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Universal behavior of four-boson systems from a functional-renormalization-group analysis
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We apply a functional renormalization group to systems of four bosonic atoms close to the unitary limit.
We work with a local effective action that includes a dynamical trimer field, and we use this field to eliminate
structures that do not correspond to the Faddeev-Yakubovsky equations. In the physical limit, we find three
four-body bound states below the shallowest three-body state. The values of the scattering lengths at which
two of these states become bound are in good agreement with exact solutions of the four-body equations and
experimental observations. The third state is extremely shallow. During the evolution we find an infinite number
of four-body states based on each three-body state which follow a double-exponential pattern in the running
scale. None of the four-body states shows any evidence of dependence on a four-body parameter.
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I. INTRODUCTION

Systems where two-body scattering lengths are much
longer than ranges of the forces between the particles are
important in various areas of physics. Their low-energy
properties display universal scaling behavior, controlled by
the “unitary limit” in which the scattering length tends to
infinity. In nuclear physics, the large scattering lengths are
large enough that low-energy aspects of few-nucleon systems
can be described in this framework [1,2]. In atomic physics,
the shallow dimer of 4He atoms leads to a scattering length
that is about 100 times larger than the size of the atoms [3].
Even better examples are provided by ultra-cold atoms in traps,
where Feshbach resonances can be used to tune the scattering
lengths to values very close to the unitary limit [4].

In the unitary limit, three-boson systems display a remark-
able effect, first predicted by Efimov in 1970 [5,6]. They
possess an infinite tower of three-body bound states, with
energies in a constant ratio of ∼515.0. This breaks the expected
scale invariance to a discrete symmetry, with one three-body
parameter needed to fix the energies of all these states. In
real systems, the sequence of deeply bound states is cut off
by the range of the forces, and the shallowest ones by the
finite scattering length. Three-fermion systems can also show
Efimov behavior, provided there are enough species to allow
spatially symmetric states. Although there were suggestions
that the A = 3 nuclei 3H and 3He could be interpreted as
Efimov states [7], the first clear observation of such states was
in an ultra-cold gas of caesium atoms [8]. Reviews of the field
can be found in Refs. [9–11].

This behavior in the three-body sector feeds through to
four-body systems, where most numerical calculations find
two bound states in each Efimov cycle [12–14] whose energies
are fixed ratios to the nearest three-body state. However, in
contrast, Hadizadeh et al. find up to three four-body states per
cycle, with energies that depend on an additional four-body
parameter [15,16], supporting their earlier results of Ref. [17].
Experimental evidence for two four-body states based on an
Efimov three-body state has been seen in the recombination
rates of trapped 133Cs atoms [18], with resonances that are
consistent with the results of Refs. [12–14].

Renormalization-group methods have been applied to
elucidate scaling behavior in few-body systems [7,11,19–21]

and hence to determine their relevant parameters. Here we
apply a functional renormalization group (FRG) [22,23] to
the four-boson problem. During the evolution we observe a
double-exponential pattern of four-body states built on each
three-body state, similar to the “super-Efimov” behavior found
by Nishida, Moroz, and Son in a two-dimensional three-body
system [24]. These have energies that can be expressed in terms
of a universal scaling function, similar to that in Refs. [15,16],
but they show no evidence of dependence on an additional
four-body parameter. The states in our “super-Efimov” pattern
are not necessarily physical and, away from the unitary limit,
we find that only three of them are present in the last Efimov
cycle and so can appear as physical bound states. The two
deepest of these states appear for scattering lengths that are in
reasonable agreement with those found in studies of four-body
equations [13,14] and experimental observations [18].

This paper is structured as follows. In Sec. II we present
the FRG and running action that we use to study four-
atom systems. Previous results on the three-body sector are
summarized in Sec. III, as they provide key input into our
four-body equations. Those equations are presented in Sec. IV
together with our results for the four-body sector. We summa-
rize and conclude in Sec. V.

