
PHYSICAL REVIEW A 88, 043620 (2013)

Composite pairing and superfluidity in a one-dimensional resonant Bose-Fermi mixture
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We study the ground-state properties of one-dimensional mixtures of bosonic and fermionic atoms resonantly
coupled to fermionic Feshbach molecules. When the particle densities of fermionic atoms and Feshbach molecules
differ, the system undergoes various depletion transitions between binary and ternary mixtures as a function of
the detuning parameter. However, when the particle densities of fermionic atoms and Feshbach molecules
are identical, the molecular conversion and disassociation processes induce a gap in a sector of low-energy
excitations, and the remaining system can be described by a two-component Tomonaga-Luttinger liquid. Using
a bosonization scheme, we derive the effective low-energy Hamiltonian for the system, which has a similar form
as that of the two-chain problem of coupled Tomonaga-Luttinger liquids. With the help of improved perturbative
renormalization group analysis of the latter problem, we determine the ground-state phase diagram and find
that it contains a phase dominated by composite superfluid or pairing correlations between the open and closed
resonant channels.
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I. INTRODUCTION

The Feshbach resonance [1], as experimentally realized in
ultracold atoms and molecules in optical lattices, has made it
possible to investigate the many-body physics of multicompo-
nent quantum degenerate mixtures of fermions and/or bosons
with interspecies interactions [2–6]. Operationally, a magnetic
field near resonance can tune the energy splitting between
different hyperfine configurations of atoms, yielding a tunable
scattering amplitude with a magnitude that depends on the mis-
match of the magnetic moments [7]. In this context, theoretical
studies have introduced two primary interaction vertices: a
short-ranged, one-channel density-density type interaction and
a two-channel interaction that couples open-channel atoms to
a molecular bound-state (MB) particle [8–10].

Recently, heteronuclear fermionic Feshbach molecules
composed of bosonic 23Na and fermionic 6Li [11] and of
bosonic 87Rb and fermionic 40K [12] have been observed
experimentally and attracted the attention of theoretical studies
[13–21] focusing on the competition between the condensed
state of unpaired bosons and the degenerate MB particles
with an additional Fermi surface. It has been argued that
there can be depletion transitions [13,14,16] where one or
more of the atomic or molecular species can be exhausted
by driving the formation or disassociation of MB particles.
Furthermore, if bosons are condensed, the spectrum can be
directly diagonalized, yielding MB particles that are dressed
by free atomic fermions, which form low-energy quasiparticles
in a Fermi-liquid theory [21]. Additionally, the superfluidity
of a paired state of a fermionic atom and a fermionic
molecule, which is formed through attractive interactions
mediated by the condensed and/or uncondensed bosons, has
been predicted to occur [18]. However, it is questionable
as to whether such features obtained by a mean-field ap-
proach can persist when strong quantum fluctuations are
present, especially for atoms trapped in one-dimensional (1D)
tubes.

There are many reliable analytical and numerical methods
available for 1D systems [22,23]. In particular, the bosoniza-
tion technique has been applied to one-channel systems
with density-density type interactions, showing pairing and
density-wave instabilities [24], polaronic phases [25–27], and
competing orders [28]. The dominant phases exhibit variants
of “paired” order parameters with algebraic decay or quasi-
long-range order (QLRO) [24–27]. Systematic analysis has
also been performed for a two-channel type model arising
from atom-molecule mixture, expected for narrow resonances
[29,30]; however, these investigations were primarily focused
on the bosonic MB particles for two-component fermions in
the context of the BEC-BCS crossover. The possibility of
more complex pairing and superfluid orders that couple the
open and closed fermionic channels has not been observed
experimentally or discussed theoretically in detail.

In this paper, we study a general two-channel model
of fermionic and bosonic atoms near a narrow Feshbach
resonance where bosons, fermions, and molecules can coexist.
Using a renormalization-group (RG) method based on the
bosonization formalism, we obtain a low-energy theory and
attempt to clarify the ground-state phase diagram, with an
emphasis on the conditions that allow the pairing of the
fermionic atoms and molecules across the Feshbach resonance.
In doing so, we make use of the analogy to the two-chain
problem of coupled Tomonaga-Luttinger liquids (TLL). The
paper is organized as follows. In Sec. II, we introduce
the model and examine the condition for ternary mixed
phases of bosonic atoms, fermionic atoms, and fermionic
molecules. In Sec. III, the ternary mixed phase is studied
and possible order parameters are introduced to characterize
QLRO. We determine the phase diagram for the case of an
incommensurate density regime of fermions and molecules. In
Sec. IV, the RG method is applied to analyze the low-energy
properties, and in Sec. V, the phase diagram is determined for
the commensurate density regime of fermions and molecules.
Last, in Sec. VI we summarize our results in the conclusion. It
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so happens that, given the mathematical form of the resonant
interaction, we can draw on an RG approach applied to the
spinless two-coupled chain, which is revisited in Appendix A.
Finally, as a supplement, we present an alternative approach
based on a gauge transformation procedure in Appendix B.

II. MODEL AND CONDITION FOR TERNARY
MIXED PHASE

A. Model Hamiltonian

Our starting point is a coupled, two-channel model that
describes a resonant scattering process, where free bosonic
(b) and fermionic (f ) atoms resonate into fermionic Feshbach
molecules (ψ). The model Hamiltonian is given by

H = Hb + Hf + Hψ + H3p, (2.1)

where

Hb =
∫

dx �
†
b(x)

(
− 1

2mb

d2

dx2
− μb

)
�b(x)

+ 1

2

∫
dxdx ′Vbb(x − x ′)ρb(x)ρb(x ′), (2.2a)

Hf =
∫

dx �
†
f (x)

(
− 1

2mf

d2

dx2
− μf

)
�f (x)

+ 1

2

∫
dxdx ′Vff (x − x ′)ρf (x)ρf (x ′), (2.2b)

Hψ =
∫

dx �
†
ψ (x)

(
− 1

2mψ

d2

dx2
+ ν − μψ

)
�ψ (x)

+ 1

2

∫
dxdx ′Vψψ (x − x ′)ρψ (x)ρψ (x ′), (2.2c)

H3p = g3p

∫
dx[�†

ψ (x)�f (x)�b(x) + H.c.], (2.2d)

and we have set h̄ = 1. The density operators are ρs(x) =
�

†
s (x)�s(x), (s = b,f,ψ), where the field operators �s(x)

obey the usual commutation and anticommutation relations
for bosons (s = b) and fermions (s = f,ψ). The Hamiltonian
Hs (s = b,f,ψ) consists of a kinetic energy term and an
intraspecies density-density interaction term. The coupling
g3p in Eq. (2.2d) induces the conversion of bosonic (b) and
fermionic (f ) atoms into fermionic MB particles (ψ) and vice
versa (disassociation) [8,9]. The individual particle numbers
are not conserved; instead, the total numbers of bosonic and
fermionic atoms,

NB =
∫

dx[ρb(x) + ρψ (x)], (2.3a)

NF =
∫

dx[ρf (x) + ρψ (x)], (2.3b)

are conserved quantities. It follows that the masses (ms) and
the chemical potentials (μs) obey the sum rules for mass
conservation and chemical equilibrium,

mb + mf = mψ, μb + μf = μψ, (2.4)

and the detuning parameter ν in Eq. (2.2c) defines the energy
splitting between the open and closed channels. The fermionic
intraspecies couplings, Vff (x), and Vψψ (x), are assumed to
be short-ranged, while the b atoms interact with each other

through the coupling Vbb(x). At strong repulsion, the boson
system is described by an ordinary Tonks-Girardeau (TG) gas
which behaves as free fermions.

B. Phase diagram in the limit of g3 p → 0

Before proceeding to the many-body features of the model
described by Eq. (2.1), it is important to first establish the
range of physical parameters that allow the ternary coexistence
of all atoms and molecules. For simplicity, we will consider
the limit g3p → 0, with Tonks-Girardeau bosons [Vbb(x) =
gbδ(x) with gb → +∞], and noninteracting fermions and
molecules [Vff (x) = Vψψ (x) = 0]. As noted in Ref. [16],
we can construct a set of dimensionless parameters NF /NB ,
mf /mb, and ν/T0, where T0 is the “Fermi” degeneracy
temperature for hard-core bosons: T0 ≡ π2N 2

B/(2mbL
2), with

L being the system size.
Let us introduce the average particle density ρ0

s =
L−1

∫
ρs(x)dx and the corresponding normalized quantity

ρ̄s ≡ Lρ0
s /NB . The conditions for the conserved total numbers

of atoms [Eqs. (2.3)] are expressed as 1 = ρ̄b + ρ̄ψ and
NF /NB = ρ̄f + ρ̄ψ , respectively. For hard core bosons, free
fermions, and free molecules, the chemical potentials are
given by μb = (kb

F )2/(2mb), μf = (kf

F )2/(2mf ), and μψ =
(kψ

F )2/(2mψ ) + ν, where the “Fermi momenta” for each
species are given by

ks
F = πρ0

s . (2.5)

The particle densities can be determined from the equilib-
rium condition of Eq. (2.4). In the ternary mixed phase of b, f ,
and ψ particles (b + f + ψ phase), the density of molecules
ρ̄ψ is determined by the following equation:

