(V I ) =
−(1.28 ± 0.03) × 10−6 rad/V A. The discrepancy is equal to
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52% if |I | � 12 A and 69% if |I | > 12 A. Our model predicts
that there are two contributions to �BϕEB(V,I ):

�BϕEB(V,I ) = ϕHMW − N−,−
D0

. (19)

N−,− given by Eq. (A8) is the product of the AC phase via
the correlation terms. Thanks to the knowledge of the experi-
mental defects, it is possible to evaluate all the terms involved
in N−,−/D0. The only quantities not directly measured are the
correlations 〈δϕdδϕZ〉 and 〈δϕdδ (ϕZ)2〉 which are evaluated
from measurement of the correlation with δϕS replacing δϕd ,
assuming that both effects are linear functions of y. The
calculated value of N−,−/D0 never exceeds 3 mrad for the data
set with |I | � 12 A, and we have made this correction to get
ϕfinal(V,I ) which is plotted in Fig. 3 of our Letter [3]. The fitted
slope ϕfinal(V,I )/V I = (−1.68 ± 0.07) × 10−6 rad/V A is
still too large but the discrepancy with the theoretical value
is reduced to 31%.

VIII. CONCLUSION

A. Some remarks on the present experiment

We have described a measurement of the He-McKellar-
Wilkens topological phase by atom interferometry. This
experiment was feasible with our atom interferometer because
the interferometer arms are well separated in space and the
interferometer signal is intense, with a large fringe visibility,
near 70%. The arm separation is needed in order to insert
a septum between the two interferometer arms without any
degradation of the signal. The signal intensity and the large
value of the fringe visibility both contribute to enhance
the phase sensitivity: its value achieved in practice near
25 mrad/

√
Hz is needed for the present measurement. The

HMW phase shift is rather small, at most 27 mrad under our
experimental conditions, and appears as the combination of
four phase measurements for which 2000 s of data recording
were needed to reduce the uncertainty near 3 mrad.

The analysis of the experiment was more complex than
expected, because of stray phases. The complexity of the signal
is due to several factors:

(a) The signal is the sum of the contributions of eight
sublevels which are not exactly in phase because of the Zeeman
phase shifts due to the slightly different values of the magnetic
field on the two interferometer arms.

(b) We have built a compensator coil to produce an
opposite gradient of the magnetic field at another place in
the interferometer. The use of this compensator has been very
fruitful as it has enabled us to apply substantially higher
fields with a limited loss of fringe visibility. However the
compensator produces a low field, so that it can correct only
the part of the phase shifts due to linear Zeeman effect.

(c) The weights of the various F,mF sublevels are functions
of the laser frequency and power density in the standing waves
used for atom diffraction. We had to control these parameters
rather tightly in order to keep these weights almost equal and
constant.

(d) The main phase shifts (diffraction phase shift, Stark
and Zeeman phase shifts) present a dispersion with the atomic
trajectory described in our calculations by the y coordinate. In
the presence of several dispersed phase shifts, the visibility of

the contribution of a given sublevel to the total fringe signal is
better or worse, depending on whether the dispersions of the
different phase shifts subtract or add their effects.

We have developed a model taking into account all these
effects and this model has been very successful in explaining
the variations of the observed phase shifts and visibility with
the capacitor voltage V and the HMW coil current I . However,
an extra phase has been observed and characterized: this phase
is odd with the capacitor voltage V ; it behaves roughly like V 3;
it appears only when the magnetic field is applied but its value
is independent of the magnetic field magnitude in a wide range.
We continue our investigations to understand the effect which
produces this phase. By combining measured phase shifts with
opposite values of the current I , we have eliminated this phase
and we have obtained a first measurement of the HMW phase
shift. The observed effect is larger than its expected value by
69% if we use the data points with |I | > 12 A and only by 52%
if we consider only the data points with |I | � 12 A. Finally,
there is a small stray contribution of the Aharonov-Casher
phase to the measured phase shift, and using our model, it
was possible to evaluate this contribution and to correct the
measured values accordingly. The discrepancy between our
corrected measurements and the expected HMW phase shift is
then reduced to 31%.

B. Possible improvements of this experiment

It is necessary to improve this experiment in order to reduce
the uncertainty on the HMW phase shift. Here are the main
possibilities:

(a) Reduction of stray effects by a better construction of
the HMW interaction region. The present construction has
two main defects: the difference of the capacitor thicknesses
varies with the y coordinate and the septum does not coincide
with the symmetry plane of the HMW coils. The construction
of capacitors with a better controlled geometry is probably
possible but quite difficult, because of the need to use a
stretched septum. A better centering of the septum with respect
to the HMW coils is probably rather easy and this would reduce
substantially the Zeeman phase shifts which are the largest
source of complication.