II. FRG AND RUNNING ACTION

The FRG we use is based on a running version of effective
action that generates the one-particle irreducible Green’s
functions [22,23]. A regulator is added to the theory to suppress
fluctuations with momenta below some scale k. For large
k, we start with a suitably parametrized “bare” action. The
method works by evolving from this bare action to the limit
k → 0, where all quantum fluctuations are included and the
action becomes physical. Away from this limit, that is for
k > 0, the running action is not physical because of the
partial suppression of fluctuations. Even though it is fully
nonperturbative, the driving term in the FRG equation for
the action has the form of a one-loop integral. Instead of
diagrammatic expansions, practical approximation schemes
are obtained by truncating the effective action to a finite
number of terms.

This FRG is being applied to systems of nonrelativistic
particles, in order to study, in particular, dense matter [25–27].
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In that context, it provides an alternative to traditional many-
body methods. As part of this program, studies of few-body
systems in the same framework are needed to fix the input
parameters. These studies are also proving interesting in their
own right [28–31].

A key ingredient of our approach is a trimer field. Such
fields have been introduced before, in Refs. [28–30]. However
in the previous application to the four-boson problem [30],
this field was used to explore the dependence of amplitudes
on an external energy. In contrast, our approach emphasises
its dynamical role. This allows us to describe the atom-trimer
channel of the four-body system and hence to obtain equations
with a structure like that of the Faddeev-Yakubovsky equations
[32].

In this work we study systems of up to four nonrelativistic
bosonic “atoms.” We represent the atoms by the field ψ(x)
and we also introduce dimer and trimer fields, φ(x) and χ (x),
in order to include energy-dependent propagators for two-
and three-body subsystems. The evolution equation for the
effective action �k[ψ,ψ∗,φ,φ∗,χ,χ∗] takes the form [23]

∂k� = − i

2
Tr[(∂kR) ((�(2) − R)−1)] + δ�

δ�
· ∂k�, (1)

where �(2) denotes the matrix of second derivatives of the
action with respect to the fields and R the regulator that is added
to suppress low-momentum modes. The trace Tr and the scalar

product in the final term include integrals over energy and three
momenta as well as sums over the different types of field. The
final term in the equation appears when we include fields that
depend explicitly on the scale k, as in Refs. [28,30,33].

For our regulators R, we use the form suggested by Litim
[34], which is optimized for local interactions. This suppresses
the contributions of modes with momenta q < k by replacing
the kinetic energy in the inverse propagator for each field with
a constant. For the atom field it has the form

Ra(q,k) = k2 − q2

2m
θ (k − q). (2)

The dimer and trimer regulators have similar forms but also
contain the wave-function renormalization factors defined
below.

The key ingredient in any practical application of the FRG
is the choice of truncation for the running action. Here we
work with only local interactions. This reduces the functional
differential equation for the action to a set of coupled ordinary
differential equations for renormalization factors and coupling
constants multiplying the terms that appear in the action, as
defined below. Large numbers of diagrams contribute to the
driving terms, as in the versions without trimer fields studied
in Refs. [30,31].

The running action we use is

�k[ψ,ψ∗,φ,φ∗,χ,χ∗] =
∫

d4x

[
ψ∗

(
i ∂0 + ∇2

2m

)
ψ + Zd φ∗

(
i ∂0 + ∇2

4m

)
φ + Zt χ

∗
(

i ∂0 + ∇2

6m

)
χ − udφ

∗φ − utχ
∗χ

− g

2
(φ∗ψψ + ψ∗ψ∗φ) − h(χ∗φψ + φ∗ψ∗χ ) − λ φ∗ψ∗φψ − udd

2
(φ∗φ)2

− vd

4
(φ∗φ∗φψψ + φ∗ψ∗ψ∗φφ) − w

4
φ∗ψ∗ψ∗φψψ − utt χ

∗ψ∗χψ

− udt

2
(φ∗φ∗χψ + χ∗ψ∗φφ) − vt

2
(φ∗ψ∗ψ∗χψ + χ∗ψ∗φψψ)

