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Test of the He-McKellar-Wilkens topological phase by atom interferometry. I. Theoretical discussion
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We have recently tested the topological phase predicted by He and McKellar and by Wilkens: this phase
appears when an electric dipole propagates in a transverse magnetic field. In the present paper, we first recall
the physical origin of this phase and its relations to the Aharonov-Bohm and Aharonov-Casher phases. We then
explain possible detection schemes and we briefly describe the lithium atom interferometer we have used for this
purpose. Finally, we analyze in great detail the phase shifts induced by electric and magnetic fields acting on
such an interferometer, taking into account experimental defects. The experiment and its results are described in
the following paper.
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I. INTRODUCTION

In 1993, He and McKellar [1] predicted a new topological
phase when an electric dipole encircles a line of magnetic
monopoles. Magnetic monopoles being hypothetical [2], this
idea seemed purely speculative but, in 1994, Wilkens [3]
proposed an experimental test with an atom (or a molecule)
polarized by an electric field interacting with a feasible
magnetic field. This topological phase is now called the
He-McKellar-Wilkens (HMW) phase and it is the third
electromagnetic topological phase, after the Aharonov-Bohm
[4] and Aharonov-Casher phases [5].

We have recently made an experimental test of the HMW
phase [6]. The present paper describes the theory of our
experiment, whose analysis and results are given in the
following paper [7] called here HMWII. Section II explains the
nature of a topological phase and recalls what the Aharonov-
Bohm phase is. We then discuss the Aharonov-Casher and
HMW phases and the connections between these three effects.
In Sec. III, we describe various possible ways of detecting the
HMW phase and the principle of our experiment. In Sec. IV,
we calculate the effects of phase dispersions on the fringe
signal of an atom interferometer. In Secs. V and VI, we
evaluate the phases induced by electric and magnetic fields
in a lithium atom interferometer. In Sec. VII, we evaluate the
Aharonov-Casher phase in our experiment and in Sec. VIII, we
summarize the various phase shifts present in our experiments,
their magnitude, their velocity dispersion, their internal-state
dependence, and their effect on fringe visibility.

II. ELECTROMAGNETIC TOPOLOGICAL PHASES:
THEORY AND PREVIOUS EXPERIMENTS

Here, we explain the nature of a topological phase and
describe the Aharonov-Bohm, Aharonov-Casher, and HMW
phases, and their connections.

A. Topological phases and Aharonov-Bohm effect

Topological (or geometric) phases were introduced in their
general form in 1984 by Berry [8] as phase factors associated
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with adiabatic transport (for a review, see Ref. [9]), and we will
consider here only matter waves. It is interesting to compare
topological phases and dynamic phases.

(a) A topological phase is a quantum effect without any
other modification of the particle propagation and it can
be detected only by interferometry. It is independent of the
modulus of the velocity but it changes sign with the direction
of propagation.

(b) A dynamic phase is induced by a classical force acting
on the particle and, at first order of perturbation theory, it is
proportional to the difference, between the two interferometer
arms, of the potential energy from which the force derives
and it is also proportional to the interaction time. Therefore, a
dynamic phase scales like the inverse of the particle velocity
and is independent of the direction of propagation. Moreover,
the classical force can be detected by other experiments such as
the deflection of the particle trajectory or by the modification
of its time of flight.

The vectorial Aharonov-Bohm (AB) phase [4], discovered
in 1959, appears when a charged particle propagates in
an electromagnetic time-independent vector potential. The
proposed experiment (see Fig. 2 of Ref. [4]) involved an
electron interferometer with its arms encircling an infinite
solenoid. The AB phase shift reads

ϕAB = q

h̄

∮
A (r) dr = q

h̄
�0, (1)

where q is the electron charge, r is the electron position and
the closed circuit follows the interferometer arms, A(r) is the
vector potential, and �0 is the total magnetic flux through
any surface lying on the closed circuit (the same result is
obtained if the solenoid is replaced by an infinite line of
magnetic dipoles). In the proposition of Aharonov and Bohm,
the magnetic field vanishes on the interferometer arms and the
particle does not experience any force; nevertheless the AB
phase does not vanish. A controversy followed this surprising
prediction [10,11] but the AB effect was observed as soon as
1960 by Chambers [12] and, thanks to progress in electron
interferometry, all the striking characteristics of the AB effect
have been tested experimentally [13,14].

Berry interpreted the vectorial Aharonov-Bohm phase as a
geometric phase [8]: the common use is to call the AB phase
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FIG. 1. (Color online) Connection between the HMW and AC
phases by electric-magnetic duality. The HMW phase arises when
an electric dipole moment d propagates in the radial magnetic field
created by a line of magnetic monopoles qm while the AC phase
(between parentheses) appears when a magnetic dipole μ encircles a
line of electric charges qe.

topological and to call a phase acquired through adiabatic
transport geometric, but there are no fundamental differences
between these two types of phase. The AB effect is the first
member of a family of three topological phases occurring in the
propagation of particles in time-independent electromagnetic
potentials or fields, the other members being the Aharonov-
Casher (AC) phase and the He-McKellar-Wilkens phase.

B. Theory of the Aharonov-Casher phase

An Aharonov-Bohm phase appears when a charged particle
encircles an infinite line of magnetic dipoles. By exchanging
the roles of the charged particle and of the magnetic dipole,
Aharonov and Casher [5] predicted in 1984 a topological phase
when a magnetic dipole encircles an infinite line of electric
charges (see Fig. 1). This phase had already been predicted in
1982 by Anandan [15], with no insistence on its topological
character. The Aharonov-Casher phase is given by

ϕAC = − 1

h̄c2

∮
[E (r) × μ] · dr (2)

where μ is the magnetic dipole and E the electric field. As
for the AB effect, the nature of the AC effect was widely
discussed [16–55]. In the nonrelativistic limit (an excellent
approximation for matter-wave interferometers if we except
electron interferometers), we can demonstrate Eq. (2), starting
from the Lagrangian of a particle of mass m and velocity v = ṙ
carrying a magnetic dipole μ in an electric field [5]:

L = 1

2
mv2 − 1

c2
v · [E (r) × μ] . (3)

The particle acceleration v̇ is given by the Lagrange
equation [18]

mv̇ = (μ · ∇)

(
E (r) × v

c2

)
(4)

In the configuration of Ref. [5], with a straight homogeneously
charged line, the right-hand term of Eq. (4) vanishes: no force
acts on the particle.

A heuristic point of view introduced by Klein [16] relates
the AC phase results to the interaction of the magnetic moment

μ with the motional magnetic field Bmot ≈ −(v × E)/c2

experienced by the particle in its rest frame, and calculated
at first order in v/c. Substituting dr = vdt into Eq. (2) yields
ϕAC = ∮

(μ · Bmot)dt/h̄, a result identical to the phase due to
the magnetic dipole interaction −μ · Bmot. Equation (3) reads
L = mv2/2 + LAC , where LAC = μ · Bmot is the additional
term due to the electric field. Although −LAC looks like a
potential energy, it is not a potential energy for the motion
of the particle, because mv̇ given by Eq. (4) is not equal to
∇(μ · Bmot). Indeed, the use of Newton’s equation with the
force ∇(μ · Bmot) leads to incorrect results with regard to the
topological nature of the AC phase [17,18,20].

To deduce the AC phase from the Lagrangian [Eq. (3)], we
apply Feynman’s path integral [56] to matter-wave interferom-
etry [57]. At first order of perturbation theory, the phase ϕAC is
given by the classical action calculated along the unperturbed
interferometer arms:

ϕAC = 1

h̄

∮
pAC · dr (5)

where pAC = ∂LAC/∂v = −E(r) × μ/c2 is the modification
of the particle momentum by the electric field.