(1 − ρ̄ψ )2 + 1

m̄f

(N̄F − ρ̄ψ )2 = 1

1 + m̄f

(ρ̄ψ )2 + ν̄, (2.6)

where N̄F ≡ NF /NB , m̄f ≡ mf /mb, and ν̄ ≡ ν/T0. The
densities for b atoms and f atoms are determined by ρ̄b =
1 − ρ̄ψ and ρ̄f = N̄F − ρ̄ψ , respectively, and the expected
ν dependence is shown in Fig. 1. Notice that in the case
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FIG. 1. (Color online) The normalized particle densities ρ̄s ≡
Lρ0

s /NB as a function of the detuning parameter ν. In this figure, we
choose mb = mf andNF /NB = 3/2. At ν/T0 = 11/32, the densities
of fermions and molecules become equal, ρ̄f = ρ̄ψ = 3/4.
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FIG. 2. (Color online) Phase diagram in terms of the detuning
parameter ν and the fermion number NF for the case of equal masses
mb = mf . The ternary mixed state of bosonic atoms, fermionic
atoms, and Feshbach molecules is realized in the region denoted by
“b + f + ψ .” The regions denoted by “f + ψ ,” “b + ψ ,” and “b + f ”
represent the fermion-molecule, boson-molecule, and boson-fermion
binary mixed phases, respectively. Along the dashed line, the densities
of fermions and molecules become equal, ρ̄f = ρ̄ψ .

of sufficiently strong positive detuning, the ψ particle is
completely depleted and only the b and f atoms remain. We
thus label this binary mixture the “b + f ” phase; effects of
possible heteroatomic interactions in this regime have been
analyzed in the literature [24–28,31,32], where it has been
pointed out that the excitation spectrum can have a gap and the
pairing fluctuations are enhanced when the particle densities
of two kinds of atoms become equal. On the other hand, the
MB particles become stable for sufficiently strong negative
detuning; for NF /NB < 1 (>1), either b or f atoms coexist
with the ψ particles and the resulting binary mixtures are
labeled “b + ψ” and “f + ψ” phases, respectively.

The phase diagram in terms of the detuning parameter ν

and the total fermion number NF is shown in Fig. 2, which
can be contrasted with the corresponding phase diagram in the
three-dimensional (3D) case (see Fig. 3 in Ref. [13], Fig. 3 in
Ref. [16], and also Fig. 1 in Ref. [18]), where the Bose-Einstein
condensate (BEC) proliferates everywhere except for the small
ν and large NF region corresponding to the f + ψ phase in
Fig. 2. In the present 1D case, no BEC can occur in any
parameter region, but a “Fermi surface” of the b atoms can
be observed instead. With this in mind, we find qualitative
agreement with our phase diagram for 1D mixtures and that
for 3D mixtures. The densities of fermions and molecules
become identical (ρ̄f = ρ̄ψ ) in both ternary and binary mixed
phases for a particular ν̄, satisfying

ν̄ =
⎧⎨
⎩

1 − N̄F + 1+m̄f +m̄2
f

4m̄f (1+m̄f )N̄ 2
F (b + f + ψ phase),

1
4

(
1

m̄f
− 1

1+m̄f

)
N̄ 2

F (f + ψ phase),
(2.7)

which is represented by the dashed line in Fig. 2. The analysis
given in Ref. [24] may be applied to the case ρ̄f = ρ̄ψ in the
f + ψ phase. However, the spectrum for the case ρ̄f = ρ̄ψ

in the b + f + ψ phase has not yet been analyzed so far. In

the following sections, we study phases realized inside the
b + f + ψ phase upon turning on the g3p coupling.

III. BOSONIZATION

A. Bosonized Hamiltonian

The dominant low-energy behavior of the model defined
by Eqs. (2.2) can be studied by using a harmonic fluid
representation, where the single-particle dispersion relations
are linearized near the “Fermi” points. In the problem of
BEC-BCS crossover in one dimension, a two-channel model of
two-component fermions that dimerize into bosonic molecules
has been previously analyzed by means of the bosonization
method in Refs. [29] and [30]. Because of the different
statistics of particles, the bosonization analysis of the present
model will reveal different phases.

In terms of the bosonic phase fields φs(x), the density
operators can be expressed as [22,23,33]

ρs(x) = ρ0
s − 1

π

dφs(x)

dx
+ ρ0

s

∑
m�=0

e2im[πρ0
s x−φs (x)], (3.1)

where ρ0
s is the equilibrium density and the summation is

over nonzero integer m. The field operators for the respective
particles are represented as [22,23,33]

�b(x) = 1√
2πα

∑
n∈Z

ein[2πρ0
b x−2φb(x)]+iθb(x), (3.2a)

�
L/R

f (x) = ξf√
2πα

e∓i[πρ0
f x−φf (x)]+iθf (x), (3.2b)

�
L/R

ψ (x) = ξψ√
2πα

e∓i[πρ0
ψx−φψ (x)]+iθψ (x), (3.2c)

where α is a short-distance cutoff. The field operators �L
s

and �R
s (s = f,ψ) represent the left-moving and right-moving

chiral branches of fermionic particles, respectively. The Klein
factors ξf and ξψ , satisfying {ξs,ξs ′ } = 2δs,s ′ and ξ

†
s = ξs , are

introduced in order to retain the anticommutation relation
between f and ψ particles. θs(x) are dual fields to φs(x)
and obey [φs(x),θs ′ (x ′)] = iπδs,s ′�(−x + x ′), where �(x) is
the Heaviside step function, i.e., �(x) = 1 for x > 0, �(0) =
1
2 , and �(x) = 0 for x < 0. By introducing the conjugate
momenta s(x) = (1/π )∂xθs(x), a generic TLL Hamiltonian
for each component is expressed as

Hs = us

2π

∫
dx

{
Ks[πs(x)]2 + 1

Ks

[∂xφs(x)]2

}
. (3.3)

The parameters us and Ks are velocities and TLL param-
eters, respectively, which depend on the precise forms of
microscopic intraspecies interactions. We will consider the
general case where 0 < Ks=b,f,ψ < ∞. The noninteracting
limits Vbb → 0 and Vff , Vψψ → 0 correspond to Kb = ∞
and Ks=f,ψ = 1, respectively. By tuning gb → ∞, the system
enters the TG regime at Kb � 1 [23,33]. For specific realiza-
tions of optical lattice systems, the commensurability of the
Bose-Hubbard interaction allows the possibility of tuning into
the regime Kb < 1, when Vbb is long ranged [23,33].

After substituting the bosonized form of �s(x) defined in
Eqs. (3.2) into Eq. (2.2d) and keeping only the n = 0 term for
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�b, we obtain

H3p = −ig̃3p

∫
dx cos[θb(x) + θf (x) − θψ (x)]

× sin[φf (x) − φψ (x) − δkF x], (3.4)

where δkF ≡ k
f

F − k
ψ

F and g̃3p = 4g3p(2πα)−3/2. In deriving
Eq. (3.4) we have discarded terms like g̃3p sin(θb + θf − θψ )
cos(2kF x − φf − φψ ), which are strongly irrelevant in the RG
sense because they have spatial oscillations with the wave
number 2kF ≡ k

f

F + k
ψ

F = πNF /L. Furthermore, we have
replaced ξf ξψ with +i, because the product of the two Klein
factors is a constant of motion [the identity (ξf ξψ )2 = −1
implies either ξf ξψ = +i or −i, and we have chosen the
former]. We will use the same sign convention when we derive
bosonized form of order parameters.

In the incommensurate case (δkF �= 0), the g3p interaction
[Eq. (3.4)] is irrelevant in the RG sense. The analysis of the
previous section is then applicable, and the phase diagram
therefore can be determined as in the previous section, with
various depletion transitions occurring between binary and
ternary mixture phases. On the other hand, Eq. (3.4) has a
dramatically different effect for the commensurate case (δkF =
0), which is satisfied along the dashed line in Fig. 2. In this
case, sinusoidal potentials can lock a particular phase variable
(θs or φs), and a competition of various orders due to the phase
locking must be studied by performing a RG analysis.

B. Order parameters

In the context of quantum mixtures, composite “pairing”
correlations have been previously introduced in the literature
and will be extended here to a more comprehensive list of
possible order parameters. First, the conventional 2kF density-
wave (DW) order parameters are given by

ODW
b (x) = �

†
b(x)�b(x) 
 ei(2kb

F x−2φb), (3.5a)

ODW
f (x) = �

L†
f (x)�R

f (x) 
 ei(2k
f

F x−2φf ), (3.5b)

ODW
ψ (x) = �

L†
ψ (x)�R

ψ (x) 
 ei(2k
ψ

F x−2φψ ). (3.5c)

Here (and below) we have dropped unimportant numerical
prefactors. In analogy with order parameters in the spinless
two-coupled chain system [see Eq. (A4a)], we introduce the
out-of-phase DW state of f and ψ particles,

ODW
f ψ (x) = �

L†
f (x)�R

f (x) − �
L†
ψ (x)�R

ψ (x)


 ei2kF x−i(φf +φψ ) sin(φf − φψ − δkF x). (3.5d)

Next, the order parameters for the superfluidity (SF) of bosons,
p-wave-paired fermions, and p-wave-paired molecules are
given by

OSF
b (x) = �b(x) 
 eiθb , (3.5e)

OSF
ff (x) = �L

f (x)�R
f (x) 
 ei2θf , (3.5f)

OSF
ψψ (x) = �L

ψ (x)�R
ψ (x) 
 ei2θψ . (3.5g)

We will also consider the p-wave-paired SF state composed
of f and ψ particles,

OSF
f ψ (x) = �L

f (x)�R
ψ (x) − �R

f (x)�L
ψ (x)


 ei(θf +θψ ) sin(φf − φψ − δkF x), (3.5h)

which is odd under the parity transformation, L ↔ R, and
therefore can be classified as p-wave pairing. Moreover,
this order parameter can be identified with the interchain
pairing SCd state in the two-coupled spinless chain problem
[see Eq. (A4c)], where f and ψ can be replaced by the
two-chain indices.