(b) Reduction of stray effects by optical pumping of the
atomic beam. If all the atoms are in one F,mF sublevel only,
the signal is no more an average on the hyperfine sublevels
populations. Moreover, the trajectory-averaged Zeeman phase
shift can be exactly canceled by the compensator if the
pumping is done in the F = 2, mF = +2 (or −2) sublevel for
which the Zeeman effect is exactly linear. As a consequence,
this arrangement, which should reduce most of the stray phase
shifts, is feasible with minor modifications of our setup and
experiments are in progress.

(c) Reduction of stray effects by using another atom:
this requires the development of a completely new atom
interferometer with separated arms. Most of the difficulties
are due to the paramagnetic character of lithium and an
atom with a 1S0 nondegenerate ground state (i.e., with a
zero nuclear spin) would be ideal because there would be
no Zeeman phase shift and no Aharonov-Casher phase shift.
We may consider either a thermal beam of a light atom or
a laser-cooled atomic source. In the case of a thermal beam,
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the most obvious choice is ground-state helium, with which a
very nice interferometer using diffraction by material gratings
was developed by Toennies and co-workers (unpublished work
quoted in [19]). Because helium electric polarizability is small
(αHe ≈ αLi/120), larger electric and/or magnetic fields will
be needed. Among atoms which have been laser cooled,
magnesium, calcium, strontium, or ytterbium all have a 1S0

ground state and at least one stable isotope with a nuclear spin
equal to 0.
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APPENDIX: CALCULATION OF THE FRINGE SIGNAL

We describe here the main points of our calculation of the
fringe signal from which we deduce the stray phase and the
fringe visibility.

1. Some simplifying assumptions

The fringe phase ϕ is the sum of the diffraction phase ϕd , the
Sagnac phase ϕSagnac due to Earth’s rotation, the Stark phase
ϕS , the Zeeman phase ϕZ(F,mF ), the HMW phase ϕHMW, and
the Aharonov-Casher phase ϕAC(F,mF ):

ϕ = ϕd + ϕSagnac + ϕS + ϕZ(F,mF )

+ϕHMW + ϕAC(F,mF ). (A1)

ϕd , ϕHMW, and ϕAC(F,mF ) are independent of the atom
velocity v; ϕSagnac and ϕS vary like 1/v and ϕZ(F,mF ) like
1/v2. These velocity-dependent phases are small [ϕSagnac ≈
0.65 rad, |ϕS | � 0.2 rad, and |ϕZ(F,mF )| < 1.5 rad when
|I | � 12 A—only these data points will be retained for the
final analysis]. As the parallel speed ratio S‖ of the lithium
beam is large, S‖ ≈ 9, we may forget the velocity average
and, as a consequence, the Sagnac phase ϕSagnac, which is
constant. We consider the spatial dispersion of ϕd , ϕS , and
ϕZ(F,mF ) only and we neglect this dispersion for ϕHMW

and ϕAC(F,mF ), because they are small, |ϕHMW| < 27 mrad
and |ϕAC(F,mF )| < 70 mrad, for our largest fields. The total
phase dispersion δϕ is the sum of three terms only:

δϕ = δϕd + δϕS + δϕZ. (A2)

From now on, the F,mF dependence of ϕZ and ϕAC is not
explicit and, for ϕd , ϕS , and ϕZ , we denote by φX the spatial
average of ϕX given by φX = 〈ϕX〉 = ∫

dyP (y)ϕX(y). The
average over the F,mF sublevels is taken with equal weights,
P (F,mF ) = 1/8. This is a good approximation because, in
the experiments devoted to the HMW phase measurement,
we have kept χ small (|χ | < 0.03) and randomly distributed
around 0 (its main effect is to induce a supplementary disper-
sion of our phase measurements). With these approximations,
following the discussion of Sec. IV of HMWI, the signal due

to one F,mF sublevel is given by

I (F,mF ) = I0 [1 + Vm〈cos(ϕm)〉] /8,

Vm = V0[1 − 〈(δϕ)2/2〉], ϕm = φ − 〈(δϕ)3/6〉
with φ = φd + φS + φZ(F,mF ) + ϕHMW + ϕAC(F,mF )

and δϕ = δϕd + δϕS + δϕZ(F,mF ). (A3)

If we neglect nuclear magnetism, the F,mF sublevels form
four pairs with exactly opposite Zeeman energy shifts: three
pairs of levels with the same mF value and the pair F =
2,mF = ±2. We label these pairs by an mF value going from
−1 to +2 and we denote by ϕZ the value of ϕZ(F,mF ) for the
sublevel F = 2,mF .