C. Detection of the AC phase

The AC phase was first detected by Cimmino et al. [58,59]
using a neutron interferometer. The neutron magnetic dipole is
small and the AC phase was only 1.50 mrad for E ≈ 30 MV/m.
Because of limited neutron flux, 35 days were needed to get
one measurement. Further tests (proportionality to the electric
field, independence of the neutron velocity) were not feasible.

A noticeable difference between the AB and AC phases is
that the particle must propagate in an electric field to get a
nonzero AC phase. This circumstance gives more freedom in
the field configurations and, in particular, the electric charge
between the interferometer arms may vanish [21,60]. Sangster
et al. [61,62] used this possibility to perform a measurement of
the AC phase with a Ramsey interferometer [63]: a molecular
beam, prepared in a coherent superposition of states with
opposite magnetic dipoles, propagates in an electric field
perpendicular to the beam velocity. The AC phase shift has
opposite values for these two states and the resulting phase
difference is directly detected on the fringe signal. The AC
phase, measured with a few percent error bar, was found in
agreement with theory [61,62]; its proportionality to the elec-
tric field and its velocity independence were both successfully
tested. Several other measurements of the AC phase have been
performed, always with Ramsey interferometers [64–66]. The
AC effect has also been observed in interference of vortices in
a Josephson-junction array [67].

D. The He-McKellar-Wilkens phase

In 1993, He and McKellar [1] applied Maxwell duality to
the AC phase, thus predicting a new topological phase when
a particle with an electric dipole d encircles an infinite line of
magnetic monopoles (see Fig. 1). Because of the hypothetical
character of magnetic monopoles [2], this paper did not suggest
any test but Wilkens [3] proposed an experiment, with an
electric dipole produced by the polarization of an atom or
a molecule, interacting with a magnetic field B guided by
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ferromagnetic materials. The general expression of the HMW
phase is

ϕHMW = 1

h̄

∮
[B (r) × d] · dr (6)

Figure 1 is inspired by the work of Dowling et al. [68] who
gave an overview of the electromagnetic topological phases.
Maxwell duality applied to the AB phase leads to a fourth
topological phase for a magnetic monopole encircling a line
of electric dipoles: this phase will remain hypothetical as long
as do magnetic monopoles.

The AB phase involves a particle carrying an electric
charge and the AC and HMW phases involve particles carrying
magnetic and electric dipoles: it is natural to predict topologi-
cal phases for particles carrying higher-order electromagnetic
multipoles, in interaction with electric or magnetic fields of
the convenient symmetry. A calculation for the case of electric
or magnetic quadrupoles was made by Chen [69] who states
that, with quadrupoles of the order of one atomic unit, the
detection of these new topological phases “would require an
unrealistically huge electromagnetic field.” As a consequence,
these higher-order phases appear to be out of reach and the
HMW phase was the last undetected topological phase of
electromagnetic origin.

E. Some properties of the HMW effect and the
associated particle dynamics

In complete analogy with the AC effect, the HMW effect
can be interpreted as due to the interaction of the electric dipole
d with the motional electric field Emot ≈ v × B, at the lowest
order in v/c. Equation (6) can be rewritten:

ϕHMW = 1

h̄

∮
d · Emotdt. (7)

A remark first made by Wei et al. [70] suggests a strong link
between the AB and the HMW phases. Consider the particular
field configuration illustrated by Fig. 2, where the electric

E
B

FIG. 2. (Color online) Connection between the HMW and the
AB phases following Wei et al. [70]. The interferometer arms (blue
full lines) encircle an infinite charged wire (red vertical cylinder)
which produces a radial electric field E and induces an electric dipole
d represented by a positive charge (+, large bullet) and a negative
charge (−, small bullet). Each charge undergoes the AB effect in
the uniform magnetic field B. The HMW phase is equal to the sum of
the two AB phases and it is proportional to the magnetic flux through
the (blue) shaded surface.

dipole which undergoes the HMW phase shift is induced by
an external electric field (more details are given in Sec. III A).
If the dipole is described by two particles with charges ±q at
positions r±, with d = q(r+ − r−), the HMW phase is equal
to the algebraic sum of the AB phases for the two particles.

The HMW effect and its connection with the AB and
AC effects have been the subject of many theoretical works
[71–91]. Let us summarize the main results concerning the
dynamics of an electric dipole in a magnetic field. The electric
dipole moment d = qr0 is described by two charges with
r0 = r+ − r− and its internal dynamics is described by an
interaction energy U (r0), a function of the distance r0 between
the charges. The compound particle (mass M , center of mass
r, velocity v = ṙ) interacts with an external electromagnetic
field described by its potential (A(r,t),V (r,t)), with the electric
field E(r,t) = −∇V − ∂A/∂t and the magnetic field B(r,t) =
∇ × A. The standard Lagrangian for the system, expressed in
the dipole approximation, is [83]

L = 1

2
M ṙ2 + 1

2
μṙ2

0 + ṙ · [(d · ∇)A(r,t)]

+ ḋ · A (r,t) − (d · ∇)V (r,t) − U (r0), (8)

where M is the total mass of the compound particle and μ

is the reduced mass of the two particles. Expanding the total
derivative d/dt = ∂/∂t + (ṙ · ∇), it can be rewritten:

L = 1

2
M ṙ2 + 1

2
μṙ2

0 + LW − U (r0) + d

dt
(d · A)

with LW = d · (E + v × B). (9)

LW is the term introduced by Wilkens [3] to describe the
interaction of the dipole with the field. In his calculation, the
total derivative term d(d · A)/dt was omitted. Because this
total derivative is a single-valued function of the dynamical
variables and of time, the standard Lagrangian and the La-
grangian proposed by Wilkens are strictly equivalent [76,77].
With the Lagrangian used by Wilkens, the canonical momenta
are given by

p = ∂L

∂ ṙ
= Mv + B × d, (10)

p0 = ∂L

∂ ṙ0
= μṙ0. (11)

As for the AC effect, the extra contribution pHMW = B × d to
the momentum p yields the HMW phase:

ϕHMW = 1

h̄

∮
pHMW · dr. (12)

The Lagrange equations yield the dynamics of the particle in
the laboratory frame and its internal dynamics:

M r̈ = ḋ × B + (d · ∇) [E + v × B] , (13)

μr̈0 = q (E + v × B) − ∂U

∂r0
. (14)

In the original configuration with an infinite line of
magnetic monopoles (see Fig. 1), the force on the particle
vanishes. Here is a brief summary of the explanation given by
Wilkens [3]. The dipole dynamics is limited to rotation, with
the dipole initially parallel to the line of monopoles, while the
particle propagates in a plane perpendicular to this line. The
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torque exerted on the dipole, d × (E + v × B), vanishes and
we may drop the term ḋ × B from Eq. (13). If the fields E
and B are invariant by a translation along the direction of the
dipole, the force vanishes.

