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Simulation of the magnetoresistance of ultracold atomic Bose gases in bichromatic lattices
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We present a theoretical study of the two-dimensional ultracold Bose gas in the presence of disorder and
bichromatic pseudodisorder in an optical lattice, to which we apply a synthetic magnetic field. We demonstrate
that, in the ballistic-transport regime, this leads to positive magnetoresistance and that, in the diffusive and
strong-localization regimes, can also lead to negative magnetoresistance. We propose experimental scenarios to
observe these effects.
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I. INTRODUCTION

The study of disorder-induced localization in ultracold
atomic gases is now well established, with strong localization
observed in one-dimensional (1D) quasiperiodic lattices [1]
and Anderson localization [2,3] in both one- [4] and three-
dimensional (3D) geometries [5,6] with disorder induced
through laser speckle [7,8]. In general, localization is always
expected in a truly disordered 1D system (although not
necessarily in a bichromatic lattice), whereas in 3D there
exists a mobility edge [9] between localized and extended
states, and a quantum phase transition between metallic and
insulating phases can be expected [10]. Two dimensions (2D),
as is often the case, is the marginal dimension between
these behaviors and, in the solid state, has led to interesting
debate [11] regarding the potential observation of a metallic
phase in Si MOSFETs. The observation of Anderson local-
ization of ultracold gases in 2D speckle potentials is also
complicated [12,13] by the presence of classical trapping in
the minima of the speckle potential. Studies of localization
in disordered ultracold 2D gases are therefore of timely
interest.

Anderson localization is a single-particle interference phe-
nomenon and is strongly enhanced in 2D by the increased
occurrence of crossing trajectories (in a path-integral picture)
over and above those in 3D. Crossing paths always result in
closed loops that constructively interfere back at the origin of
the path with their time-reversed equivalent. This enhances the
probability that a particle that starts at point r remains at point
r, i.e., is localized. If one introduces a magnetic field (of any
orientation in 3D, or with some component perpendicular to
the plane in 2D) then this time-reversal symmetry is broken and
the enhancement of localization destroyed. This is the origin
of negative magnetoresistance, which was a 30-year puzzle
until explained in the context of Anderson localization [14,15]
in 1980. The observation of the analog of such negative
magnetoresistance in an ultracold atomic gas localized by
disorder would be unambiguous evidence that the localization
was an interference phenomenon and not classical trapping or
interaction-induced self-trapping. In our understanding, such
clarification would be useful in current experiments [12].

Of course, ultracold atoms are charge neutral, so we cannot
simply impose an external magnetic field to break the time-
reversal symmetry. We can, however, introduce a synthetic
magnetic field by rapidly rotating the system [16] or, more

practically, through the use of spatially dependent light fields
to couple between internal states of the atoms [17–19].

We therefore examine a 2D ultracold Bose gas in an
optical lattice with quasiperiodic disorder induced by a weak
second lattice of incommensurate wavelength to the first.
We then impose a synthetic gauge field based upon the
Raman scheme [20] to simulate an applied magnetic field,
breaking time-reversal symmetry. We demonstrate that, in the
ballistic-transport regime, this leads to magnetoresistance and
in the diffusive (weak-localization) and insulating (strong-
localization) regimes can induce negative magnetoresistance.

In 1D and in the case of true disorder, all states are localized.
However, in the pseudodisorder introduced via a two-color
optical lattice as in the Aubry-André model [21], there is a
transition from extended states to localized dependent on the
strength of the pseudodisorder. This is nicely illustrated by
Albert and Leboeuf [22], where they show that above the criti-
cal value � = 2 of the disorder parameter, in 1D, interference
effects lead to the single-particle eigenstates being localized.
In some sense this is a classical localization effect, but its
origin is still in the interference of the quantum-mechanical
single-particle wave functions of the atoms. The localization
is therefore still due to an interference phenomenon—just as
there are numerous examples [23] of localization of classical
waves—although in the pseudodisorder case this may not
strictly be Anderson localization. The quantum origin of this
interference has also been recently discussed, in the contexts of
both correlated speckle disorder and quasiperiodic potentials,
by Moratti and Modugno [24]. It is certainly not simply
the classical trapping of the gas by the disorder potential
itself, which could, in principle, be a concern in 2D speckle
experiments, as mentioned above. In the rest of this paper
we will therefore not distinguish further and will refer to the
localization caused simply as strong localization.

II. THE MODEL

Our system is well described by the Bose-Hubbard Hamil-
tonian which in the absence of interparticle interactions takes
the form

Ĥ = −
∑
〈n,m〉

Jn,mâ†
nâm +

∑
n

εnân, (1)
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where ân is the Bose annihilation operator for the nth site, Jn,m

represents hopping from the nth to the mth site, and 〈n,m〉
indicates the nearest neighbors m of the nth site [25,26].