2. Tutorial calculation

Because of numerous terms, these calculations are rather
complicated, and we first present a tutorial calculation in which
we cancel δϕd and ϕAC(F,mF ), and we forget the cubic term
in δϕ. We first calculate the signal Ipair of a pair of sublevels:

[
Ipair

I0/4
− 1

] /
V0 ≈

[
1 − 〈(δϕS)2〉 + 〈(δϕZ)2〉

2

]

× cos(φZ) cos(φd + φS + ϕHMW − θ )

with tan θ ≈ θ ≈ 〈δϕSδϕZ〉 tan(φZ). (A4)

The important point is the phase shift θ proportional to the
correlation term 〈δϕSδϕZ〉 and this effect is due to the fact that
the contributions of the two levels of the pair have different
visibilities: the term [1 − 〈(δϕS + δϕZ)2〉/2] modifies these
visibilities in a different way because the dispersions δϕS and
δϕZ have the same sign for one level of the pair and opposite
signs for the other one. Because of the tan (φZ) factor, θ is very
sensitive to the φZ value, especially when φZ is close to π/2.

3. Complete calculation

If we remove the approximations done in the tutorial
example, we get the signal Itot which has a form analogous
to Eq. (A4):

[
Itot

I0
− 1

] /
V0 ≈ 1

4
[D cos(φd + φS + ϕHMW)

+ N sin (φd + φS + ϕHMW)]

≈
√

D2 + N2

4
cos(φd + φS + ϕHMW − θ )

with tan θ ≈ θ ≈ N

D
. (A5)

The numerator N and the denominator D of the fraction giving
θ are given by

D =
[

1 − 〈(δϕd + δϕS)2〉
2

]
D0 + DZ + D+/−,

(A6)

N = 〈(δϕd + δϕS)3〉
6

D0 + NZ + N+/−
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with the following definitions:

D0 =
∑

cos(φZ),

DZ =
∑ [

−〈(δϕZ)2〉
2

cos(φZ)

+ 〈(δϕZ)3 + 3 (δϕd )2 δϕZ〉
6

sin(φZ

)
],

D+/− =
∑

[D+,+ + D−,+ + D+,− + D−,−],

NZ =
∑

[〈δϕdδϕZ〉 sin(φZ) + 〈δϕd (δϕZ)2〉 cos(φZ)],

N+/− =
∑

[N+,+ + N−,+ + N+,− + N−,−]. (A7)

In these equations,
∑

is the sum over the four pairs of
levels labeled by the mF value as defined after Eq. (A3) and
this index is omitted everywhere. D0 represents the effect of
the Zeeman phase shifts φZ on the visibility, neglecting their
spatial dispersion. DB and NB represent the effects of the
dispersions of the diffraction phase shift δϕd and of the Zeeman
phase shift δϕZ . The effects of D0 and DB are independent of
the application of the electric field. D+/− and N+/− are the
sums of four terms which involve the simultaneous application
of the electric and magnetic fields: the first index is the parity
with respect to voltage reversal and the second index is the
parity with respect to current reversal.

In Ref. [15], we have developed the calculations of the D±,±
and N±,± terms including the contributions of the dispersion
δϕS,c due to the contact potential (see HMWI) and the presence
of this V -odd phase greatly increases the number of terms in
these equations. As the contact potential terms appear to be
extremely small, we do not take them into account in the
present discussion but we refer the reader to Ref. [15] for
a more complete discussion. With this simplification, δϕS is
reduced to the geometrical defect term which is V even and
the D±,± and N±,± terms are given by

D+,+ =
[ 〈(δϕS)2 δϕZ〉

2
+ 〈δϕSδϕdδϕZ〉

]
sin(φZ),

D−,+ = D+,− = 0,

D−,− =
[
−1 + 〈(δϕd + δϕS)2〉 + 〈(δϕZ)2〉

2

]

×ϕAC sin(φZ) +
[ 〈(δϕZ)3〉

6
+ 〈δϕdδϕSδϕZ〉

+ 〈(δϕS)2 δϕZ + (δϕd )2 δϕZ〉
2

]
ϕAC cos(φZ),

N+,+ = 〈δϕSδϕZ〉 sin(φZ) + 〈δϕS (δϕZ)2〉
2

cos(φZ),

N−,+ = N+,− = 0,

N−,− = [〈δϕSδϕZ〉 + 〈δϕdδϕZ〉] ϕAC cos(φZ)

−
[ 〈(δϕS + δϕd )3〉

6
+ 〈(δϕS + δϕd ) (δϕZ)2〉

2

]

×ϕAC sin(φZ). (A8)

From these equations, it is easy to deduce the relative visibility
and the phase shift of the interference fringes:

Vr = Vm

V0
=

√
D2 + N2

4
≈ D

4
,

(A9)
φm = φS + ϕHMW − θ, θ ≈ N/D.