A closer look is needed in the case of an induced dipole.
In this case, it is a good approximation to consider that the
variations of the external fields in the frame moving with the
atom are infinitely slow and that the dynamics of r0 is adiabatic,
so that the atom exhibits the dipole d = 4πε0α(E + v × B),
where α is the polarizability. With this approximation, one
obtains the Lagrangian proposed by Wei et al. [70]:

L = 1
2M ṙ2 + 2πε0α(E + v × B)2. (15)

From this Lagrangian, it is easy to deduce the force on the
atom and we consider here only three terms which involve the
presence of E and B simultaneously:

F1 = 4πε0α(Ė × B), F2 = 4πε0α(v × B) · ∇E,

F3 = 4πε0αE · ∇(v × B). (16)

We assume that both fields are static, i.e., ∂E/∂t = 0 =
∂B/∂t . F1 is nonzero in the regions where the electric field
is inhomogeneous because, in the atom frame, Ė = (v · ∇)E.
When the electric field varies, the dipole varies too, which
induces a current, and F1 is the associated Lorentz force. If
we take the z axis along the velocity v = vz and the y axis
along the magnetic field B = By, we are interested only in
the z components of the forces because they are the only ones
which can change the velocity:

F1,z = 4πε0αvB
∂Ex

∂z
, F2,z = −4πε0αvB

∂Ez

∂x
,

F3,z = 0. (17)

As ∇ × E = −∂B/∂t = 0, then ∂Ex/∂z = ∂Ez/∂x and
F1,z + F2,z = 0: in the Wilkens-Wei configuration [3,70], the
HMW phase is a topological phase.

III. TOWARD A DETECTION OF THE HMW PHASE

In this section, we describe various proposals for the
detection of the HMW phase, and we explain the choices we
have made for our experiment.

A. Possible detection schemes

The detection of the HMW phase is difficult for two reasons:
we need a particle with an electric dipole and we must replace
the radial magnetic field of a line of magnetic monopoles
by some other field configuration. Here are the experimental
schemes proposed for this detection:

(a) Wilkens [3] proposed to polarize atoms (or molecules)
by an electric field E, thus inducing a dipole d = 4πε0αE, and
to apply different magnetic fields on the two interferometer
arms thanks to a pierced sheet of ferromagnetic material. The
use of such a sheet appears to be very difficult because of
the small distance between interferometer arms and of the
associated perturbation of the electric field. However, this
proposal opened the way toward experiments.

FIG. 3. (Color online) Geometry of the electric field for the
detection of the HMW phase, following the proposal of Wei et al. [70].
The atom (blue dots) propagates in the interferometer plane, with
the homogeneous magnetic field B perpendicular to this plane. The
conductors are shown with their potential (red or black if grounded)
and the electric field vector E(r) is represented by red arrows for some
sample positions along the interferometer arms. Upper panel (similar
to Fig. 2): the original proposal with a charged wire which produces
a strongly inhomogeneous electric field. Lower panel: our geometry
with homogeneous electric fields produced by plane capacitors.

(b) Wei et al. [70] proposed to introduce a charged wire
between the arms of an atom interferometer, thus inducing
opposite dipoles on the two interferometer arms, and to use a
common homogeneous magnetic field to induce the HMW
phase. Figures 2 and 3 illustrate this scheme, and Fig. 3
depicts our own configuration which is directly inspired by this
proposal.

(c) Wei et al. [70] also predicted a persistent current in a
polarizable superfluid (see also [71]). Following this idea, Sato
and Packard [92] have proposed to detect the HMW phase with
a superfluid helium interferometer.

It would be very convenient to use a Ramsey interferometer
to detect the HMW phase, as was done for most of the AC phase
measurements [61,62,64–66]. Such an interferometer requires
a coherent superposition of states with opposite electric dipole
moments [68,84], which seems feasible with molecules or with
Rydberg atoms, because they have quasidegenerate states of
opposite parity [68], but not with ground-state atoms. As a
consequence, Ramsey interferometry with ground-state atoms
cannot be used for the detection of the HMW phase. Instead,
the HMW phase will be given by the difference of successive
phase measurements, a technique more sensitive to systematic
effects than Ramsey interferometry.

B. Principle of our experiment

To detect the HMW phase, we have built an experiment
[6,93] with our atom interferometer [94,95] (see Fig. 4).
A highly collimated supersonic beam of lithium seeded in
argon, with a mean lithium velocity vm ≈ 1065 m/s, crosses
three quasiresonant laser standing waves which diffract the
atoms in the Bragg regime. With first-order Bragg diffraction
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FIG. 4. (Color online) Schematic top view of our atom interfer-
ometer: the HMW interaction region is placed just before the second
laser standing wave, at the place where the arm separation is largest. It
is thus possible to introduce a septum between the two interferometer
arms without any perturbation of the interferometer signal.

which produces only two diffracted beams (orders p = 0 and
either p = +1 or p = −1), we get in this way an almost
perfect Mach-Zehnder interferometer. A slit selects one of
the two output beams carrying complementary interference
signals, and the intensity I of this beam, measured by
a surface ionization detector, is the output signal of the
interferometer:

I = I0[1 + V cos(ϕd + ϕp)]. (18)

I0 is the mean intensity, V is the fringe visibility, and ϕp is
the phase due to various perturbations. The phase ϕd , due to
laser diffraction, is a function of the positions xi of the three
standing-wave mirrors Mi : ϕd = 2kL(x1 − 2x2 + x3), where
kL is the laser wave vector. The choice of the laser frequency,
very close to the first resonance transition of lithium [94], and
the natural abundance of 7Li (92.5%) ensure that the signal is
purely due to this isotope [94,96].

To observe a nonzero HMW phase, the atom must propagate
in crossed electric and magnetic fields transverse to its velocity
and the fields on the two interferometer arms must be different.
Near the second laser standing wave, the two arms are
separated by a distance close to 100 μm, sufficient to insert
a septum between the two arms. A septum can be used to
produce different magnetic fields by circulating a current in
the septum [97] or different electric fields with two capacitors
sharing the septum as a common electrode [98]. The difference
of magnetic fields achieved in Ref. [97] was quite small, near
10−5 T, limited by the current in the septum, while the second
arrangement [98] has produced intense electric fields, of the
order of 1 MV/m. We have chosen the second arrangement
with opposite electric fields on the two interferometer arms
and a common magnetic field: in addition to the HMW phase,
this arrangement produces several other phases discussed in
Secs. V and VI. This setup is very close to the idea of Wei
et al. [70] but the charged wire is replaced by a septum, which
improves the electric field homogeneity considerably.

IV. EFFECT OF A DISPERSION OF THE PHASE
ON THE INTERFEROMETER SIGNAL

Any dispersion of the phase ϕ = ϕd + ϕp reduces the fringe
visibilityV and a good visibility is necessary for accurate phase
measurements. In this section, we study the origins of phase
dispersions and the associated systematic effects.

A. Origins of phase dispersion

The interferometer phase is dispersed because of its
dependence on the atom velocity, on the atom trajectory, and
on the atom internal state.

The diffraction phase ϕd is independent of the atom velocity
v but the perturbation phase ϕp is a priori a function of v.
A dynamic phase due to a perturbation applied to one arm
is proportional to 1/v. If the same perturbation is applied
to both arms, the phase shift vanishes if the perturbation is
homogeneous and is proportional to 1/v2 in the presence
of a perturbation gradient, with an extra 1/v factor due
to the distance between the interferometer arms which is
approximately proportional to 1/v. The topological AC and
HMW phases are independent of the velocity. Finally, inertial
phase shifts are proportional to 1/v (Sagnac effect) and to
1/v2 (homogeneous gravitational field): in our experiment,
there is a small Sagnac phase due to Earth’s rotation [99] but
the phase due to the gravitational field vanishes because the
interferometer is in a horizontal plane.

In our experiment, the magnetic field is slightly inhomo-
geneous and the electric fields have slightly different moduli
on the two interferometer arms. Atom diffraction is in the
horizontal plane, which means that the interferometer signal
is sensitive to the difference of the propagation phases on the
two arms at the same altitude y. The resulting phase shifts are
functions of the y coordinate because of the spatial dependence
of the fields.