]
. (3)

This contains kinetic terms for atom, dimer, and trimer fields
with wave-function renormalization factors and interaction
terms with up to four underlying atoms. This action was
also used by Schmidt and Moroz [30] (see in particular
the Appendix to that paper) but they chose to eliminate the
four-atom couplings with trimer fields (utt , udt , and vt ) so that
channels with dynamic trimers are not needed. The analogous
fermionic couplings without trimers were studied in Ref. [31].

The inverse propagators for the fields in Eq. (3) are
expanded up to first order in the energy, which implies
first-order time derivatives in the action. In each channel, the
zero-energy point for this expansion is taken to be the threshold
for breakup of an n-atom state into n free atoms. Spatial
derivatives appear at second order as required by Galilean
invariance, which follows from our choice of regulator [34].

The wave-function renormalization factors Zd,t , self-
energies ud,t , and couplings h, λ etc. all run with the regulator
scale k. In vacuum, there is no renormalization factor for the
atom field ψ and the coupling g remains constant during the
evolution.

Even though atom-atom scattering near the unitary limit
can be described by an atom-atom contact interaction, the
running action in Eq. (3) does not contain such a term. This is
because it can be eliminated through a Hubbard-Stratonovich
transformation at some large starting scale K . The atom-atom
term is not regenerated by the evolution and so atom-atom
scattering is mediated only by the coupling g to dimers. At
zero energy, the scattering is given by g2/ud (k) where ud (k)
evolves linearly with k. We choose its initial value ud (K) such
that, in the physical limit, ud (0) gives the desired scattering
length a [25,26].

In contrast, the atom-dimer interaction λ is regenerated
even if we set it to zero initially. By introducing fields that
depend explicitly on the scale k, as in Refs. [28,30,33], we can
cancel the evolution of this and some other couplings. If we
set their initial values to zero at the starting scale K , then these
couplings are effectively eliminated from the problem. Here
we take the trimer to run as

∂kχ = ζ1 φψ + ζ2 ψ†χψ + ζ3 ψ†φφ + ζ4 ψ†φψψ, (4)

043613-2



UNIVERSAL BEHAVIOR OF FOUR-BOSON SYSTEMS FROM . . . PHYSICAL REVIEW A 88, 043613 (2013)

where the ζi(k) are

ζ1 = − ∂kλ

2 h
, (5a)

ζ2 = − ∂kvt

h
+ utt ∂kλ

2 h2
− ut vt ∂kλ

2 h3
+ ut ∂kw

8 h2
, (5b)

ζ3 = − ∂kvd

4 h
+ udt ∂kλ

2 h2
, (5c)

ζ4 = − ∂kw

8 h
+ vt ∂kλ

2 h2
. (5d)

The first term in Eq. (4) cancels the running of λ, and the others
do the same for the four-atom couplings vd , w, and vt .

Once we have eliminated these couplings, the physical
processes that give rise to their evolution are implicitly present
in the flows of the remaining couplings through contributions
to their flows from the final term in Eq. (1). For example, if the
contact interaction λ is eliminated, atom-dimer scattering only
occurs through coupling to the trimer. The effects responsible
for the evolution of λ are now codified in a term proportional
to utζ1 in the flow of h(k), arising from the first term of
Eq. (4).

III. THREE-BODY SECTOR

The three-body sector, described by the couplings h(k),
ut (k), and Zt (k), has been studied using this action by
Floerchinger et al. [28]. We summarize its main features here
to provide some “landmarks” for our four-body results. In the
unitary limit, the flow equations for the three-atom couplings
have the forms

∂k(h2) = − 312

125 k
h2(k) − 256

125 k3
ut (k), (6a)

∂kut = 56 k

125
h2(k), (6b)

∂kZt = − 448

625 k
h2(k), (6c)

where, to simplify the expressions, ut and Zt have been
redefined to absorb constant factors of g2 m and 1/g2,
respectively.