Earlier work in Ref. [34] investigated the phase diagram of
interacting “b + f ” binary mixtures near the commensurate
point ρ̄b = ρ̄f , where the composite p-wave superfluidity
∼�2

b�
L
f �R

f was shown to have dominant QLRO correlations.
In the ternary system studied here, similar orders can persist,

OSF
bff +b†ψψ

(x) = �b�
L
f �R

f + �
†
b�

L
ψ�R

ψ


 ei(θf +θψ ) cos(θb + θf − θψ ), (3.5i)

which describes the p-wave pairing of two fermionic
(f or ψ) particles combined with a single b atom. Note
that the two composite operators in Eq. (3.5i), �b�

L
f �R

f and

�
†
b�

L
ψ�R

ψ , annihilate equal numbers of fermionic and bosonic
atoms (including the ones forming a molecule), as seen from
the commutation relations [NB,OSF

bff +b†ψψ
] = −OSF

bff +b†ψψ

and [NF ,OSF
bff +b†ψψ

] = −2OSF
bff +b†ψψ

. This order parameter
corresponds to the intrachain SCs pairing in the two-coupled
chain problem [see Eq. (A4d)].

In addition, we consider other composite order parameters
defined by

Oph1
b†f †ψ

(x) = �
†
b�

L†
f �L

ψ − �b�
R†
ψ �R

f


 eiδkF x−i(φf −φψ ) sin(θb + θf − θψ )

+ ei(−2kb
F +δkF )x+i(2φb−φf +φψ )

× cos(θb + θf − θψ ), (3.5j)

Oph2
b†f †ψ

(x) = �
†
b�

L†
f �R

ψ − �b�
L†
ψ �R

f


 ei2kF x−i(φf +φψ ) cos(θb + θf − θψ ), (3.5k)

which represent the particle-hole combinations of f and ψ

fermions. These operators are composed of the products of
three field operators, �

†
b�

†
f �ψ and �b�

†
ψ�f , which are

similar in form to the g3p term of Eq. (2.2d) but asymmetrical
in the L,R branches. The second bosonized contribution
in Eq. (3.5j), coming from the n = −1 contribution in
Eq. (3.2a), can become a dominant order parameter for some
parameter regime, as will be shown later. We also note
that the order parameter in Eq. (3.5k) corresponds to the
“orbital antiferromagnetic state” in the two-coupled chain
problem, in which circulating currents flow between the two
chains, if the f and ψ indices are regarded as chain indices
[see Eq. (A4b)].

C. Ground states in the incommensurate case

When δkF �= 0, the g3p interaction of Eq. (3.4) oscillates
in space and does not affect the low-energy spectrum. Thus
we can set g3p = 0 in the low-energy limit, and the system is
described as a three-component TLL, in which the b, f , and
ψ particles are decoupled and the correlation functions exhibit
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FIG. 3. (Color online) Phase diagram of Hamiltonian (2.1) for the incommensurate case ρf �= ρψ (a) and the commensurate case ρf = ρψ

(b). For simplicity we set ub = uf = uψ and Kψ = Kf . The regions labeled by DW and SF represent phases with the dominant density-wave
and superfluid correlations, respectively. The dominant correlation crosses over from DW to SF or vice versa across the dashed lines. (b) In the
phase denoted by “(3 component TLL),” all the couplings G3p , Gφ , and Gθ are irrelevant in the RG sense. The boundary between the phases of
relevant Gφ and that of relevant Gθ is shown by the thick solid line at which the system undergoes a quantum phase transition. On the left-hand
(right-hand) side of the thick solid line, the coupling Gφ (Gθ ) becomes relevant.

algebraic decay. For example, the correlators for the b particles
are given by 〈

OSF
b (x)OSF†

b (0)
〉
0 ∼ x−1/(2Kb), (3.6a)〈

ODW
b (x)ODW†

b (0)
〉
0 ∼ x−2Kbei2kb

F x . (3.6b)

We find that the superfluidity correlation dominates over
the density-wave correlation when Kb > 1/2. Similarly, the
correlation functions for the p-wave superfluidity and the
density-wave of the f and ψ particles exhibit algebraic decay,

〈
OSF

ss (x)OSF†
ss (0)

〉
0 ∼ x−2/Ks , (3.7a)〈

ODW
s (x)ODW†

s (0)
〉
0 ∼ x−2Ks ei2ks

F x, (3.7b)

where s = f,ψ . The dominant correlation for fermions
changes between the superfluidity and density-wave orders
at Ks = 1. In Fig. 3(a) we show the phase diagram in the
parameter space of Ks (s = b,f,ψ), which is obtained by
identifying the dominant QLRO among those in Eqs. (3.6)
and (3.7).

IV. RENORMALIZATION IN THE
COMMENSURATE CASE

When δkF 
 0, the effects of the sinusoidal potential (3.4)
can be analyzed using RG techniques [33]. Apparently, the
form of Eq. (3.4) contains dual fields which do not commute
[θb + θf − θψ,φf − φψ ] �= 0. This type of interaction has
been analyzed in the context of two TLL chains coupled
by one-particle interchain hopping [35,36], where it has
been confirmed that higher-order corrections are crucial to
determine the low-energy spectrum of the two TLL chains
[37]. We thus can expect that interactions generated by RG
transformation should similarly be taken into account in our
model.

In order to properly derive the RG equations and to
determine the ground-state phase diagram for the Hamiltonian
including the potential as Eq. (3.4), we have to pay special

attention to the commutative properties of the phase fields,
besides the Klein factors. In Appendix A, we analyze the
two-coupled chain system on the basis of the present bosoniza-
tion scheme and verify that the correct results [38] can be
derived. In Ref. [38], the interchain hopping term was treated
nonperturbatively and the phase diagram was determined. In
Appendix B, we analyze the present model (2.1) using the
method of Ref. [38] and observe that the consistent results can
be obtained.

In this section we set ub = uf = uψ (≡u) for simplicity. The
Euclidean action of the system is given by S = S0 + SI,0 +
SI,1 + SI,2 + SI,3 with

S0 =
∑

s

1

2πKs

∫
d2r(∇φs)

2, (4.1a)

SI,0 =
∑
s �=s ′

Gss ′

2π

∫
d2r (∇φs)(∇φs ′ ), (4.1b)

SI,1 = G3p

iπ

∫
d2r

α2
cos(θb + θf − θψ ) sin(φf − φψ ),

(4.1c)

SI,2 = Gφ

π

∫
d2r

α2
cos(2φf − 2φψ ), (4.1d)

SI,3 = Gθ

π

∫
d2r

α2
cos(2θb + 2θf − 2θψ ), (4.1e)

where r = (x,uτ ), ∇ = (∂x,u
−1∂τ ), d2r = udxdτ , and

G3p = πα2g̃3p/u. Although the extra terms Gφ , Gθ , Gbf ,
Gbψ , and Gf ψ , are absent in the original Hamiltonian, they
are generated through the RG process [35].

In this paper, we adopt the momentum-space RG method
[39] by introducing the momentum space cutoff �. The
RG equations can be obtained by integrating out the high-
momentum components �′ < |k| < �, where �′ = �(1 −
dl) is the reduced cutoff (dl = −d�/�) and k = (k,ω/u)
with the frequency ω. Accordingly, the phase fields φs(r) are
split into two components φs(r) = φ′

s(r) + hs(r) [39], where
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φ′
s(r) is the field having components in lower momentum

0 < |k| < �′ and hs(x) has higher momentum components
�′ < |k| < �. The free propagators for these fields are given
by

〈φ′
s(r)φ′

s(0)〉 = Ks

2
ḡ(r) = Ks

2

∫ ∞

0

dk

k
J0(kr)f (k/�′),

(4.2)

〈hs(r)hs(0)〉 = Ks

2
δg(r)