The diffraction phase shift ϕd is also a function of the
y coordinate, if the laser standing-wave mirrors Mi are not
perfectly aligned (for an analysis, see Refs. [100,101]). The
final alignment of these mirrors is done by optimizing the
fringe visibility [94] and this procedure is not sensitive to a
small residual y dependence of ϕd .

The Zeeman phase is a function of the hyperfine Zeeman
F,mF sublevel; this phase, which may be large, varies rapidly
with F,mF (see Sec. VI). The interferometer signal is the sum
of the contributions of these eight sublevels: in the absence
of optical pumping, the sublevels are equally populated in the
incident atomic beam, but the interferometer transmission is
a function of the hyperfine level F . As a consequence, the
eight sublevels may have different populations in the detected
signal: this question is discussed in Appendix A.

B. Effect of the velocity dependence of the phase shifts

The normalized velocity distribution of a supersonic beam
is given by

P (v) = S‖
vm

√
π

exp

[
−

(
(v − vm) S‖

vm

)2
]

. (19)
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vm is the mean velocity, and S‖ is the parallel speed ratio.
A v3 prefactor, usually included [102], has been omitted for
two reasons: when S‖ is large, this prefactor has small effects;
because of the use of Bragg diffraction, the interferometer
transmission is a function of the velocity and this effect modi-
fies the velocity distribution. We consider a perturbation phase
ϕp(v) ∝ 1/vn so that we can write ϕp(v) = ϕp(vm)(vm/v)n.
The interferometer signal is the velocity average of Eq. (18):

I = I0

∫
dvP (v)

{
1 + V cos

[
ϕd + ϕp(vm)

(
vm

v

)n]}
. (20)

If the ratio ϕp(vm)/S‖ is not too large, it is a good
approximation to expand vm/v up to the second order in powers
of (v − vm)/vm and the integral can be calculated analytically
[95,103]. The phase shift differs from ϕp(vm) by a term linear
in ϕp(vm)/S2

‖ because of the nonlinear dependence of ϕp on v

and the visibility decreases rapidly when ϕp(vm) ≈ S‖/n, with
a quasi-Gaussian dependence.

C. Calculation of the effect of a narrow distribution
of the phase shift

Equation (20) uses analytical expressions of ϕ(v) and of
P (v). For other types of phase dispersion, this information is
not generally available. For instance, for the dependence of the
phase on the atom trajectory, we may assume that the phase is
a function ϕ(y) of a continuous variable y with a normalized
probability P (y) and we must average Eq. (18):

〈I 〉 = I0

∫
dyP (y){1 + V cos[ϕ(y)]}. (21)

〈· · · 〉 denotes the average over y with the weight P (y). We
assume that the visibility V is independent of y because the
fringe visibility has a very low sensitivity to the diffraction
amplitudes [94]. We introduce

〈ϕ〉 =
∫

dyP (y)ϕ(y), δϕ = ϕ(y) − 〈ϕ〉. (22)

Obviously 〈δϕ〉 = 0. Assuming that δϕ is small, we expand
sin(δϕ) and cos(δϕ) up to third order in δϕ (these expansions
are of reasonable accuracy even if |δϕ| ≈ 1 rad). Once
averaged over y, Eq. (21) is similar to Eq. (18) with a modified
visibility Vm and a modified phase ϕm:

Vm/V0 = 1 − 〈(δϕ)2/2〉, ϕm = 〈ϕ〉 − 〈(δϕ)3/6〉. (23)

The reduced visibility Vr = Vm/V0 carries interesting
information when two perturbations a and b inducing the
phases ϕa and ϕb are simultaneously applied:

Vr,a+b = Vm,a+b

V0
= 1 − 〈(δϕa + δϕb)2/2〉

2
≈ Vr,aVr,b[1 − 〈δϕaδϕb〉]. (24)

By measuring three reduced visibilities Vr,a , Vr,b, and Vr,a+b,
we have access to the correlation 〈δϕaδϕb〉 of the dispersions
of the two phases. The phase shift ϕm due to the perturbation is
not equal to the mean phase 〈ϕ〉 because, even if, by definition,
〈δϕ〉 = 0, 〈(δϕ)3〉 is usually not equal to 0. Moreover, if two
perturbations a and b are simultaneously applied, the phase

shifts are not additive, because of the cross terms 〈δϕ2
aδϕb〉

and 〈δϕaδϕ
2
b〉.

D. Discrete average over Zeeman hyperfine sublevels

The signal is given by

I = I0

∑
j

Pj [1 + Vj cos(〈ϕj 〉)], (25)

where the signal due to the sublevel j is characterized by a
normalized population Pj (

∑
j Pj = 1), a visibility Vj and a

phase ϕj . The visibility Vj varies with the sublevel because
the reduction of visibility given by Eq. (23) is a function of
the sublevel. The −〈(δϕj )3/6〉 term, omitted in Eq. (25), will
be taken into account in the complete calculation. For the
contribution of sublevel j to the signal, we define a complex
fringe visibility Vj given by

Vj = Vj exp(i〈ϕj 〉). (26)

The complex visibility for the total signal is given by

V = ∑
j PjVj . (27)

This is a Fresnel construction from which we deduce the
modified fringe visibility Vm and phase ϕm:

Vm =
√[∑

PjVj cos〈ϕj 〉
]2

+
[∑

PjVj sin〈ϕj 〉
]2

,

tan ϕm =
(∑

PjVj sin〈ϕj 〉
) / (∑

PjVj cos〈ϕj 〉
)

. (28)

When the phases 〈ϕj 〉 are very close to their mean, the
resulting phase ϕm is their weighted average, but the weights
are the products PjVj and not the populations Pj . This result
has an important consequence: when a perturbation modifies
the visibility Vj , the modified phase ϕm is not a simple average
of 〈ϕj 〉. In this case too, even without the nonlinear term
〈δϕ3〉/6, the phase shifts resulting from two perturbations are
not additive, because the weights PjVj are different in the three
cases: application of perturbation a, application of perturbation
b, and simultaneous application of both perturbations.

V. EFFECTS OF THE ELECTRIC FIELD ON THE
INTERFEROMETER SIGNALS

An electric field induces a large phase due to the Stark
effect and a small one due to the Aharonov-Casher effect [5].
Because of its dependence on the magnetic dipole moment,
the AC phase appears as a modification of the Zeeman effect
and we will discuss it after the Zeeman phase in Sec. VII.

A. Effective Stark Hamiltonian

If we neglect hyperfine structure, an electric field E induces
only a global displacement of the lithium 2S1/2 ground state
described by the Stark Hamiltonian HS :

HS = −2πε0αE2. (29)

α is the electric polarizability, α = (24.34 ± 0.16) × 10−30 m3

[99,103]. Theoretical values [104] are considerably more
accurate and in good agrement with this experimental value.
For our largest field Emax ≈ 0.8 MV/m, the Stark energy is
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ES ≈ 10−27 J while the atom kinetic energy is K = mv2
m/2 ≈

7 × 10−21 J. With ES/K smaller than 2 × 10−7, a first-order
perturbation calculation of the Stark phase is fully justified:

ϕS = 2πε0α

∮
E2dt/h̄. (30)

If the field Emax ≈ 0.8 MV/m were applied on one interfer-
ometer arm only, the Stark phase would be large, ϕS ≈ 300 rad.
In the experiments devoted to the detection of the HMW phase,
opposite electric fields are applied on the two interferometer
arms, resulting in a very small detected Stark phase shift.