These equations describe the flows for regulator scales k �
1/a, where a is the two-body scattering length. In this limit, the
equations are scale invariant and so we expect their solutions
to scale as powers of k. Indeed this system of differential
equations is satisfied if h2(k) and Zt (k) behave as kd and ut (k)
as k2+d where d has two possible values,

d± = −281/125 ± i
√

535/25. (7)

Since these are a complex-conjugate pair, we can form
real solutions and define rescaled quantities that oscillate
periodically in t = ln(k/K):

Ĥ (k) = k281/125 h2(k), (8a)

ût (k) = k31/125 ut (k), (8b)

Ẑt (k) = k281/125 Zt (k). (8c)

This periodic behavior is a consequence of the Emimov
effect [5,6] which breaks the scale invariance of theory to

a discrete symmetry. It follows from the complex scaling
exponents in Eq. (7). For the truncated action and regulator
used here, the scaling factor in momentum is ∼29.8 [28,30],
which yields longer cycles than the true value of ∼22.7.

In this framework, atom-dimer scattering at zero energy is
given by the combination h(k)2/ut (k), which evolves in the
same way as λ(k) in the theory without the trimer [28,30].
It displays a sequence of poles that are equally spaced in t ,
reflecting the discrete scaling symmetry of the Efimov effect.
Each of these poles corresponds to the passage of a three-body
bound state through the three-atom threshold as k is lowered.
In the physical limit they build up the infinite tower of Efimov
states.

Although the flow equations in the three-body sector
require three initial conditions, only one of these defines
a physical parameter. This fixes the initial phase of the
periodic functions or, equivalently, the scale at which the first
Efimov pole appears. Physical quantities are independent of
the magnitudes of the couplings since they depend only on the
ratios h(k)2/ut (k) and h(k)2/Zt (k).

IV. FOUR-BODY SECTOR

In the four-atom sector, we use the scale dependence of the
trimer to eliminate the couplings vd , w, and vt that include the
dimer-atom-atom channel. This leaves only the ones involving
the dimer-dimer and atom-trimer channels, udd , udt , and utt .
The first of these, udd , describes dimer-dimer scattering at
zero energy (the four-atom threshold). Similarly utt describes
atom-trimer scattering and udt the coupling between the two
channels. This choice reflects the structure of the Faddeev-
Yakubovsky equations used in most direct calculations of four-
body systems [32]. In contrast, Schmidt and Moroz [30] also
introduced a trimer field to treat energy dependence but kept
only the couplings udd , vd , and w.

The evolution of the four-atom couplings, udd , udt , and utt ,
is governed by a system of three coupled nonlinear differential
equations. We define regulated energies for atoms, dimers, and
trimers,

Ea(q,k) = q2

2 m
+ Ra(q,k), (9a)

Ed (q,k) = q2

4 m
+ Rd (q,k)

Zd (k)
+ ud (k)

Zd (k)
, (9b)

Et (q,k) = q2

6 m
+ Rt (q,k)

Zt (k)
+ ut (k)

Zt (k)
, (9c)

where the single-atom self-energy contains

ud (k,a) = Mg2

π2

(
k

6
− π

4 a

)
. (10)

From these we construct the quantities

T X
α,β,γ,δ = ∂kRX (Zd )−β−γ (Zt )−δ

(Ea)α (Ed )β (Ea + Ed )γ (Ea + Et )δ
, (11)
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for X = a,d,t . In terms of these, the system of equations can be written

∂kudd =
∫

d3q

(2 π )3

[
3 g4

8
T a

4,0,0,0 + g2h2

2

(
2 T a

3,0,0,1 + T a
2,0,0,2Zt + T t

2,0,0,2

)