= Ks

2

∫ ∞

0

dk

k
J0(kr)[f (k/�) − f (k/�′)],

(4.3)

where r = |r| and J0(z) is the Bessel function of the first
kind. With the smooth cutoff function f (p) = c2/(p2 + c2)
[40], we have the correlation functions 〈[φ′

s(r) − φ′
s(0)]2〉 =

Ks ln(eγ c�′|r|/2) and δg(r) = c�rK1(c�r)dl for c�r �
1, where K1(z) is the modified Bessel function. The con-
stant c is taken as c = 2e−γ /(�α) in order to reproduce
the asymptotic form 〈[φs(r) − φs(0)]2〉 = Ks ln(|r|/α) for
|r| → ∞. The derivation of one-loop RG equations pro-
ceeds similarly to the case of the two-coupled chain sys-
tem explained in Appendix A. By exploiting the commu-
tation relation [φs(x),θs ′ (x ′)] = iπδs,s ′�(−x + x ′) and the
normal ordering procedure for the operator-product expansion
[33,41], we eventually obtain the following one-loop RG
equations:

dG3p

dl
=

(
2 − 1

4Kb

− 1

4Kf

− 1

4Kψ

− Kf

4
− Kψ

4
− 1

2
Gbf

+ 1

2
Gbψ + 1

2
Gf ψ − 1

2
Gf ψKf Kψ

)
G3p, (4.4a)

dGφ

dl
= (2 − Kf − Kψ − 2Gf ψKf Kψ )Gφ

+ 1

4
G2

3p A1
((

K−1
b + K−1

f + K−1
ψ − Kf − Kψ

)/
4
)
,

(4.4b)
dGθ

dl
=

(
2 − 1

Kb

− 1

Kf

− 1

Kψ

− 2Gbf

+ 2Gbψ + 2Gf ψ

)
Gθ

− 1

4
G2

3p A1
((

Kf + Kψ − K−1
b − K−1

f − K−1
ψ

)/
4
)
,

(4.4c)
dKb

dl
= +G2

θA2
(
K−1

b + K−1
f + K−1

ψ

)
, (4.4d)

dKf

dl
= −G2

φ K2
f A2(Kf + Kψ )

+G2
θA2

(
K−1

b + K−1
f + K−1

ψ

)
, (4.4e)

dKψ

dl
= −G2

φ K2
ψ A2(Kf + Kψ )

+G2
θ A2

(
K−1

b + K−1
f + K−1

ψ

)
, (4.4f)

dGbf

dl
= + G2

θ

KbKf

A2
(
K−1

b + K−1
f + K−1

ψ

)
, (4.4g)

dGbψ

dl
= + G2

θ

KbKψ

A2
(
K−1

b + K−1
f + K−1

ψ

)
, (4.4h)

dGf ψ

dl
= −G2

φ A2(Kf + Kψ )

+ G2
θ

Kf Kψ

A2
(
K−1

b + K−1
f + K−1

ψ

)
, (4.4i)

where we have defined

A1(β)dl ≡ 2β

∫ ∞

0

dr

α

r

α
δg(r)e−2β[ḡ(0)−ḡ(r)], (4.5a)

A2(β)dl ≡ 2β

∫ ∞

0

dr

α

r3

α3
δg(r)e−2β[ḡ(0)−ḡ(r)]. (4.5b)

The exponential factors in the right-hand side of Eqs. (4.5)
appear as a result of normal ordering in operator-product
expansions [33,41]; for example,

cos[pφ′
s(r1) + qφ′

s(r2)]

= :cos[pφ′
s(r1) + qφ′

s(r2)] : e− 1
2 (p2+q2)〈φ′

s
2〉−pq〈φ′

s (1)φ′
s (2)〉

≈ :cos[(p + q)φ′
s(R)] : e− 1

2 (p2+q2)〈φ′
s

2〉−pq〈φ′
s (1)φ′

s (2)〉

= cos[(p + q)φ′
s(R)] e

1
2 [(p+q)2−(p2+q2)]〈φ′

s
2〉−pq〈φ′

s (1)φ′
s (2)〉

= cos[(p + q)φ′
s(R)] e

1
2 pqK[ḡ(0)−ḡ(r12)], (4.6)

where R = (r1 + r2)/2 and r12 = |r1 − r2|. We have used
the short-hand notations 1 = r1 and 2 = r2. We note that
A1(β) ≈ e2γ β for small β, and A1(1) = A2(2) = 1, where γ

is the Euler-Mascheroni constant. One can neglect the velocity
renormalization up to one-loop order. The initial values of the
RG equations are given by G3p(0) = G3p, Ks(0) = Ks , and
Gss ′ (0) = Gφ(0) = Gθ (0) = 0.

Diagrammatic representations for the G3p, Gφ , and Gθ

terms are shown in Fig. 4. The Gφ coupling is a four-point
vertex representing interactions between f and ψ particles,
while the Gθ coupling is a six-point vertex for a two-molecule
conversion from two b and two f particles. Low-order
contributions to Gφ and Gθ are also shown in Fig. 4. The

f

b

ψ

G3p

ψ

f

ψ

f

Gφ

= b

ψ

f ψ

f

+ · · ·

f

b

ψ

ψ

f

b

Gθ

=

b

b
ψ

ψ

f

f

+ · · ·

FIG. 4. Diagrammatic representation of the G3p , Gφ , and Gθ

terms, and low-order contributions to Gφ and Gθ . The dashed,
sold, and double lines represent the boson, fermion, and molecule
propagators, respectively. The wavy line represents the intraspecies
density-density interaction.
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lowest-order contribution to the Gφ coupling comes from the
effective interaction mediated by b atoms. Pairing between
fermions (f ) and molecules (ψ) induced by such boson- (b)
mediated interaction has been suggested in Ref. [18]. We will
contrast this paper with our work in more detail later.

Since [φf − φψ,θb + θf − θψ ] �= 0, the phase variables
φf − φψ and θb + θf − θψ cannot be locked simultaneously.
This means that there should be two distinct phases separated
by a quantum phase transition, a phase where φf − φψ is
locked by the Gφ term and a phase where θb + θf − θψ is
locked by the Gθ term, in addition to a three-component TLL
phase where none of the phase fields are locked. Here we obtain
the phase diagram by comparing the scaling dimensions, which
we denote by dim[ ], of the operators for the couplings G3p,
Gφ , and Gθ . We ignore renormalization of Kb, Kf , and Kψ for
weak g3p, because the right-hand side of Eqs. (4.4d)–(4.4f) are
of order g4

3p. The scaling dimensions of the sinusoidal potential
operators are found from Eqs. (4.4a)–(4.4c) as

dim[G3p] = 1

4

(
1

Kb

+ 1

Kf

+ 1

Kψ

+ Kf + Kψ

)
,

dim[Gφ] = Kf + Kψ, (4.7)

dim[Gθ ] = 1

Kb

+ 1

Kf

+ 1

Kψ

.

In the case when three inequalities, dim[G3p] > 2, dim[Gφ] >

2, and dim[Gθ ] > 2, are simultaneously satisfied, all the
locking potential operators are irrelevant, and, consequently,
we have a three-component TLL phase. This is the case for
large Kf and Kψ and small Kb. Otherwise, either the coupling
Gφ or Gθ becomes relevant and flows to strong coupling at
low energy.

We observe from Eqs. (4.4b) and (4.4c) that the condition

Kf + Kψ = 1

Kb

+ 1

Kf

+ 1

Kψ

(4.8)

defines the particular case where the scaling dimensions
dim[Gφ] and dim[Gθ ] become identical and the factor A1 in
the second terms of the right-hand side of Eqs. (4.4b) and (4.4c)
vanishes. Thus, Eq. (4.8) determines the phase boundary
between the phase where the Gφ operator is relevant and the
phase where the Gθ operator is relevant. In the case where
Kf + Kψ < K−1

b + K−1
f + K−1

ψ , the coupling Gφ is relevant
and renormalized to strong coupling with Gφ > 0. We note
that the positive Gφ coupling implies repulsive density-density
interactions between f and ψ particles. On the other hand, in
the opposite case where Kf + Kψ < K−1

b + K−1
f + K−1

ψ , the
coupling Gθ is relevant and renormalized to strong coupling
with Gθ < 0.

The resulting phase diagram is shown in Fig. 3(b), for which
the nature of the ground state in each phase is discussed in the
next section.

V. PHASE DIAGRAM IN THE COMMENSURATE CASE

In the preceding section we determined the phase bound-
aries in the phase diagram that admit quantum phase tran-
sitions. Therefore, in a given region of relevance where a
particular phase variable is locked, the properties of the
resulting phase that may exhibit dominant QLRO can be

understood by analyzing the exponents of the order-parameter
correlations.

For this purpose, the analysis based on the RG equations
given by Eqs. (4.4) is not simple since the G3p term contains
both φs and θs (s = f,ψ) fields. When treating this type of
term, one often encounters subtleties in determining ground-
state phases, especially in the case that the G3p term becomes
relevant. Thus it is necessary to make transformation to a
suitable basis.

A. Recombination of phase variables

We perform the following canonical transformation:

ϕ(x) = P φ(x), ϑ(x) = Q θ (x), (5.1)

where

φ(x) =

⎛
⎜⎝

φb(x)

φf (x)

φψ (x)

⎞
⎟⎠ , θ (x) =

⎛
⎜⎝

θb(x)

θf (x)

θψ (x)

⎞
⎟⎠ , (5.2a)

ϕ(x) =
⎛
⎝ϕ1(x)

ϕ2(x)
ϕ3(x)

⎞
⎠ , ϑ(x) =

⎛
⎝ϑ1(x)

ϑ2(x)
ϑ3(x)

⎞
⎠ . (5.2b)

The transformation matrices P and Q are generally
nonorthogonal, but the commutation relations of ϕ and ϑ ,
[ϕa(x),π−1∂yϑb(y)] = iδa,bδ(x − y), are preserved as long as
the relation PQT = 1 is satisfied [42]. A simplification of
Eq. (3.4) follows from the following choice of the matrices:

P = 1√
2

⎛
⎝−2 1 −1

0 1 1
0 1 −1

⎞
⎠ , Q = 1√

2

⎛
⎝−1 0 0

0 1 1
1 1 −1

⎞
⎠ .