We have used a third-order approximation of the sine and
cosine functions in Eq. (23) of HMWI but we use only a
first-order approximation to get θ ≈ N/D andVr ≈ D/4. This
first-order approximation is good if N � D. For a practical
use of these results, it will be necessary to assume that D0 is
considerably larger than the other terms appearing in D and
that N is small with respect to D0 so that we will further
simplify the expression of θ ≈ N/D0. We are going to use
the following equations for the analysis of our experimental
results:

Vm(V,I )

V0
= 1

4

[ (
1 − 〈(δϕS + δϕd )2〉

2

)
D0 + DZ + D+/−

]
,

φm(V,I ) = φS + ϕHMW − 〈(δϕS + δϕd )3〉
6

− NZ + N+/−
D0

.

(A10)

4. Calculation of the phase shift and the visibility neglecting the
effects of the laboratory magnetic field

To evaluate the visibilityVEB(V,I ) and the phase φEB(V,I )
defined by Eqs. (3), we use Eq. (A10) to calculate the terms
corresponding to the different field configurations. As a first
simplified approach, we consider that the laboratory magnetic
field is homogeneous. In the case of field configurations
for which I = 0, apart from canceling the Zeeman phase
shifts, this also enables the neglect of the effect of the
Aharonov-Casher phase. At first order in the stray terms,
several cancellations appear:

VEB(V,I ) = 1 + D+/−(V,I )

D0(V,I )
,

(A11)

φEB(V,I ) = ϕHMW(V,I ) − N+/−(V,I )

D0(V,I )
.

Using the definitions of Eqs. (12), we separate the con-
tributions in D+/− and in N+/− following their even or odd
character with respect to V and I . Here are the results for the
visibility:

MEVEB = 1 +
[∑

(D+,+ + D+,−)/D0

]
,

�EVEB =
∑

(D−,+ + D−,−)/D0,
(A12)

MBVEB = 1 +
[∑

(D+,+ + D−,+)/D0

]
,

�BVEB =
∑

(D+,− + D−,−)/D0.

We fully separate the four D±,± terms by taking means or half
differences of the above quantities:

MBMEVEB = 1 +
[ ∑

D+,+/D0

]
,

MB�EVEB =
∑

D−,+/D0,
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�BMEVEB =
∑

D+,−/D0,

�B�EVEB =
∑

D−,−/D0. (A13)

Similar combinations with the phase φEB(V,I ) also enable the
separation of the Ni,j terms:

MBMEφEB = −N+,+/D0,

MB�EφEB = −N−,+/D0,
(A14)

�BMEφEB = −N+,−/D0,

�B�EφEB = ϕHMW − N−,−/D0.

5. Effect of the inhomogeneity of the laboratory magnetic
field on the measurements

We now take into account the inhomogeneity of the labora-
tory magnetic field. Its main effect is to induce weak Zeeman
phase shifts, and we neglect their spatial dispersions [δJ0(y) =
0]. This brings corrections only to the D(0,0) and D(V,0)
terms, i.e., to the visibility terms in the field configurations for
which I = 0. It is straightforward to calculate D(0,0):

D(0,0) =
[

1 − 〈(δϕd )2〉
2

]
D0,B0

(A15)

with D0,B0 =
[

1 + cos(J0) + 2 cos

(
J0

2

)]
.

When the electric field is applied, the residual Zeeman
phase shifts are still present (J0 �= 0). With nonzero Zeeman

phase shifts, the AC effect modifies the visibility indepen-
dently of the presence of spatial phase dispersion δϕ(y): this
modification is described by the leading term −ϕAC sin(φZ) in
the expressions of D−,−, Eqs. (A8). We thus obtain

D(V,0) =
[

1 − 〈(δϕS + δϕd )2〉
2

]
D0,B0 + DAC,B0

with DAC,B0 = −
∑

ϕAC sin(φZ)

= −ϕAC,B0

[
sin(J0) + sin

(
J0

2

)]
. (A16)

Here ϕAC,B0 is the AC phase of the F = 2,mF = 2 sublevel
in the presence of the laboratory magnetic field: this phase
shift is proportional to the applied voltage V . In this way, we
regain the results of Eq. (8) for the relative visibility VE , and
we express the asymmetry �EVE of the visibility with voltage
reversal:

VE = 1 − 〈(δϕS)2〉
2

− 〈δϕSδϕd〉 + DAC,B0

D0,B0
,

�EVE = DAC,B0(V )

D0,B0
. (A17)

In the field configurations with I �= 0, calculations of the
type of Eqs. (A10) are not further modified. Therefore, the
presence of the laboratory magnetic field brings a correction
only to VEB in Eqs. (A11), in the following form:

VEB(V,I ) = 1 + D+/−(V,I )

D0(V,I )
− DAC,B0(V )

D0,B0
. (A18)
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Eur. Phys. J. D 33, 99 (2005).
[8] A. Miffre, Ph.D. thesis, Université P. Sabatier, 2005,
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