+ (udd )2

2
T d

0,2,0,0 (Zd )−1 − 2 g h udt

(
T a

2,0,0,1 + T a
1,0,0,2Zt + T t

1,0,0,2

) + 2 (udt )
2
(
T a

0,0,0,2Zt + T t
0,0,0,2

)]
, (12a)

∂kudt =
∫

d3q

(2 π )3

[
−g3ut udd

4 h

(
T a

2,1,1,0 + T a
1,1,2,0Zd + T d

1,2,1,0 + T d
1,1,2,0

) − g h utt

2

(
T a

2,0,0,1 + T a
1,0,0,2Zt + T t

1,0,0,2

)

− g h udd

2

(
T a

0,1,2,0Zd + T d
0,2,1,0 + T d

0,1,2,0

) + g4ut udt

8 h2

(
2 T a

3,0,1,0 + T a
2,0,2,0Zd + T d

2,0,2,0

)

− g2ut udt

2

(
T a

2,0,1,1 + T a
1,0,2,1Zd + T a

1,0,1,2Zt + T d
1,0,2,1 + T t

1,0,1,2

) + udd udt

2
T d

0,2,0,0 (Zd )−1

−h2udt

(
T a

0,0,2,1Zd + T a
0,0,1,2Zt + T d

0,0,2,1 + T t
0,0,1,2

) + udt utt

(
T a

0,0,0,2Zt + T t
0,0,0,2

)

+ g3h ut

4

(
2 T a

3,0,1,1 + T a
2,0,2,1Zd + T a

2,0,1,2Zt + T d
2,0,2,1 + T t

2,0,1,2

)

+ g h3

2

(
T a

2,0,1,1 + T a
1,0,2,1Zd + T a

1,0,1,2Zt + T d
1,0,2,1 + T t

1,0,1,2

)]
, (12b)

∂kutt =
∫

d3q

(2 π )3

[
g2h2

(
T a

2,1,1,0 + T a
1,1,2,0Zd + T d

1,2,1,0 + T d
1,1,2,0

) + g4ut utt

4 h2

(
2 T a

3,0,1,0 + T a
2,0,2,0Zd + T d

2,0,2,0

)

+ g4 ut

(
2 T a

3,1,1,0 + T a
2,1,2,0Zd + T d

2,2,1,0 + T d
2,1,2,0

) − 2 g h udt

(
T a

0,1,2,0Zd + T d
0,2,1,0 + T d

0,1,2,0

)

+ g4 (ut )2

4

(
2 T a

3,0,2,1 + 2 T a
2,0,3,1Zd + T a

2,0,2,2Zt + 2 T d
2,0,3,1 + T t

2,0,2,2

) + (udt )
2 T d

0,2,0,0 (Zd )−1

− 2 h2utt

(
T a

0,0,2,1Zd + T a
0,0,1,2Zt + T d

0,0,2,1 + T t
0,0,1,2

) + (utt )
2
(
T a

0,0,0,2Zt + T t
0,0,0,2

)
+ g2h2ut

(
T a

2,0,2,1 + 2 T a
1,0,3,1Zd + T a

1,0,2,2Zt + 2 T d
1,0,3,1 + T t

1,0,2,2

) − g2ut utt

(
T a

2,0,1,1 + T a
1,0,2,1Zd

)

− g2ut utt

(
T a

1,0,1,2Zt + T d
1,0,2,1 + T t

1,0,1,2

) + g6 (ut )2

4 h2

(
3 T a

4,1,1,0 + T a
3,1,2,0Zd + T d

3,2,1,0 + T d
3,1,2,0

)

− g3ut udt

h

(
T a

2,1,1,0 + T a
1,1,2,0Zd + T d

1,2,1,0 + T d
1,1,2,0

) + h4
(
2 T a

0,0,3,1Zd + T a
0,0,2,2Zt + 2 T d

0,0,3,1 + T t
0,0,2,2

)]
. (12c)