Because of its 3/2 nuclear spin, 7Li has eight hyperfine
Zeeman sublevels. The Stark shift is only approximately
independent of the sublevel but this dependence is very
weak. This question is very important for atomic clocks
and it has been studied theoretically by Sandars [105] and
Ulzega et al. [106]: the results are in good agreement with
experiments for the cesium clock [107,108]. For 7Li, only
the energy shift difference 	ES of the F = 1, mF = 0 and
F = 2, mF = 0 sublevels has been measured [109], 	ES/h =
−0.061(2) × 10−10E2 Hz with E in V/m. This measurement
is in good agreement with theoretical values [110–112]. The
ratio of this differential shift to the mean energy shift is
	ES/ES ≈ 3 × 10−6 and we may deduce that the F,mF

dependence of the Stark phase is negligible in our experiment.

B. Stark phase shift of an ideal experiment

We first assume defect-free capacitors, with plane-parallel
electrodes. We use the same notations as in Ref. [103]:
electrode spacing hi and length between the guard electrodes
2ai . The electric field Ei(z) is easily calculated [103] and the
Stark phase shift ϕS,i for an atom in the interferometer arm i

is given by

ϕS,i = 2πε0α

h̄v

∫
E2

i (z)dz = 2πε0α

h̄v

V 2
i

h2
i

Li, (31)

where Li = [2ai − (2hi/π )] is the effective length of capacitor
i and Vi the potential difference across the capacitor. The
small correction [103] due to the fact that the atom passes at
a distance ca. 40 μm from the septum is negligible. The Stark
phase shift ϕS is the difference of these two phase shifts:

ϕS = ϕS,l − ϕS,u = 2πε0α

h̄v

[
V 2

l

h2
l

Ll − V 2
u

h2
u

Lu

]
, (32)

where l (u) refers to the upper (lower) arm of the interferometer
as shown schematically in Fig. 4. By tuning the voltage ratio
Vu/Vl , we can cancel ϕS for all atom velocities.

C. Taking into account capacitor defects

The two capacitors present geometrical defects: the elec-
trodes and the septum are not perfectly plane and parallel and
the design of the guard electrodes is imperfect. We describe
these defects by assuming that the spacing hi(y,z) of capacitor
i is a slowly varying function of y and z and that the length
Li(y) between guard electrodes is a slowly varying function of
y. Finally, the voltage across the capacitor i is the sum of the
applied voltage Vi and of contact potentials Vc,i(y,z) which
is the difference of the work functions of the two electrodes

[Vc,i(y,z) is of the order of 100 mV]. An exact calculation of
the field would be complicated and we assume that the local
field Ei(y,z) is the field of a perfect plane capacitor of spacing
hi(y,z):

Ei(y,z) = Vi + Vc,i(y,z)

hi(y,z)
. (33)

The phase ϕS,i is a function of y:

ϕS,i(y) = 2πε0α

h̄v

∫
Li (y)

E2
i (y,z)dz. (34)

In an exact calculation of Ei(y,z), the small-scale variations
of hi(y,z) and Vc,i(y,z) would be washed out because the
atoms sample the electric field at a distance ca. 40 μm from
the septum and only variations with a scale larger than this
distance may play a role. We will not try to take this effect into
account, but most of the rapid variations of the electric field
are already washed out in the phase because of the integral
appearing in Eq. (34). The calculation of ϕS,i(y) is detailed in
Appendix B. Because Vc,i(y,z) is always much smaller than
Vi , the quadratic term in Vc,i(y,z) is negligible and we get
ϕS,i(y) = ϕS,g,i(y) + ϕS,c,i(y) with a dominant term ϕS,g,i ∝
V 2

i and a minor term ϕS,c,i(y) ∝ ViVc,i(y,z). The y variations
of ϕS,g are due to geometrical defects:

ϕS,g,i(y) = 2πε0α

h̄v
V 2

i

∫
Li (y)

dz

h2
i (y,z)

, (35)

while the y variations of ϕS,c,i(y) are mostly due to the contact
potentials Vc,i(y,z):

ϕS,c,i(y) = 4πε0α

h̄v
Vi

∫
Li (y)

Vc,i(y,z)dz

h2
i (y,z)

. (36)

As in Eq. (32), the Stark phase shift is the difference of the
phases on the two arms i = l,u.

VI. EFFECTS OF THE MAGNETIC FIELD ON THE
INTERFEROMETER SIGNALS

In this section, we recall the hyperfine Zeeman
Hamiltonian and we discuss the Zeeman phase shifts resulting
from a gradient of the magnetic field between the two
interferometer arms.

A. The hyperfine Zeeman Hamiltonian

For the lithium ground state, the hyperfine Zeeman Hamil-
tonian HHFS+Z is given by

HHFS+Z = AI · S − gSμBS · B − gIμBI · B. (37)

S and I are the electronic (S = 1/2) and nuclear (I = 3/2)
spins, respectively. The ground state is split into two hyperfine
levels F = 1,2 and eight F,mF sublevels. The Fermi contact
hyperfine parameter A, the electronic Landé factor gS , and the
nuclear Landé factor gI are very accurately known [113,114].

We have omitted the diamagnetic term Hdia =
−∑

i q
2(r2

⊥,i)B
2/8m, where r⊥,i is the projection of the

nucleus-electron vector on a plane perpendicular to B. Using
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FIG. 5. (Color online) Hyperfine Zeeman energies E(F,mF )/A
plotted as a function of X = −(gS − gI )μBB/(2A). It appears clearly
that there are four pairs of levels with almost opposite Zeeman energy
shifts.

∑
i〈r2

i 〉 given by Ref. [115], for our largest field Bmax ≈
1.4 × 10−2 T, the energy shift is 	Edia ≈ 2.4 × 10−32 J, which
is very small and independent of the sublevel. Moreover, as
the interferometer signal is sensitive only to the difference
of 	Edia between the two interferometer arms and as the
magnetic field homogeneity is very good, the resulting phase
is fully negligible.

The Zeeman energy shifts are always smaller than
μBBmax ≈ 1.3 × 10−25 J and the ratio of these shifts to the
kinetic energy is smaller than 2 × 10−5, which remains small.
The magnetic field extends over ≈ 80 mm corresponding
to an interaction time tint ≈ 75 μs. If the magnetic field
were applied to one interferometer arm only, a first-order
perturbation calculation predicts a maximum phase ϕZ,max =
μBBmaxtint/h̄ ≈ 105 rad, and the second-order term of the
perturbation expansion is of the order of 1 rad, which is not
at all negligible. In our experiment, the field homogeneity is
good, 	B/B ≈ 10−4, where 	B is the difference of the field
on the two interferometer arms: with this field difference, the
first-order term induces a Zeeman phase shift of the order
of 10 rad at most, while the second-order terms compensate
each other and their contribution to the Zeeman phase shift is
negligible, below 1 mrad. Finally, hyperfine uncoupling cannot
be neglected for our maximum field and the hyperfine Zeeman
energies are given by

E(F,mF ,B) = −A

4
− gIμBmF B ± A

√
1 + mF X + X2

with X = − (gS − gI ) μBB

2A
(38)

with X = 34.9B (B in tesla) so that for our largest field
X ≈ 0.5. If X < 1, the ± sign is associated with the F =
I ± 1/2 level. If we forget the small gIμBmF B term in
Eq. (38), there are four pairs of levels with opposite Zeeman
energy shifts, the three pairs of levels with the same mF value
and the pair F = 2,mF = ±2 and this property will be useful.
The variations of E(F,mF ,X) are plotted in Fig. 5. Later,
we will use the derivatives of E(F,mF ,X) with respect to X,

given by

∂E(F,mF ,B)

A∂X
≈ −gF mF ±

[
1 − m2

F

4

]
X

±3mF

4

[
m2

F

4
− 1

]
X2. (39)

This expansion, limited to the X2 terms, is exact for the F =
2,mF = ±2 sublevels. For |X| < 0.5, its accuracy is better
than 3% for the mF = ±1 sublevels, but only 12% for the
mF = 0 sublevels.