Disorder is introduced via interference with a weak optical
lattice that is incommensurate with the primary. This, along
with an external harmonic trap, is included in the on-site energy
term:

εn = Vdis[cos(4πxn/λ2 + φx) + cos(4πyn/λ2 + φy)]

+Vtrap
(
x2

n + y2
n

)
/λ2

1,

where Vdis represents the strength of the secondary lattice,
Vtrap the strength of the harmonic confinement, and λ1 (λ2) the
wavelength of the primary (secondary) lattice.

To include the effect of the synthetic gauge field we first
assume that there still exists an orthonormal set of basis states
that are localized to each site (modified Wannier functions),
then impose gauge invariance for any observable on the
Hamiltonian [27–29]. This motivates the modification to the
hopping term in (1):

Jn,m → J (A)
n,m = Jn,m exp

[
− iq

h̄

∫ xm

xn

A · ds
]
, (2)

where the integral is taken over the shortest path separating
the end points. With this it can be shown that any gauge
transformation with a function f (x,y), such that A → A′ =
A + ∇f , results in ân → â′

n = exp [−iqf/h̄] ân and con-
serves the site number operator (n̂′

n = |â′
n|2 = |ân|2 = n̂n),

therefore satisfying gauge invariance.
The spatial dependence of the hopping terms can be calcu-

lated analytically, if one approximates the Wannier functions
of the tight-binding model [30] with Gaussians [31–35], or
numerically with the (appropriately modified, in the presence
of a field) Wannier functions themselves [26]. In the absence
of a magnetic field it is our experience [36], and is well
established in the literature [31,32], that the spatial dependence
of the hopping term is of negligible importance compared
to the on-site energy fluctuations. We therefore assume that
this remains true in the presence of a magnetic field and set
Jn,m = J .

We then apply the mean-field approximation (an � 〈an〉 =
zn : zn ∈ C) to the Heisenberg equation of motion for the
Bose annihilation operator. It is convenient to relabel the sites
according to their spatial position; we therefore define zj,k to be
the amplitude of the site located at (x,y) = (k,j )a1 : j,k ∈ Z,
a1 = λ1/2. The discrete mean-field equations of motion in the
Landau gauge (A = −Byx̂) are then given by

iżj,k = −zj−1,k − zj+1,k

− e−iϕj zj,k−1 − eiϕj zj,k+1 + εj,kzj,k (3)

with

εj,k = �[cos(2παj + φy) + cos(2παk + φx)]

+ vtrap(j 2 + k2), (4)

where the overdot indicates the derivative with respect to
scaled time τ = t/t0, t0 = J/h̄. � = Vdis/J is the secondary-
lattice parameter and vtrap = Vtrap/J the harmonic trap param-
eter. ϕ is the phase accumulated in the Aharanov-Bohm effect
when a charged particle circumnavigates one lattice plaquette
in the counterclockwise direction.
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FIG. 1. (Color online) Site occupancy (logarithmic) of (a) the
initial wave packet at t = 0 and (b)–(d) after propagating for 1000t0
(s) in the secondary lattice, with � = 1, and synthetic gauge field (b)
ϕ = 0.001; (c) ϕ = 0.1; (d) ϕ = 1. Spatial coordinates are in units of
site separation (a1).

If we neglect the synthetic gauge field this system is
separable into two 1D systems, each of which, if we set the
lattice wavelength ratio α to an irrational number, is equivalent
to the Aubry-André model [21]. Therefore, for � < 2 the
eigenstates are extended and the dynamics is ballistic; for � =
2 the dynamics is diffusive; and for � > 2 the eigenstates are
exponentially localized and we enter the strong-localization
regime where, except for virtual transmission on the order
of the localization length, conduction is entirely suppressed
[37]. In our simulations we use the rational value α = 1025

863
corresponding to the ratio of wavelengths used in experiments
[1]. In the presence of the synthetic gauge field, however,
the equations are not separable and we find some interesting
dynamics.

For all simulations we initialize the wave packet in the
ground state of the primary lattice and a fairly strong harmonic
trap (vtrap = 10−2). This ground state has radial symmetry in a
nearly Gaussian distribution [Fig. 1(a)]. The harmonic trap is
then switched off at the same time as the synthetic gauge field
and secondary-lattice potential are switched on. The changing
magnetic field gives the wave packet a gauge-dependent
momentum kick [38]. In the symmetric gauge the wave
function remains unchanged as the contributions from the two
dimensions cancel. We work in the Landau gauge, however, so
we must transform the wave function using zL

j,k = eiϕjk/2zS
j,k .