The appearance of h2(k), ut (k), and Zt (k) in the four-body
flow equations, Eqs. (12), means that they inherit the Efimov
periodicity of the three-body sector. This also leads to two
types of singularity in the equations. One arises from terms
with denominators containing either one or two powers of the
regulated energy of an atom plus a trimer, Ea(k) + Et (k). This
passes through zero energy once in every Efimov cycle, at the
point where a regulated atom-trimer threshold drops below
the four-atom threshold as we lower k. At each crossing we
expect additional contributions to the imaginary parts of the
four-body couplings, as a channel with a new Efimov state
becomes open.

The other type of divergent term has a factor of 1/[h(k)]2.
These lead to unphysical singularities in the four-body cou-
plings, which mark the start of a short region within each
Efimov cycle where h2(k) and Zt (k) have opposite signs. In
these regions, the trimer field has a ghostlike character, with a
propagator h2(k)/[Zt p0 − ut (k)] that has a negative residue at

its pole. This is a warning that not all features of the effective
action are physical for nonzero values of k. Fortunately these
regions are well separated from the threshold regions where
the phenomena of interest occur.

In the scaling regime the four-atom couplings display
Efimov periodicity. This can be seen most clearly if they
are multiplied by appropriate powers of k, analogously to the
rescaling of the three-body sector in Eqs. (8). Here we define
the couplings,

ûdd (k) = k3 udd (k), (13a)

ûdt (k) = k781/250 udt (k), (13b)

ûtt (k) = k406/125 utt (k), (13c)

where the powers of k are determined from dimensional
analysis of the running action and the scalings in the three-body
sector, Eqs. (6).
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The flow equations for these rescaled couplings can be written

∂t ûdd = 1

π2
+ 3 ûdd + 8π2 û2

dd

15
+ Ĥ ∂t Ẑt

45π2 Ê2
at Ẑ2

t

+ 2 Ĥ ût

3π2 Ê2
at Ẑ

2
t

+ 1573 Ĥ

1875π2 Ê2
at Ẑt

+ 2 Ĥ

3π2 Êat Ẑt

− 2 Ûdt ∂t Ẑt

45π2 Ê2
at Ẑ2

t

− 2 ût Ûdt

3π2 Ê2
at Ẑ2

t

− 6938 Ûdt

5625π2 Ê2
at Ẑt

− 2 Ûdt

3π2 Êat Ẑt

+ Û 2
dt ∂t Ẑt

45π2 Ĥ Ê2
at Ẑ2

t

+ 2219 Û 2
dt

5625π2 Ĥ Ê2
at Ẑt

, (14a)