(5.3)

Substituting the phase variables ϕ and ϑ , we rewrite the cosine
terms in Eqs. (4.1) as

SI,1 = G3p

iπ

∫
d2r

α2
cos(

√
2ϑ3) sin(

√
2ϕ3), (5.4a)

SI,2 = Gφ

π

∫
d2r

α2
cos(2

√
2ϕ3), (5.4b)

SI,3 = Gθ

π

∫
d2r

α2
cos(2

√
2ϑ3). (5.4c)

We note that the phase variables ϕ3 and ϑ3 are under the influ-
ence of the Gφ and Gθ cosine potentials, respectively. In terms
of the phase variables ϕ and ϑ , the TLL Hamiltonian (3.3) is
rewritten as

H0 = Hb + Hf + Hψ

= 1

2π

∫
dx[(∂xϕ

T)M(∂xϕ) + (∂xϑ
T)N (∂xϑ)], (5.5)
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where M and N are real symmetric matrices defined by

M = 1

2

⎛
⎜⎝

ubK
−1
b 0 −ubK

−1
b

0 uf K−1
f + uψK−1

ψ uf K−1
f − uψK−1

ψ

−ubK
−1
b uf K−1

f − uψK−1
ψ ubK

−1
b + uf K−1

f + uψK−1
ψ

⎞
⎟⎠ , (5.6a)

N = 1

2

⎛
⎜⎝

4ubKb + uf Kf + uψKψ uf Kf − uψKψ uf Kf + uψKψ

uf Kf − uψKψ uf Kf + uψKψ uf Kf − uψKψ

uf Kf + uψKψ uf Kf − uψKψ uf Kf + uψKψ

⎞
⎟⎠ . (5.6b)

The order parameters introduced in Sec. III B can now be
expressed in terms of the new phase variables ϕ and ϑ . The
order parameters for the b particles are given by

OSF
b (x) 
 e−i

√
2ϑ1 , (5.7a)

ODW
b (x) 
 ei2kb

F x+i
√

2ϕ1−i
√

2ϕ3 . (5.7b)

The order parameters for the p-wave-pairing SF and out-of-
phase DW states of the f and ψ particles are written as

OSF
f ψ (x) 
 ei

√
2ϑ2 sin(

√
2ϕ3), (5.7c)

ODW
f ψ (x) 
 ei2kF x−i

√
2ϕ2 sin(

√
2ϕ3), (5.7d)

from which it follows that correlations of SFf ψ and DWf ψ

are enhanced when the phase field ϕ3 is locked at 〈√2ϕ3〉 =
π/2 mod π . Finally, the order parameters for the composite
particles are expressed as

OSF
bff +b†ψψ

(x) 
 ei
√

2ϑ2 cos(
√

2ϑ3), (5.7e)

Oph1
b†f †ψ

(x) 
 e−i
√

2ϕ3 sin(
√

2ϑ3)

+ e−i2kb
F x−i

√
2ϕ1 cos(

√
2ϑ3), (5.7f)

Oph2
b†f †ψ

(x) 
 ei2kF x−i
√

2ϕ2 cos(
√

2ϑ3). (5.7g)

We see that the correlations of these order parameters are
enhanced when the phase field ϑ3 is locked at 〈√2ϑ3〉 = 0
mod π , except for the first contribution in Eq. (5.7f).

B. Effective low-energy Hamiltonian

The sinusoidal potentials of Eqs. (5.4) take on forms similar
to those of the spinless two-coupled chain system [35,37] (see
Appendix A). In the two-chain system, operators generated
in RG transformations become relevant in the low-energy
limit. Similarly, we expect that either the Gφ or Gθ term can
become relevant and renormalized to strong coupling, as we
have discussed below Eq. (4.8). The relevant Gφ > 0 leads
to locking of the phase field ϕ3 at 〈√2ϕ3〉 = π/2 mod π ,
whereas the relevant Gθ < 0 leads to the locking of the phase
field ϑ3 at 〈√2ϑ3〉 = 0 mod π . When either ϕ3 or ϑ3 is
locked, the remaining phase fields ϕs and ϑs (s = 1,2) remain
gapless, and then the system is effectively described by a two-
component TLL and a massive sine-Gordon model. However,
in contrast to the simple forms of sinusoidal potentials, the
quadratic Hamiltonian in Eq. (5.5) is complicated by the

presence of many cross terms. One approach that we will
implement here is to integrate out the massive mode (ϕ3,ϑ3)
in a manner similar to Ref. [43], thereby reducing the problem
to a two-band system which can be exactly diagonalized. To
be more precise, when Gφ(l) → +∞ in the RG analysis, the
quantum fluctuations of the ϕ3 field are suppressed, and we
can make the approximation ∂xϕ3 → ∂x〈ϕ3〉 ∼ 0. Moreover,
since the cosine potentials can be ignored for the strongly
fluctuating ϑ3 field, ϑ3 can be integrated out by completing
the square for ∂xϑ3 in the quadratic Hamiltonian, as described
in Ref. [43]. The same approach can be used for Gθ (l) → −∞.
Consequently, the system can be described effectively by
the two-component TL liquid with the effective low-energy
Hamiltonian

H eff =
∑

i,j=1,2

∫
dx

2π
(M̄ijϕ

′
iϕ

′
j + N̄ijϑ

′
iϑ

′
j ), (5.8)

where ϕ′
i = ∂xϕi and ϑ ′

i = ∂xϑi . In the case when ϕ3 is
locked (Gφ → ∞), the renormalized coefficients are given by
M̄ij = Mij and N̄ij = Nij − Ni3Nj3/N33 (i,j = 1,2). Simi-
larly, when ϑ3 is locked (Gθ → −∞), the coefficients are
given by M̄ij = Mij − Mi3Mj3/M33 and N̄ij = Nij .

The Hamiltonian (5.8) can be diagonalized sequentially
[42], yielding

H eff = u1

2π

∫
dx[(∂xϕ̃1)2 + (∂xϑ̃1)2]

+ u2

2π

∫
dx[(∂xϕ̃2)2 + (∂xϑ̃2)2]. (5.9)

The canonical transformation between the phase variables
(ϕ,ϑ) and (ϕ̃,ϑ̃) are given by

(
ϕ1

ϕ2

)
= P̄

(
ϕ̃1

ϕ̃2

)
,

(
ϑ1

ϑ2

)
= Q̄

(
ϑ̃1

ϑ̃2

)
, (5.10)

where the transformation matrices P̄ and Q̄ are defined
as P̄ = R1�

−1/2
1 R2�

1/4
2 and Q̄ = R1�

1/2
1 R2�

−1/4
2 with �1

and �2 being diagonal matrices. Here the rotation matrix
R1 diagonalizes the matrix M̄ as RT

1 M̄R1 = �1, and the
rotation matrix R2 diagonalizes the matrix �

1/2
1 RT

1 N̄R1�
1/2
1 =

R2�2R
T
2 . The velocities u1 and u2 are diagonal elements of

�
1/2
2 .
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C. Correlation exponents

In this section we calculate correlation exponents for order
parameters characterizing the phases in Fig. 3(b).

For the Gaussian model (5.9), the correlation functions
of vertex operators, exp(iλiϕi) and exp(iλiϑi) with real
parameters λ1,2, show power-law decay,

〈eiλ1ϕ1(x)+iλ2ϕ2(x)e−iλ1ϕ1(0)−iλ2ϕ2(0)〉 ∼ x− 1
2 λ2

1ηϕ1− 1
2 λ2

2ηϕ2−λ1λ2ηϕ12 ,

(5.11a)

〈eiλ1ϑ1(x)+iλ2ϑ2(x)e−iλ1ϑ1(0)−iλ2ϑ2(0)〉 ∼ x− 1
2 λ2

1ηϑ1− 1
2 λ2

2ηϑ2−λ1λ2ηϑ12 ,

(5.11b)

where the exponents are given by

ηϕi =
∑
j=1,2

P̄ 2
ij , ηϕ12 =

∑
j=1,2

P̄1j P̄2j , (5.12a)

ηϑi =
∑
j=1,2

Q̄2
ij , ηϑ12 =

∑
j=1,2

Q̄1j Q̄2j . (5.12b)

These results can be applied to the cases of interest.