B. Calculation of the Zeeman phases and their effects
on the fringe phase and visibility

If the magnetic field never vanishes and if its direction
is slowly varying along the atom trajectory, it is a good
approximation to assume an adiabatic behavior [96,97,116]:
the projection mF of the total angular momentum F on an axis
parallel to B is constant and the Zeeman phase is given by

ϕZ (F,mF ) = − 1

h̄v

∮
l−u

E(F,mF ,B)ds

≈ 1

h̄v

∫
∂E(F,mF ,B)

∂B

∂B

∂x
δx(z)dz (40)

where δx(z) is the distance between the interferometer arms
at the coordinate z and B is the modulus of the magnetic field.
When the magnetic field is produced by a current I circulating
in a coil, the dependence on I of the Zeeman phase shifts is
complicated. We obtain an approximate analytic expression
using the power expansion Eq. (39):

ϕZ (F,mF ) = −gF mF J1 ±
[

1 − m2
F

4

]
J2

±3mF

4

[
m2

F

4
− 1

]
J3,

J1 = μB

h̄v

∫
∂B

∂x
δx(z)dz,

J2 = (gS − gI )2 μ2
B

8Ah̄v

∫
∂(B2)

∂x
δx(z)dz,

J3 = 3 (gS − gI )3 μ3
B

128A2h̄v

∫
∂(B3)

∂x
δx(z)dz. (41)

Jk is proportional to |I |k and the Zeeman phase shifts are
expressed as third-order polynomials of I . Moreover, the
presence and inhomogeneity of the laboratory field, which
exists when I = 0, must be taken into account. With this
aim, we introduce corrections to the linear Zeeman effect
(coefficient J1): in consistency with the weak value of the
laboratory field, these corrections will be most accurate when
the field produced by the coil is weak.

C. The case of a linear Zeeman effect

If the field B is smaller than about 2 × 10−3 T corre-
sponding to |X| < 0.07, the Zeeman effect is almost purely
linear, with Landé factors gF equal to g1 = (−gS + 5gI )/4 ≈
−0.502 053 ≈ −1/2 and g2 = (gS + 3gI )/4 ≈ 0.499 689 ≈
1/2, the approximate values ±1/2 being sufficiently accurate.
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FIG. 6. Calculated relative visibility and phase as functions of
J1, for a velocity distribution with a typical value of the parallel
speed ratio S‖ = 8 and for three values of the population imbalance
parameter χ : χ = 0, full curve; χ = 0.1, dash-dotted curve; χ =
−0.1, dotted curve. This parameter has a large effect especially when
the visibility is very low.

Taking into account the population imbalance described by the
parameter χ given by Eq. (A1), the complex visibility defined
by Eqs. (26) and (27) is equal to

V
V0

= 1

4
[1 + 2(1 + 5χ ) cos(g1J1) + (1 − 3χ ) cos(g2J1)

+ (1 − 3χ ) cos(2g2J1)]. (42)

In this case, the complex visibility remains real, i.e., the
fringe phase is exactly equal to 0 or π . For a well-defined
atom velocity, when J1 increases, the visibility first decreases
and presents revivals with V = V0 when J1/(4π ) is equal to
an integer. In Fig. 6, the modulus and the phase of the complex
visibility are plotted as functions of J1, for different values
of the parameter χ , with the velocity distribution parameter
S‖ = 8: the visibility revivals are less intense because of the
velocity average.

We now calculate corrections of J1 to describe the influence
of the laboratory field B0, which is not perfectly homogeneous.
We express the total magnetic field Btot = Bcoil + B0, where
Bcoil is the coil field proportional to the coil current Icoil. Its
modulus is

Btot =
√

(Bcoil + B0)2 ≈ Bcoil

(
1 ± u · B0

Bcoil

)
, (43)

an approximation valid when B0 	 Bcoil. u is a local vector
parallel to Bcoil so that Bcoil = ±uBcoil where the ± sign is the
sign of Icoil. We split the integral giving J1 into two regions,
the region where the coil field is dominant (in) and the region
where the laboratory field is dominant (out):

J1 ≈ μB

h̄v

[∫
in

∂Bcoil

∂x
δx(z)dz ±

∫
in

∂u · B0

∂x
δx(z)dz

+
∫

out

∂B0

∂x
δx(z)dz

]
. (44)

The first term, proportional to |Icoil|, is written AJ1,coil|Icoil|.
The second term is constant and it is convenient to write it
−AJ1,coilI0,coil, which defines a quantity I0,coil homogeneous
with the current. The third term is independent of the current
in the coil and we write it J0,coil. In this way, we get

J1 = AJ1,coil|Icoil − I0,coil| + J0,coil. (45)

It is important to note that J0,coil depends on the coil because
of integration in the out region. We denote by J0 the integral
as in Eq. (44) extended to the whole interferometer:

J0 = μB

h̄v

∫
∂B0

∂x
δx(z)dz. (46)

We need a formula which interpolates smoothly when Icoil

varies. When Icoil → 0, the quantity J1 must tend toward J0.
This property is verified by Eq. (45) if we take J0,coil = J0 −
AJ1,coil|I0,coil|. Finally, as we use two coils, a main coil (current
I ) and a compensator coil (current IC), we generalize Eq. (45),
which becomes

J1 = AJ1|I − I0| + AJ1,C |IC − I0,C | + J0,I+C, (47)

where J0,I+C = J0 − AJ1 |I0| − AJ1

∣∣I0,C

∣∣. To establish
Eq. (47), we must assume that the in regions of the two
coils do not overlap, which is satisfied by our experimental
apparatus [7,93]. Equation (47) will be used to fit experimental
data.

D. The case of larger magnetic fields

We consider here only J1 and J2 to simplify the equations.
The complex visibility is then given by

V
V0

= 1

4

{
(1 + χ )

[
cos (J2) + 2 cos

(
3J2

4

)
cos

(
J1

2

)]

+ (1 − 3χ ) cos (J1)

}

+ iχ

[
sin (J2) + 2 cos

(
J1

2

)
sin

(
3J2

4

)]
. (48)

In Fig. 7, we have plotted the complex fringe visibility as
a function of the magnetic field inhomogeneity. When χ = 0,
the imaginary part of V almost vanishes but it differs slightly
from 0 because we have taken into account the nuclear spin
contribution [an effect neglected in Eq. (48)]. When χ differs
from 0, the imaginary part is not at all negligible and the fringe
phase may be large, of the order of 1 rad, when the real part of
the visibility is small.

We should also calculate corrections to J2 and J3 for the
inhomogeneity of the laboratory field, but these refinements
are expected to be of weak influence and did not appear to
improve the quality of the fits. As a consequence, only the
correction to J1 given by Eq. (47) has been taken into account.