∂t Ûdt = − 496π2 Ĥ ûdd

375
− 1096π2 ûdd ût

375
+ 2 Ĥ 2 ∂t Ẑt

75 Ê2
at Ẑ2

t

+ 2 Ĥ ût ∂t Ẑt

75 Ê2
at Ẑ2

t

+ 18 Ĥ 2 ût

25 Ê2
at Ẑ

2
t

+ 28 Ĥ û2
t

25 Ê2
at Ẑ2

t

+ 8938 Ĥ 2

9375 Ê2
at Ẑt

+ 11438 Ĥ ût

9375 Ê2
at Ẑt

+ 66 Ĥ 2

125 Êat Ẑt

+ 116 Ĥ ût

125 Êat Ẑt

− Ĥ ûtt ∂t Ẑt

90π2 Ê2
at Ẑ2

t

− Ĥ ût ûtt

6π2 Ê2
at Ẑ2

t

− 3469 Ĥ ûtt

11250π2 Ê2
at Ẑt

− Ĥ ûtt

6π2 Êat Ẑt

+ 3 Ûdt

+ 8π2 ûdd Ûdt

15
− 2 Ĥ Ûdt ∂t Ẑt

75 Ê2
at Ẑ2

t

− 2 ût Ûdt ∂t Ẑt

75 Ê2
at Ẑ2

t

− 8 Ĥ ût Ûdt

25 Ê2
at Ẑ2

t

− 18 û2
t Ûdt

25 Ê2
at Ẑ2

t

− 2146 Ĥ Ûdt

3125 Ê2
at Ẑt

− 8938 ût Ûdt

9375 Ê2
at Ẑt

− 16 Ĥ Ûdt

125 Êat Ẑt

− 66 ût Ûdt

125 Êat Ẑt

+ ûtt Ûdt ∂t Ẑt

90π2 Ê2
at Ẑ2

t

+ 2219 ûtt Ûdt

11250π2 Ê2
at Ẑt

, (14b)

∂t ûtt = 4384π2 Ĥ

375
+ 13568π2 ût

375
+ 9184π2 û2

t

375 Ĥ
+ 8π2 Ĥ 2 ∂t Ẑt

125 Ê2
at Ẑ2

t

+ 16π2 Ĥ ût ∂t Ẑt

125 Ê2
at Ẑ2

t

+ 192π2 Ĥ 2 ût

125 Ê2
at Ẑ2

t

+ 8π2 û2
t ∂t Ẑt

125 Ê2
at Ẑ

2
t

+ 624π2 Ĥ û2
t

125 Ê2
at Ẑ2

t

+ 432π2 û3
t

125 Ê2
at Ẑ2

t

+ 33752π2 Ĥ 2

15625 Ê2
at Ẑt

+ 87504π2 Ĥ ût

15625 Ê2
at Ẑt

+ 53752π2 û2
t

15625 Ê2
at Ẑt

+ 384π2 Ĥ 2

625 Êat Ẑt

+ 1968π2 Ĥ ût

625 Êat Ẑt

+ 1584π2 û2
t

625 Êat Ẑt

+ 406 ûtt

125
+ 256 ût ûtt

125 Ĥ
− 4 Ĥ ûtt ∂t Ẑt

75 Ê2
at Ẑ2

t

− 4 ût ûtt ∂t Ẑt

75 Ê2
at Ẑ2

t

− 16 Ĥ ût ûtt

25 Ê2
at Ẑ2

t

− 36 û2
t ût t

25 Ê2
at Ẑ2

t

− 4292 Ĥ ûtt

3125 Ê2
at Ẑt

− 17876 ût ûtt

9375 Ê2
at Ẑt

− 32 Ĥ ûtt

125 Êat Ẑt

− 132 ût ûtt

125 Êat Ẑt

+ û2
t t ∂t Ẑt

90π2 Ê2
at Ẑ2

t

+ 2219 û2
t t

11250π2Ê2
at Ẑt

− 1984π2 Ûdt

375
− 4384π2 ût Ûdt

375 Ĥ
+ 16π2 Û 2

dt

15 Ĥ
, (14c)

where we have defined the rescaled atom-trimer energy Êat =
2/3 + ûχ/Ẑχ and the modified coupling Ûdt = Ĥ 1/2 ûdt . As
in Eqs. (6) we have absorbed powers of the constants g2 and
m into the couplings to try to simplify the expressions.

We have numerically integrated the coupled equations for
udd (k), udt (k), and utt (k) through several Efimov cycles, and
we have checked that any transients caused by our choice
of initial conditions die out within the first cycle. All three
couplings show similar structures but they are most clearly
visible in utt (k) and so we present only results for its flow.
One cycle of the rescaled coupling ûtt (k) in the unitary limit is
shown in Fig. 1. At the value of t = ln(k/K) where the atom-
trimer threshold passes through zero energy, t = t3 � −4.85,
we see the expected discontinuity in the slope of the imaginary
part signaling the opening of a new channel. The unphysical
singularity arising from the zero of h2(k) is the structure that
can be seen at t � −3.0.