1. Case of relevant Gφ

In the case when Gφ is renormalized to strong coupling
(Gφ → ∞), the fluctuations in the ϑ3 field diverge, and,
consequently, the order parameters that contain the vertex
operator of ϑ3 exhibit short-range correlations or exponential
decay at large distances. On the other hand, the locked field ϕ3

can be replaced by its average 〈√2ϕ3〉 = π/2 mod π in the
order parameters that contain ϕ3. The correlation functions for
the boson order parameters are then given by〈

OSF
b (x)OSF†

b (0)
〉 ∼ x−1/(2Kb), (5.13a)〈

ODW
b (x)ODW†

b (0)
〉 ∼ x−2Kbei2kb

F x . (5.13b)

We note that the exponents are unchanged from those in the
g3p = 0 case [see Eqs. (3.6)] and that the correlation functions
of b particles are controlled by the TLL parameter Kb. (To be
precise, Kb should be replaced by its renormalized value K∗

b ,
whose difference from Kb is on the order of g4

3p.) The SFb is
dominant for Kb > 1/2, while the DWb becomes dominant for
Kb < 1/2. For f and ψ particles, slowly decaying correlation
functions are given by〈

OSF
f ψ (x)OSF†

f ψ (0)
〉 ∼ x−1/K2 , (5.14a)〈

ODW
f ψ (x)ODW†

f ψ (0)
〉 ∼ x−K2ei2kF x, (5.14b)

where

K2 = 2

[(
uf

Kf

+ uψ

Kψ

)(
1

uf Kf

+ 1

uψKψ

)]−1/2

. (5.14c)

The most dominant order for f and ψ particles is determined
by K2: The SFf ψ state for K2 > 1 and the DWf ψ state for
K2 < 1. In the phase diagram shown in Fig. 3(b), the region of
relevant Gφ is classified into four regions according to the most
slowly decaying correlation for the bosonic (b) and fermionic
(f , ψ) particles.

Here we briefly discuss the correspondence to the results
obtained in Ref. [18], in which the f -ψ paired state is predicted
within a mean-field analysis of a 3D model. It is pointed

out in Ref. [18] that the molecular conversion term induces
a repulsive density-density interaction between a fermionic
atom and a molecule through a lowest-order virtual process.
This effective interaction is consistent with the interaction
vertex Gφ > 0 generated in our perturbative RG analysis.
Furthermore, it is argued in Ref. [18] that, if the bosons are
condensed, the effective interaction between a fermionic atom
and a molecule can become attractive, thereby yielding the SF
order of “s-wave” f -ψ pairing state. In the present 1D case,
the mean-field theory is invalid (bosons cannot condense),
and the effective interaction Gφ is repulsive. Therefore the
s-wave f -ψ pairing cannot be stabilized. Instead, we obtain a
“p-wave” f -ψ pairing (or out-of-phase DW state of f and ψ

particle) which can be stabilized due to the induced repulsive
interaction between f and ψ particles.

2. Case of relevant Gθ

Next we consider the case where the phase field ϑ3 is
locked. The fluctuations of the ϕ3 field are divergent, and its
order parameters exhibit short-range correlations. The order
parameters of our interest are those involving ϑ3, which
can be simplified by replacing

√
2ϑ3 with its expectation

value 〈√2ϑ3〉 = 0 mod π . The correlation functions of these
leading order parameters exhibit algebraic decay,〈

OSF
b (x)OSF†

b (0)
〉 ∼ x−ηϑ1 , (5.15a)〈

OSF
bff +b†ψψ

(x)OSF†
bff +b†ψψ

(0)
〉 ∼ x−ηϑ2 , (5.15b)〈

Oph1
b†f †ψ

(x)Oph1†
b†f †ψ

(0)
〉 ∼ x−ηϕ1e−i2kb

F x, (5.15c)〈
Oph2

b†f †ψ
(x)Oph2†

b†f †ψ
(0)

〉 ∼ x−ηϕ2ei2kF x . (5.15d)

The correlation functions of the order parameters OSF
ff (x) and

OSF
ψψ (x) also exhibit algebraic decay. However, these orders

cannot dominate over those given in Eqs. (5.15), since their
exponents are always greater than those in Eqs. (5.15).

When ub = uf = uψ and Kf = Kψ , the Hamiltonian (5.8)
takes a diagonal form, and the exponents are simplified to

ηϕ1 = 2Kb + Kf , ηϕ2 = Kf , (5.16a)

ηϑ1 = 1

2Kb + Kf

, ηϑ2 = 1

Kf

. (5.16b)

In the parameter region in Fig. 3(b) where Gθ flows to strong
coupling, the exponent ηϑ1 is always smaller than the others
in Eqs. (5.16). Hence, the SFb state is designated as the
most dominant state. We also note that the SFb correlation
is enhanced as compared with the case of g3p = 0 where
ηϑ1 → 1/(2Kb).

VI. DISCUSSION AND CONCLUDING REMARKS

In summary, we have carried out a comprehensive study of
a two-channel Bose-Fermi mixture, for which the analysis and
results presented here can possibly be applied towards more
general many-body problems involving interacting multicom-
ponent quantum liquids.

When the densities of the fermionic atoms and fermionic
MB molecules are identical, the Feshbach molecule conversion
and disassociation, the g3p term, can become relevant and

043620-9



AKHANJEE, TSUCHIIZU, AND FURUSAKI PHYSICAL REVIEW A 88, 043620 (2013)

induce an excitation gap, while the system retains two
gapless modes. One appealing feature of the phase diagram
in particular is the existence of a dominant composite p-wave
pairing state �L

f �R
ψ , which occurs for fermions in both the

open and closed hyperfine channels, induced by an effective
interaction mediated by b atoms. Ultimately, we hope that
the phase diagram presented here should demonstrate more
general features of composite orders and indirect scattering
processes that will manifest in higher dimensions.

Although we have established the qualitative behavior of
the phase diagram for a wide range of interaction couplings, a
better comparison with experiments will require microscopic
determination of the TLL parameters using numerical meth-
ods. Since our model contains specific order parameters that
couple different atomic species, a direct experimental probe
must be sensitive to interspecies density correlations. Time-
of-flight spectroscopy is the most promising method, as it can
directly image an atomic cloud’s density profile, which should
demonstrate specific commensurability in the presence of
density wavelike order [6]. A possible experimental realization
within the cold atoms systems would involve a magnetic
trapping technique developed on atom chips [44]. Recently,
the TLL signatures have been confirmed by observing certain
quasi-long-range order within the noise correlations between
two independent 1D bosonic atomic condensates created on
an atom chip [45]. As discussed in Ref. [46], the analysis
of the noise correlations would be also useful to detect the
composite pairing states proposed in the present paper, since
this measurement would be sensitive not only to density-wave
fluctuations but also to pairing fluctuations.

In order to make a proper comparison of the results
obtained in this paper with actual experiments in trapped
cold atom systems, we have to take into account the density
inhomogeneity arising from the harmonic trap. For this
purpose, we can apply the local density approximation (LDA)
[47] when the range of the density variation is much larger
than the average interparticle distance. In the incommensurate
case (ρ̄f �= ρ̄ψ ), where the system is described as the three-
component TLL in the homogeneous limit, the low-energy
properties can be analyzed by the bosonization scheme based
on the LDA [23,48]. On the other hand, in the commensurate
case (ρ̄f = ρ̄ψ ), the extension of the RG analysis would not be
so straightforward. The numerical studies on the trapped boson
system in an optical lattice [49,50] have shown the transition
from a superfluid to a Mott insulating state in the so-called
“wedding cake” structure with density plateaus of the Mott
state, which was indeed observed experimentally [51]. Such a
structure can be ascribed to the commensurability effect which
is present when the number of bosons per site becomes integer.
Since the commensurability effects can be represented as the
sinusoidal potentials in the bosonization scheme, we expect
that similar commensurate-incommensurate transitions should
be realized when a trapping potential is taken into account in
the present system.
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APPENDIX A: TWO-COUPLED CHAIN REVISITED

The model which we consider in the present paper has a
close connection to the model of spinless two chains coupled
by the one-particle interchain hopping [35,38]. The model
Hamiltonian for the two-coupled chains is given by

H2 chain =
∑
s=1,2

∫
dx iv

(
�L†

s ∂x�
L
s − �R†

s ∂x�
R
s

)

− t⊥
∑

p=L,R

∫
dx

(
�

p†
1 �

p

2 + H.c.
)

+
∫

dx [g(ρ1 ρ1 + ρ2 ρ2) + 2g′ρ1ρ2], (A1)

where p = L (R) refers to the left-(right-) moving particle and
s = 1,2 is the chain index. The couplings g and g′ represent
the intrachain and interchain interactions, respectively [35].
In earlier works, the interchain hopping term is diagonalized
by introducing the bonding and antibonding band basis of the
field operators, and then the bosonization and RG methods are
applied to the field operators on the band basis [35,38]. In this
appendix, we verify that the same results can be obtained by
directly applying the bosonization to the field operators on the
original chain basis. The bosonized forms of the field operators
are given by

�L/R
s (x) = ξs√

2πα
e∓ikF x±iφs (x)+iθs (x), (A2)

where s = 1,2 is the chain index and ξs is the Klein
factor satisfying ξ1ξ2 = i. The commutation relation of the
phase variables is [φs(x),θs ′ (x ′)] = iπδs,s ′�(−x + x ′). Since
a dominant phase can be determined by the locking position of
φs or θs , we have to carefully apply the fusion rules for vertex
operators.