VII. THE AHARONOV-CASHER PHASE SHIFT

As explained above, the Aharonov-Casher phase ϕAC , given
by Eq. (2), can be considered as being due to the motional
magnetic field Bmot = E × v/c2. This field is usually very
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FIG. 7. Calculated real and imaginary parts of the complex
visibility V/V0 as functions of the coil current I . We use the values
J1/I = 0.5 rad/A and J2/I

2 = 0.01 rad/A2, which are close to our
experimental values. The S‖ and χ values are the same as in Fig. 6.

small, Bmot ≈ 10−8 T for our largest electric field Emax ≈
0.8 MV/m and v = vm = 1065 m/s, but it has opposite values
on the two interferometer arms as we use opposite electric
fields. In practice, Bmot is always smaller than 10−3 of the
magnetic field and only the component of Bmot parallel to this
local magnetic field can play a role, but it cannot be neglected.
The magnetic moment μ(F,mF ) of the F,mF sublevel is
a function of the magnetic field B. We introduce a vector
utot = B/B parallel to the total magnetic field at the location
r, and we approximate the magnetic dipole moment value by
using an expansion similar to Eq. (39):

μ(F,mF ) = μ(F,mF )utot

with μ(F,mF ) = ∓μB

mF + 2X

2
√

1 + mF X + X2

≈ ∓μB

[
mF

2
+

(
1 − m2

F

4

)
X

+ 3mF

4

(
m2

F

4
− 1

)
X2

]
(49)

with the notations of Eq. (38). We then use Eq. (2) to calculate
the AC phase shift as a function of F , mF .

VIII. SUMMARY OF THE VARIOUS PHASE SHIFTS

In this section, we rapidly review the various phase shifts
discussed in the previous sections and we estimate their
magnitude in our experimental setup. We also explain their
effects on the fringe visibility. The phase ϕp in Eq. (18) is the
sum of five contributions:

ϕp = ϕSagnac + ϕS + ϕZ (F,mF ) + ϕAC(F,mF ) + ϕHMW .

(50)

Let us discuss each term separately:
(a) The Sagnac phase shift ϕSagnac due to the Earth’s rotation

is easily calculated from the latitude of our experiment and the

size of the interferometer:

ϕSagnac = 688/v, (51)

where v is the atom velocity in m/s and ϕSagnac is measured
in radians. With vm = 1065 m/s, this phase is rather small,
ϕSagnac ≈ 0.65 rad [99], and, as its dispersion is solely due to
its velocity dependence, it has only minor effects on the fringe
visibility V .

(b) The Stark phase shift ϕS can be very large, about 300 rad
if we applied the largest electric field E = 0.8 MV/m on one
arm only. Because of its velocity dependence, ϕS ∝ 1/v, the
fringe visibility V decreases when ϕS increases and becomes
very small for ϕS > 30 rad because the velocity distribution
of our atomic beam has a relative full width of the order
of 25%. In order to measure the HMW phase, we need the
best possible fringe visibility and we tune the electric fields
on the two arms so that the mean ϕS is of the order of
100 mrad. The reduction of fringe visibility due to the velocity
averaging is then completely negligible but, because of defects
of the geometry of the two capacitors, the y dependence of
ϕS(y) discussed above induces a minor reduction of the fringe
visibility.

(c) The Zeeman phase shift ϕZ(F,mF ) would be extremely
large, about 105 rad if our maximum field B = 14 mT were
applied on one interferometer arm only, but with a relative
field difference δB/B ∼ 10−4 between the two interferometer
arms, the Zeeman phase shift is reduced to about 10 rad for the
F = 2,mF = ±2 sublevels. Because of the dependence of ϕZ

on F,mF and on the atom velocity, ϕZ ∝ 1/v2, this phase shift
would still be sufficient to reduce the fringe visibility to a very
small value. A compensating coil creating an opposite field
gradient between the two interferometer arms is necessary to
preserve a good visibility but, because of nonlinear Zeeman
effect due to hyperfine uncoupling, this compensation is not
complete.

(d) The Aharonov-Casher phase shift ϕAC(F,mF ) is a
function of the F ,mF sublevel and it is largest for the F = 2,
mF = ±2 sublevels. Because of its geometric character, it
is independent of the atom velocity. For our largest electric
field, ϕAC(F = 2,mF = 2) ≈ 70 mrad. Because of its F,mF

dependence, the AC phase shift has a weak but detectable
effect on the fringe visibility.

(e) The He-McKellar-Wilkens phase shift ϕHMW is in-
dependent of the F,mF hyperfine sublevel and of the atom
velocity, because of its geometric character. For our largest
electric and magnetic fields, ϕHMW ≈ 27 mrad. As the HMW
phase shift is not dispersed, it has no effect on the fringe
visibility.

Table I summarizes the main properties of these phase
shifts present in our experiment. We have two comments. The
existence of phase shifts larger than the one we want to measure
is not a problem as long these large phase shifts are stable: in
order to observe the weak HMW phase shift, we subtract the
phase shift due to the electric field and the one due to the
magnetic field from the one observed when both fields are
applied. The real problem comes from the fact that the signal
is the sum of the signals due to eight hyperfine sublevels and, as
shown by Eq. (28), the weight of the sublevel j is the product
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TABLE I. The phase shifts present in our experiment: for each
phase shift, we give its value for the maximum fields Emax ≈
0.8 MV/m and Bmax ≈ 14 mT available in the interaction region used
for the detection of the HMW phase, the existence of a dependence
on the sublevel, and its effect on the fringe visibility.

Maximum value Dependence Effect on
Phase shift (rad) on F , mF fringe visibility

Sagnac 0.64 No Negligible
Polarizability ≈0.1 No Weak
Zeeman ≈10 Yes Strong
AC 0.07 Yes Weak
HMW 0.027 No No

PjVj . The visibility Vj varies with the applied perturbations
and this is the basis of systematic effects analyzed in Sec. IV.

IX. CONCLUSION

In this paper, we have recalled what are the topological
phases of electromagnetic origin, namely, the Aharonov-
Bohm, the Aharonov-Casher, and the He-McKellar-Wilkens
phases and the theoretical connections between these various
effects. We have also discussed the possible detection schemes
for the HMW phase and we have explained the principle
of our experiment based on a separated-arm lithium atom
interferometer.

During our experiment, which is briefly described in Ref.
[6] (with more details in the following paper HMWII [7]),
we have observed unexpected stray phases: most of them
have been explained by our calculations and they result from
phase-averaging effects due to experimental defects. We have
discussed these effects on general grounds in Sec. IV.

In order to develop a model of our experiment, we have
analyzed in detail the Stark and Zeeman effective Hamiltonian
in the 2S1/2 ground state of the 7Li atom and we have discussed
the validity of several approximations. We have thus shown
that we may assume that the Stark shift is independent of the
F,mF sublevel and that the diamagnetic term is negligible.
We have explained why we use a first-order calculation of the
Stark and Zeeman phases. We have also discussed in detail the
phase shifts resulting of the inhomogeneities of the electric or
magnetic fields and the consequences of these phase shifts on
the fringe phase and visibility. Finally, we have evaluated the
Aharonov-Casher phase in our experiment and shown that it
is small but not fully negligible.
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APPENDIX A: RELATIVE CONTRIBUTIONS OF THE
F,mF SUBLEVELS TO THE SIGNAL

In this appendix, we discuss various effects which may
modify the relative populations of the F,mF sublevels.

1. The populations of the F,mF sublevels in the
incident atomic beam

The atomic beam, when it enters the atom interferometer, is
not optically pumped. We may assume that the eight Zeeman
hyperfine sublevels are equally populated for the following
reasons: the only effects which could induce a partial selection
of the internal states are the supersonic expansion and Stern-
Gerlach forces and they are too weak to play a role in our
experiment.