We then evolve the wave packet in the time domain using a
fourth-order Runge-Kutta method [39].

The periodicity of the primary lattice introduces a cosine
dispersion relation in the first Brillouin zone. The lowest-
momentum states fall on the approximately quadratic part
of the dispersion relation and so the motion of an initially
low-energy wave packet mimics that of a wave packet in free
space but with a reduced effective mass [40]. The motion is
termed ballistic as the rms half-width scales as t with time.
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In this picture, we can understand our system in the presence
of a synthetic gauge field. A classical particle in a magnetic
field would complete closed circular loops in the 2D plane.
In our simulations, an initially Gaussian distribution expands
to a larger Gaussian with a ragged boundary that appears to
be rotating. The size to which the Gaussian can expand is
determined by the starting size and the size of the classical
cyclotron orbits. So far, this system is analogous to that
described in [41] which results in the celebrated Hofstadter
butterfly, also investigated recently [42] in the context of
atomic gases.

III. WEAK PSEUDODISORDER

In the extended regime (� < 2), the wave packet released
into a negligibly weak magnetic field gains the square sym-
metry [43] of the reciprocal lattice, with the real-space density
at long times reflecting the initial momentum distribution
[Fig. 1(b)] and the rms half-width follows the expected
t dependence (Fig. 3, triangle) characteristic of ballistic
expansion.

When the magnetic field is stronger, time-reversal sym-
metry is broken and hence the σx and σy symmetries [44]
(reflection in the x = 0 and y = 0 planes, respectively) are also
broken. The C2 = σxσy symmetry (rotation by π ) remains,
however, and so the solid points and unfilled squares in Fig. 2
are each self-similar and the Bravais lattice and hence the
reciprocal lattice are now rotated by π/2. The lattice parameter
is also increased by a factor of

√
2 and hence the “volume”

of the Brillouin zone is reduced by half. This results in the
diamond symmetry of Fig. 1(c), a signature that would be
clearly observable in time-of-flight type experiments. In a
very strong gauge field [Fig. 1(d)], the initial momentum
distribution no longer fills the entire Brillouin zone and so the
expanded wave packet maintains some of the radial symmetry,
losing the diamondlike structure.
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FIG. 2. (Color online) Diagram of the primary lattice depicting
the phase accumulated around a lattice plaquette in the synthetic
gauge field and the symmetries σx and σy which are broken. Filled
and unfilled dots indicate the loss of self-similarity between these sets
of sites due to symmetry breaking.
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FIG. 3. (Color online) rms half-width of the particle cloud vs
time during evolution in a secondary lattice with strength � = 1
and synthetic gauge field: (triangle), ϕ = 0.001; (square), ϕ = 0.01;
(cross), ϕ = 0.1; (circle), ϕ = 1. Inset: Long-term scaling (w ∝ tγ )
of the width of the cloud.

At long times, increasing the magnetic field has the effect of
decreasing the cloud’s rate of expansion (Fig. 3). The classical
analogy is that the particles are completing more of their tighter
circular orbits, and hence traversing less linear distance, before
being scattered off the pseudorandom secondary lattice. This is
therefore analogous with normal, positive magnetoresistance.

The durations of the simulations shown in Fig. 4 are limited
by the system size; the simulation is terminated when the effect
of the periodic boundary conditions becomes noticeable.

In the inset of Fig. 3 we plot γ = dlog10(w)
dlog10(t) at long times

for a selection of gauge-field strengths. The data points are
obtained using a temporal average about each point. The error
bars reflect the variance in the data. The long-time behavior of
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FIG. 4. (Color online) rms half-width of the particle cloud vs
time during evolution in a secondary lattice with strength � = 3 and
synthetic gauge field: (cross), ϕ = 0.001; (circle), ϕ = 0.01; (square),
ϕ = 0.1; (diamond), ϕ = 0.5; (triangle) ϕ = 1. Disorder averaging
is performed by sampling a range of pseudoincommensurate lattice
ratios about α = 1.2. Inset: Total particles vs time when � = 3, ϕ =
1, and using a 25-site absorbing boundary layer in a (256 × 256)-site
system (thus attenuating extended states). (Dashed line), full system;
(solid line), 31 × 31 sites at center of the system.
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the size of the cloud approaches t1/2 with very strong magnetic
field, which is characteristic of diffusive expansion.

To summarize, for weak disorder, the effect of the magnetic
field is therefore to change the transport from ballistic
to diffusive expansion. Furthermore, with increasing field
strength, the diffusion coefficient is reduced, consistent with
positive magnetoresistance.