With the symmetric and antisymmetric combinations of
phase variables, φ± = (φ1 ± φ2)/

√
2 and θ± = (θ1 ± θ2)/

√
2,

the bosonized Hamiltonian is written as

H2 chain = u+
2π

∫
dx

[
1

K+
(∂xφ+)2 + K+(∂xθ+)2

]

+ u−
2π

∫
dx

[
1

K−
(∂xφ−)2 + K−(∂xθ−)2

]

+ i
u−G⊥
πα2

∫
dx cos

√
2θ− sin

√
2φ−

+ u−G̃φ

πα2

∫
dx cos 2

√
2φ−

+ u−G̃θ

πα2

∫
dx cos 2

√
2θ−, (A3)

where K± 
 1 − (g ± g′)/(πv), u± 
 v + (g ± g′)/π , and
G⊥ = 2t⊥α/u−. The coupling constants G̃φ and G̃θ are ini-
tially zero but generated through the RG transformation. Only
the asymmetric fields (φ−,θ−) are subject to the sinusoidal
potentials, and the symmetric fields (φ+,θ+) remain free.
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The order parameters characterizing the ground state are
written in the bosonized form as [35,38]

OCDWπ (x) = �
L†
1 �R

1 − �
L†
2 �R

2 
 ei2kF x−i
√

2φ+ sin
√

2φ−,

(A4a)

OOAF(x) = �
L†
1 �R

2 − �
L†
2 �R

1 
 ei2kF x−i
√

2φ+ cos
√

2θ−,

(A4b)

OSCd (x) = �L
1 �R

2 + �L
2 �R

1 
 ei
√

2θ+ sin
√

2φ−, (A4c)

OSCs (x) = �L
1 �R

1 + �L
2 �R

2 
 ei
√

2θ+ cos
√

2θ−, (A4d)

where CDWπ , OAF, SCd , and SCs stand for charge-density
wave, orbital antiferromagnetic, d-wave superconducting, and
s-wave superconducting states, respectively.

In order to analyze the low-energy behavior of the φ− mode,
we apply the momentum-shell renormalization-group method
[33]. First, we split the phase variable as φs = φ′

s + hs and θs =
θ ′
s + h̃s , where φ′

s and hs are the phase fields containing low-
momentum and high-momentum components, respectively,

φ′
s(r) =

∫
|k|��′

d2k

(2π )2
eik·r φs(k), (A5a)

hs(r) =
∫

�′�|k|��

d2k

(2π )2
eik·r φs(k), (A5b)

where r = (x,usτ ), k = (k,ω/us), k · r = kx − ωτ [33], and
φs(k) is the Fourier transform of φs(x,τ ). The fields θ ′

s and h̃s

are defined similarly as low- and high-momentum components
of the conjugate fields θs . The RG equations are derived by
integrating out the h and h̃ fields with the help of Eq. (4.3).

We perform RG transformations of the action S by treating
the interchain hopping part,

S⊥ = i
G⊥
π

∫
d2r

α2
cos

√
2θ−(r) sin

√
2φ−(r), (A6)

as a weak perturbation, where d2r = u−dxdτ . In doing so, we
have to pay special attention to the commutative properties.
The equal-time commutation relation between φs and θs is
given by

[φs(x),θs ′ (x ′)] = iπδs,s ′�(−x + x ′), (A7)

and their correlation functions are given by [33]

〈φs(r)θs(0)〉 = 1

2
F2(r) + iπ

4
, (A8a)

〈θs(r)φs(0)〉 = 1

2
F2(r) − iπ

4
, (A8b)

where F2(r) = −iArg(yα + ix) with yα = usτ + α sgn(τ ).
The last terms ±iπ/4 in Eqs. (A8) are added in order to
reproduce the commutation relation (A7). Integrating out the

hs fields yields the O(t2
⊥) contribution to the action S,

−1

2
〈S2

⊥〉ch = − G2
⊥

32π2

∑
ε,ε′=±

∫
d2r1

α2

d2r2

α2

×〈eiε
√

2θ−(1)eiε′√2φ−(1)e−iε
√

2θ−(2)eiε′√2φ−(2)〉c
h

+ G2
⊥

32π2

∑
ε,ε′=±

∫
d2r1

α2

d2r2

α2

×〈eiε
√

2θ−(1)eiε′√2φ−(1)eiε
√

2θ−(2)e−iε′√2φ−(2)〉c
h,

(A9)

where (1) and (2) stand for (r1) and (r2), respectively, and
〈· · · 〉c

h is the cumulant expectation with respect to the h and h̃

fields. The cumulant expectations can be evaluated as

〈eiε
√

2θ−(1)eiε′√2φ−(1)e−iε
√

2θ−(2)eiε′√2φ−(2)〉c
h

= eiε
√

2θ ′
−(1)eiε′√2φ′

−(1)e−iε
√

2θ ′
−(2)eiε′√2φ′

−(2)

× e−(K−+K−1
− )δg(0)[e(K−1

− −K−)δg(r12) − 1
]
. (A10)

We note that the integrand becomes nonzero only for small
r12/α = |r1 − r2|/α since the function δg(r) decays rapidly
in r/α. We can rewrite the product of the vertex operators as

eiε
√

2θ ′
−(1)eiε′√2φ′

−(1)e−iε
√

2θ ′
−(2)eiε′√2φ′

−(2)

≈ −eiε
√

2θ ′
−(1)+iε′√2φ′

−(1)−iε
√

2θ ′
−(2)+iε′√2φ′

−(2), (A11)

where we have used [φ′
s(r1),θ ′

s(r2)] + [φ′
s(r2),θ ′

s(r1)] =
〈[φ′

s(r1),θ ′
s(r2)]〉 + 〈[φ′

s(r2),θ ′
s(r1)]〉 = iπ , together with the

relation (A8). Using Eq. (4.6), we can perform the operator-
product expansion [r12 = |r1 − r2| and R = (r1 + r2)/2]:

eiε
√

2θ ′
−(1)+iε′√2φ′

−(1)−iε
√

2θ ′
−(2)+iε′√2φ′

−(2)

≈ : eiε
√

2θ ′
−(1)+iε′√2φ′

−(1)−iε
√

2θ ′
−(2)+iε′√2φ′

−(2) :

× e−K−1
− [ḡ(0)−ḡ(r12)]e−K−[ḡ(0)+ḡ(r12)]

≈ : e+iε′2
√

2φ′
−(R) : e−K−1

− [ḡ(0)−ḡ(r12)]e−K−[ḡ(0)+ḡ(r12)]

= e+iε′2
√

2φ′
−(R)e−(K−1

− −K−)[ḡ(0)−ḡ(r12)], (A12)

where ḡ(r) is given in Eq. (4.2), and we have used Eqs. (A8).
Thus we find

−1

2
〈S2

⊥〉c
h = +G2

⊥
4π

e−(K−+K−1
− )δg(0)A1((K−1

− − K−)/2) dl

×
∫

d2R

α2
cos 2

√
2φ′

−(R)

− G2
⊥

4π
e−(K−+K−1

− )δg(0)A1((K− − K−1
− )/2) dl

×
∫

d2R

α2
cos 2

√
2θ ′

−(R), (A13)

where Ai(β) is defined in Eqs. (4.5). The first (second) term
renormalizes the G̃φ (G̃θ ) term. The full RG equations for the
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coupling constants and the TLL parameter K− are given by

dG⊥
dl

=
(

2 − K−
2

− 1

2K−

)
G⊥, (A14a)

dG̃φ

dl
= (2 − 2K−)G̃φ + 1

4
G2

⊥A1((K−1
− − K−)/2),

(A14b)

dG̃θ

dl
= (2 − 2K−1

− )G̃θ − 1

4
G2

⊥A1((K− − K−1
− )/2),

(A14c)
dK−
dl

= −2G̃2
φK2

−A2 (2K−) + 2G̃2
θA2(2K−1

− ). (A14d)

We see from Eqs. (A14b) and (A14c) that the one-loop
RG processes yield contributions of order G2

⊥ to G̃φ and G̃θ ,
respectively. Consequently, when K− < 1, the coupling G̃φ is
relevant and renormalized to strong coupling (G̃φ → +∞).
In this case, the phase field φ− is locked at 〈√2φ−〉 = π/2
mod π . On the other hand, if K− > 1, the coupling G̃θ is
relevant and renormalized to strong coupling (G̃θ → −∞),
and then the phase field θ− is locked at 〈√2θ−〉 = 0 mod π .

For K− < 1 (i.e., g > g′), the relevant order parameters,
CDWπ and SCd , are reduced to OCDWπ (x) → ei2kF x−i

√
2φ+ ,

OSCd (x) → ei
√

2θ+ , as φ− is locked at 〈√2φ−〉 = π/2 mod π .
These correlation functions show QLRO,

〈OCDWπ (x)O†
CDWπ (0)〉 ∼ x−K+ei2kF x, (A15a)

〈OSCd (x)O†
SCd (0)〉 ∼ x−1/K+ . (A15b)

The dominant correlation is determined by the value of the TLL
parameter K+; the CDW (SCd ) state becomes most dominant
for K+ < 1 (K+ > 1), i.e., g + g′ > 0 (g + g′ < 0).