Supersonic expansions are well known to align the rota-
tional angular momentum of molecules by collisions with
the carrier gas, because the collisions between the seeded
molecule and the carrier gas are not isotropically distributed,
an anisotropy due to the velocity difference between the two
species (the so-called velocity slip effect). A similar effect
can align an atomic angular momentum. However, the lithium
atom in its ground state is in a spin-1/2 state which cannot
be aligned. Nuclear spins are uncoupled during a collision,
because of the weakness of the hyperfine Hamiltonian with
respect to a typical collision duration, below 10−12 s, so
that collisions are not expected to align the total angular
momentum F.

Stern-Gerlach forces due to a magnetic field gradient can
deflect differently the various F,mF sublevels and an F,mF -
dependent deflection can produce a population imbalance
between these sublevels. The only places where such a
deflection could occur are in the collimation slits and this
would require a magnetic field gradient of the order of 103 T/m.
We have chosen to use collimation slits made of silicon, a
nonferromagnetic material, so that the magnetic field gradient
is surely very small.

2. The transmission of the interferometer

As we are using linear polarization of the laser standing
waves and as the hyperfine structure of the 2P first resonance
state of lithium is quite small, the diffraction amplitude is
independent of mF for a given F level [101]. This is true
even in the presence of a weak magnetic field, comparable to
the Earth’s field, 4 × 10−5 T, because the Zeeman splitting of
the transitions, of the order of 1 MHz in frequency units,
is negligible with respect to the laser frequency detuning
δL/(2π ) ∼ 2 GHz [94].

The diffraction amplitude still depends on F because the
laser frequency detuning is not the same for the two hyperfine
levels, the ground-state hyperfine splitting being equal to
ωHFS/(2π ) = 0.803 GHz in frequency units. We define
the population imbalance by writing the relative population
P (F,mF ) of the F,mF sublevel in the form

P (F,mF ) = (1 + 5χ )/8 if F = 1,

P (F,mF ) = (1 − 3χ )/8 if F = 2. (A1)

The total population is normalized and the imbalance parame-
ter χ must satisfy −1/5 � χ � 1/3 so that P (F,mF ) � 0. We
have developed a simplified model of the interferometer trans-
mission, neglecting the variation of the diffraction amplitudes
with the atom velocity vector [the modulus of the velocity has a
distribution given by Eq. (19), with S‖ ≈ 8 and the direction of
the velocity vector is characterized by an angular distribution
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FIG. 8. The population imbalance parameter χ as a function of
laser frequency detuning δL/(2π ) GHz as given by the simple model
[Eq. (A3)]. The β parameter has been taken equal to β/(2π ) =
3.65 GHz, which is optimum for a detuning δL/(2π ) = 2 GHz.

with a full width at half maximum close to 20 μrad]. In this
way, we can write the first-order diffraction amplitude by the
ith laser standing wave in the form

|αi | = sin [βi/δL(F )]

with δL(F = 1) = δL and δL(F = 2) = δL + ωHFS,

(A2)

where βi is a parameter proportional to the integral of the
laser power density experienced by an atom which crosses
the ith laser standing wave. We assume that the βi param-
eters are optimum for a Mach-Zehnder interferometer with
β2 = 2β1 = 2β3 = β. The transmission of the interferometer
is proportional to |αi |4 and we thus get the imbalance
parameter χ :

χ = sin4(β/δL) − sin4[β/(δL + ωHFS)]

3 sin4(β/δL) + 5 sin4[β/(δL + ωHFS)]
. (A3)

The variations of the imbalance parameter χ are plotted as
a function of the laser detuning δL in Fig. 8, for a typical value
of the experimental parameter β.

APPENDIX B: THE STARK PHASE INCLUDING
CAPACITOR DEFECTS

The Stark phase ϕi(y), given by Eq. (34), is proportional
to the integral

∫
E2

i (y,z)dz. We use an overbar to note the
average over z defined by the integral over the capacitor
length Li(y), for instance, h̄i(y) = ∫

hi(y,z)dz/Li(y), and
we denote by δi(y,z) the dimensionless deviation from a
plane capacitor defined by hi(y,z) = h̄i(y)[1 + δi(y,z)]. By
definition, δ̄i(y) = 0 and we assume that δi(y,z) 	 1. We also
define V̄c,i(y) = ∫

Vc,i(y,z)dz/Li(y).
To calculate the Stark phase ϕi(y), we expand the electric

field Ei(y,z) up to first order in δi(y,z) and in Vc,i(y,z)/Vi .
Both assumptions are excellent, first because the design of
the capacitors ensures δi 	 1, and second because the contact
potential term is of the order of ±100 mV while the applied
voltage Vi is of the order of 100 V at least (when Vi = 0, the
Stark phase solely due to contact potentials, of the order of
10−5 rad at most, is completely negligible). Then E2

i (y,z) is

given by

E2
i (y,z) ≈ V 2

i(
h̄i(y)

)2

[
1 + 2

Vc,i(y,z)

Vi

− 2δi(y,z)

]
. (B1)

The phase ϕi(y) is obtained by integration over z:

ϕi(y) ≈ 2πε0αV 2
i

h̄v

Li(y)(
h̄i(y)

)2

[
1 + 2

V̄c,i(y)

Vi

]
(B2)

We introduce ηi(y) which measures the y dependence of
the z-integrated geometrical defect of the capacitor i. ηi(y)
measures the relative y variation of the z-averaged thickness
of the capacitor i; it is defined by

Li(y)

[h̄i(y)]2
=

〈
Li

h̄2
i

〉
[1 + ηi(y)], (B3)

where 〈· · · 〉 denotes the y average with the weight function
P (y). By definition, 〈ηi〉 = 0. We get

ϕi(y) ≈ ϕ0i

[
1 + ηi(y) + 2

V̄c,i(y)

Vi

]

with ϕ0i = 2πε0αV 2
i

h̄v

〈
Li

h̄2
i

〉
. (B4)

In the HMW detection experiments discussed in HMWII
[7], the voltage ratio Vl/Vu is tuned so that it compensates the
fact that the two capacitors have not exactly the same value
of the quantity 〈Li/h̄

2
i 〉. In this way we get |〈ϕl〉/〈ϕu〉 − 1| <

10−3. Hence, for the defect terms which are expressed by a
first-order expansion, it is justified to use the mean value ϕ0 of
the induced phases ϕ0i and the mean value V of the voltages Vi .
We thus obtain the Stark phase shift, including the influence
of the capacitor defects:

ϕS(y) = ϕ0l − ϕ0u + 〈ϕSc〉 + δϕSg(y) + δϕSc(y). (B5)

In Eq. (B5), the mean phase shift (first line) is given by

〈ϕS〉 = ϕ0l − ϕ0u + 〈ϕSc〉
with 〈ϕSc〉 = 2ϕ0

[ 〈V̄c,l〉 − 〈V̄c,u〉
V

]
. (B6)

The term (ϕ0l − ϕ0u), which is dominant if the voltage ratio
Vu/Vl is not perfectly tuned, scales like V 2. The mean term
due to the contact potentials 〈ϕSc〉, which is expected to be
considerably smaller, scales like V . The dispersion of the Stark
phase shift with the atom trajectory is described by the terms
of the type δϕ(y) [second line of Eq. (B5)], with 〈δϕ〉 = 0. The
dispersion due to geometrical defects scales like V 2, while that
due to the contact potentials scales with V :

δϕSg(y) = ϕ0[ηl(y) − ηu(y)],

δϕSc(y) = 2ϕ0
V̄c,l(y) − V̄c,u(y)

V
− 〈ϕSc〉. (B7)

Although we expect the dispersion originating from the contact
potentials to be smaller, and to exhibit weak correlations
because of rapid small-scale variations, its influence could
not be ruled out prior to our experiment.
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