IV. STRONG PSEUDODISORDER

In the strongly localized regime, � > 2, we observe the
confinement of the wave packet consistent with the Aubry-
André model for a sufficiently weak gauge field (Fig. 4,
square). This localization is the result of the total destructive
interference of multiply scattered matter waves for any sites
beyond the localization length.

Considering any path that loops back to its origin, the
same path traversed in the opposite (time-reversed) direction
is of the same length and hence will return the same phase.
Any closed path and its time-reversed partner will therefore
interfere constructively. In the presence of a gauge field,
however, the phase is displaced proportionally to the flux
enclosed, which has opposite sign for each direction (the
Aharonov-Bohm effect). The two paths will then interfere with
an essentially random phase. When averaged over many paths,
the backscattering of the matter waves is now dramatically
reduced, resulting in the destruction of the localization and a
positive expansion of the wave packet.

For a sufficiently strong gauge field we clearly observe the
destruction of the strong localization (Fig. 4). Furthermore,
increasing the magnetic field increases the rate of expansion
of the cloud, characteristic of negative magnetoresistance. The
transition occurs continuously, suggesting that the localization
is broken for any magnetic-field strength, although it may be
undetectable for the system run times that we can simulate.

It is interesting to note that localization is not completely
broken for all states. Some of the eigenstates remain localized.
In the inset of Fig. 4 we demonstrate the presence of localized
eigenstates. For this plot we have included a large negative-
imaginary term in the local part of the Hamiltonian for sites
within 25 sites of the system edge [in a (256 × 256)-site
system]. When released from the harmonic trap, any outward-
bound population is quickly absorbed in the boundary layer
before it can create edge effects back at the center. In the plot
we observe that the decay of the total population saturates as
all the extended states are attenuated when they reach the
edge of the simulation grid, leaving behind the surviving
localized states. This is most pronounced for the 31 × 31
sites at the center of the system. Such behavior could be
observed experimentally by taking in situ absorption images
and observing the change in particle number with time.

V. TRUE DISORDER

Up to this point we have considered disorder introduced
through a quasiperiodic potential as in the experiments of Roati
et al. [1] and Schulte et al. [45]. We now compare these results
to those obtained using a true disorder potential defined by
replacing the previous εj,k with

εj,k = WR and (j,k), (5)
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FIG. 5. (Color online) rms half-width of the particle cloud vs
time during evolution in a uniformly random on-site potential with
energies in the range [0,9]J . Synthetic gauge field switched on at
t = 0 with strength (circle), ϕ = 0; (square), ϕ = 0.001; (cross), ϕ =
0.01; (diamond), ϕ = 0.1; (triangle), ϕ = 0.5; and (asterisk), ϕ = 1.

where W is the strength of the disorder and Rand( ) is MATLAB’s
random-number generator producing pseudorandom numbers
on the interval [0,1] for each lattice site. This model, while
strictly unachievable in current experiments, is an approxi-
mation to those using 2D laser speckle patterns. However,
the disorder potential produced through laser speckle contains
correlations due to the grain size which are not included here.
This model could, of course, be extended to include these
correlations, but is very parameter specific and so neglected
here in this more general treatment.

In principle, with true disorder, all states are localized in
2D [15]. The localization length for weak disorder, however,
can be very large compared to the system size. We therefore
present calculations performed with W = 9 (Fig. 5) as this
results in a localization length small enough to contain in our
numerical simulations. We ran each simulation ten times with
different realizations of the disorder potential and present the
average of the wave-packet size vs time. In this model, the
wave packet remains localized for any phase (ϕ) of the gauge
potential, as one expects from scaling theory. However, the
localization length is increased with increasing field strength,
consistent with the appearance of negative magnetoresistance
in a truly disordered system.

VI. CONCLUSIONS

In conclusion, we have used numerical simulations to
demonstrate the interplay between synthetic gauge fields and
strong localization in the Aubrey-André model. We observe
first positive magnetoresistance in the extended regime and
then negative magnetoresistance in the strong-localization
regime. We have demonstrated distinctive behaviors for each
regime that should be experimentally observable through
straightforward absorption imaging techniques. Especially, the
observation of negative magnetoresistance can be explained
only in the context of an interference phenomenon. This
would therefore be an unambiguous signature that localization,
destroyed or reduced by the imposition of a magnetic field,
had such interference as its origin, distinguishing it from
classical trapping or interaction-induced self-trapping. This
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is especially important in 2D where ambiguity in the origin
of localization in experiments still resides. Whilst our study
has concentrated on the use of quasiperiodic lattices for the
experimental introduction of the disorder potential, we have
demonstrated qualitative agreement for our conclusions using
a true disorder potential. We therefore believe our results will
carry over to experiments using laser speckle.
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