For K− > 1 (i.e., g < g′), the relevant order parameters are
given by OOAF(x) → ei2kF x−i

√
2φ+ and OSCs (x) → ei

√
2θ+ , and

their correlation functions are

〈OOAF(x)O†
OAF(0)〉 ∼ x−K+ei2kF x, (A16a)

〈OSCs (x)O†
SCs (0)〉 ∼ x−1/K+ . (A16b)

The dominant correlation is the OAF (SCs) state when K+ < 1
(K+ > 1), i.e., g + g′ > 0 (g + g′ < 0).

Since the RG analysis described above correctly reproduces
the phase diagram obtained in Ref. [38], the validity of our
method is confirmed. As we noted earlier, the sinusoidal
potentials of the two-chain Hamiltonian (A3) have forms
similar to those of Eqs. (5.4). We can thus study the phase
diagram of our model using the same RG method (with
straightforward generalization), as described in Secs. IV
and V, where the RG equations (4.4) are indeed similar to
Eqs. (A14).

APPENDIX B: MAPPING TO TWO-COUPLED
CHAIN WITH GAUGE FIELD

The model Hamiltonian (2.1) can be mapped to the
Hamiltonian for the two-coupled chain with gauge field.
By applying the phase representation only for the boson
[Eq. (3.2a)], and by expressing �f → �1 and �ψ → �2, the

effective Hamiltonian is expressed as

Hf ψ ≡ Hf + Hψ

=
∑
s=1,2

∫
dx iu

(
�L†

s ∂x�
L
s − �R†

s ∂x�
R
s

)

+
∑
s=1,2

g

∫
dxρs(x)ρs(x + δ), (B1)

Hb = u

2π

∫
dx

[
1

Kb

(∂xφb)2 + Kb (∂xθb)2

]
, (B2)

H3p = −t⊥
∑

p=L,R

∫
dx

(
�

p†
1 �

p

2 e−iθb + H.c.
)
, (B3)

where t⊥ ≡ −g3p/(2πα)1/2, and we have set ub = uf =
uψ (≡u). We assumed the short-range interaction Vff (x −
x ′) = gf δ(x − x ′ ± δ) and Vψψ (x − x ′) = gψδ(x − x ′ ± δ),
where δ is the small quantity, and we set gf = gψ (≡g) for
simplicity. We focus on the commensurate case ρf = ρψ .

This model can be interpreted as the two-coupled chain
model with a gauge field on the rung. In this section, we first
eliminate the effect of the gauge field by gauge transformation
and diagonalize the t⊥ term. In the next step, we apply the
bosonization, as performed in the two-chain problem [38]. By
the gauge transformation

�
p

1 (x) → �̃
p

1 (x) = �
p

1 (x) e+iθb(x)/2, (B4)

�
p

2 (x) → �̃
p

2 (x) = �
p

2 (x) e−iθb(x)/2, (B5)

the t⊥ term becomes −t⊥
∑

p

∫
dx(�̃p†

1 �̃
p

2 + H.c.). Since the
t⊥ term is expressed in the form of conventional interchain
hopping, we can follow the approach of Ref. [38] in which the
relevant t⊥ term was treated nonperturbatively.

The interchain hopping term can be diagonalized by
introducing the bonding and antibonding operators,

�
p
+ = 1√

2

(
�̃

p

1 + �̃
p

2

)
, �

p
− = 1√

2

(
�̃

p

1 − �̃
p

2

)
. (B6)

The t⊥ term is given by −t⊥
∑

p

∫
dx(�p†

+ �
p
+ − �

p†
− �

p
−), and

the intrachain kinetic terms are given by∫
dx iu(�L†

+ ∂x�
L
+ − �

R†
+ ∂x�

R
+)

+
∫

dx iu(�L†
− ∂x�

L
− − �

R†
− ∂x�

R
−)

+ u

2

∫
dx(�L†

+ �L
− − �

R†
+ �R

− + H.c.)(∂xθb). (B7)

In contrast to the t⊥ term, which is given in a diagonalized
form, the intrachain kinetic terms contain the gauge field and
the field operators are given in the nondiagonalized form.

Now we bosonize the fields �±,

�
p
±(x) = ξ±√

2πα
ein[kF x−φ±(x)]+iθ±(x), (B8)

where n = +(−) for p = R(L). In order to simplify the
notation, we further apply the simple transformation,

φ̃+ = 1√
2

(φ+ + φ−), φ̃− = 1√
2

(φ+ − φ−), (B9)
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TABLE I. The average value of 〈√2θ̃−〉 and the correspond-
ing order parameter, determined by the fixed point value of the
relevant g∗

θ .

Fixed point Average value Order parameter

g∗
θ > 0 〈√2θ̃−〉 = π/2 mod π 〈sin

√
2θ̃−〉 �= 0

g∗
θ < 0 〈√2θ̃−〉 = 0 mod π 〈cos

√
2θ̃−〉 �= 0

and then the Hamiltonians Hf ψ and H3p are expressed as

Hf ψ = u+
2π

∫
dx

[
1

K+
(∂xφ̃+)2 + K+(∂xθ̃+)2

]

+ u−
2π

∫
dx

[
1

K−
(∂xφ̃−)2 + K−(∂xθ̃−)2

]

− ig0

πα

∫
dx (∂xθb) sin

√
2θ̃− cos

√
2φ̃−

+ 1

2π2α2

∫
dx[−gφ cos 2

√
2φ̃− + gθ cos 2

√
2θ̃−],

H3p = t⊥
∫

dx

√
2

π
∂xφ̃−, (B10)

where

g0 = u, gφ = gθ = g[1 − cos(2kF δ)], (B11)

and K± and u± depend on g and u. The microscopic
determination of the parameters K± and u± are given in
Ref. [38] for weak-coupling region, while it requires numerical
analysis in the wide range of interactions.

From the scaling analysis, the RG equation for g0 is given by
dg0/dl = (1 − K−/2 − K−1

− /2)g0, implying that the g0 term
is marginal for K− = 1 and becomes irrelevant for K− �= 1.
The presence of the marginal or irrelevant g0 term would
give rise to slight renormalization of other quantities like Kb,
K−, gφ , gθ , and t⊥. However, we argue below that, up to
such relatively unimportant corrections, we can safely neglect
the g0 term so this Hamiltonian takes on the same form as
two-coupled chains, derived in Ref. [38]. First, we observe
that the t⊥ term suppresses the potential cos 2

√
2φ̃−, since

the former favors the incommensurate state while the latter
favors the commensurate state. Depending on the value of
K−, the θ̃− field can either remain massless or develop a
gap. We concentrate here on the case where θ̃− develops a
gap and acquires a nonzero expectation value determined by
minimizing the ground-state energy. The average value of the
massive field 〈√2θ̃−〉 depends on the sign of g∗

θ , where g∗
θ is

the fixed-point value of gθ . The average value of 〈√2θ̃−〉 and

the corresponding order parameters are summarized in Table I.
The order parameters of the interest are ODW

f ψ [Eq. (3.5d)],
OSF

f ψ [Eq. (3.5h)], and OSF
bff +b†ψψ

[Eq. (3.5i)]. After the gauge
transformation and the bosonization, these order parameters
are written as

ODW
f ψ (x) = �

L†
1 �R

1 − �
L†
2 �R

2

= �̃
L†
1 �̃R

1 − �̃
L†
2 �̃R

2

= �
L†
+ �R

− + �
L†
− �R

+

= 1

πα
e+i2kF x−i

√
2φ̃+ sin

√
2θ̃−, (B12a)

OSF
f ψ (x) = �L

1 �R
2 + �R

2 �L
1

= �̃L
1 �̃R

2 + �̃L
2 �̃R

1

= �L
+�R

+ − �L
−�R

−

= 1

πα
ei

√
2θ̃+ sin

√
2θ̃−, (B12b)

OSF
bff +b†ψψ

(x) = 1√
2πα

(
eiθb �L

1 �R
1 + e−iθb �L

2 �R
2

)
= 1√

2πα

(
�̃L

1 �̃R
1 + �̃L

2 �̃R
2

)
= 1√

2πα

(
�L

+�R
+ + �L

−�R
−
)

= −2i

(2πα)3/2
ei

√
2θ̃+ cos

√
2θ̃−, (B12c)

where we have set ξ+ξ− = i.
When g∗

θ > 0 (see Table I), we find that the correlation
functions for ODW

f ψ and OSF
f ψ exhibit algebraic decay,〈

OSF
f ψ (x)OSF

f ψ (0)†
〉 ∼ x−1/K+ , (B13a)〈

ODW
f ψ (x)ODW

f ψ (0)†
〉 ∼ x−K+ei2kF x . (B13b)

This behavior is consistent with Eqs. (5.14) if we equate K+
with K2. We note that, in the simplified case where ub = uf =
uψ and Kf = Kψ , the exponent K2 is given by K2 → Kf , as
seen from Eq. (5.14c).

On the other hand, when g∗
θ < 0, the correlation function

of OSF
bff +b†ψψ

exhibits algebraic decay,〈
OSF

bff +b†ψψ
(x)OSF

bff +b†ψψ
(0)†

〉
∼ x−1/K+ . (B14)

This behavior is consistent with Eq. (5.15b) by noting that the
exponent ηϑ2 is given by ηϑ2 → 1/Kf [Eqs. (5.16)] in the case
of ub = uf = uψ and Kf = Kψ .
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