Several simple poles can also be seen in Fig. 1, at t �
−3.83, −4.67, and just below the threshold. When we look
more closely at the region close to an atom-trimer threshold,
as in Fig. 2, we find an infinite sequence of these poles.

2345

200

u
tt

100

0

100

200

t

FIG. 1. One Efimov cycle of the flow of the rescaled coupling
ûtt (k) in the unitary limit, plotted against t = ln(k/K). The real part
is shown by the solid curve and the imaginary part by the dashed
one. The atom-trimer threshold corresponding to the vanishing of
Ea(k) + Et (k) is marked by the gray vertical line at t = t3 � −4.85.
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FIG. 2. The imaginary part of ûtt (k) / (t − t3) just before the
threshold t3 � −4.85 shown in Fig. 1, plotted against x = ln (t − t3).
Apart from the rightmost one, corresponding to the deepest four-body
state, the poles are approximately equally spaced.

These become equally spaced in the variable x = ln(t − t3).
These poles do not correspond to singularities in the equations
but are generated by the evolution of the couplings. Like the
singularities that appear in the three-body sector, we interpret
them as bound states or, rather, narrow resonances since they
have finite imaginary parts as a result of coupling to open
channels with more deeply bound trimers. However, as we
discuss below, not all of these poles may appear as physical
states.

The introduction of the trimer field to describe energy
dependence in the three-body sector is essential for generating
these poles as they do not appear in the FRG equations for the
couplings without trimer fields [35].1 The scales at which these
poles appear follow a double-exponential, “super-Efimov”
pattern, similar to that observed in the two-dimensional three-
body system studied by Nishida et al. [24].

Mathematically this structure arises from the forms of our
differential equations which are analogous to that of the RG
equation of Ref. [24]. The key terms that lead to the “super-
Efimov” behavior are the ones that are singular at the atom-
trimer threshold. These arise from diagrams that are similar
to those in Fig. 2 of that paper. However we should stress
these states appear for nonzero values of k, where the action is
not physical. Moreover the four-body flow equations depend
on a scale as a result of the breaking of scale invariance by
the Efimov effect. These states can therefore move relative to
the atom-trimer threshold during the evolution to the physical
limit. In particular, they may pass through the nearby atom-
trimer threshold to become virtual states. If so, only a finite
number of bound states may persist in that limit. Furthermore, a
theorem of Amado and Greenwood forbids an infinite number
of four-body bound states based on a zero-energy trimer state
[37]. Nonetheless, the presence of these virtual states might be
relevant to the rich structure of states being found in four-body
systems away from the unitary limit. For example, Deltuva [38]
has recently described a tower of four-body bound states lying

1The four-body states seen in Ref. [30] have been found to be
numerical artifacts [35,36].
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FIG. 3. The final cycle of the flow of the rescaled coupling ûtt (k)
plotted against t = ln(k/K). The solid line corresponds to the real
part and the imaginary to the dashed one. The atom-atom scattering
length has been tuned so that the last three-body state appears at k = 0
(t = −∞).

just below the atom-atom-dimer threshold in systems with
finite dimer binding energy.

The local form of the action, Eq. (3), does not allow us to
study the full energy dependence in the four-body channels and
so we cannot directly determine the spectrum in the physical
limit. Instead, we can examine where these states cross zero
energy as we move away from the unitary limit by taking a
nonzero atom-atom scattering length, a < 0. Such zero-energy
states are the ones observed in experiments on ultra-cold atoms
in traps, as they lead to resonant enhancements of the loss of
atoms at particular values of the scattering length [10,18].

With a finite scattering length, the final Efimov cycle no
longer has the same form as in the unitary limit. An example
is shown in Fig. 3. For t � −2.3 the flow of the four-atom
coupling matches Fig. 1, but beyond this point differences
become increasingly visible. The example shown has the
scattering length tuned so that the shallowest trimer state has
exactly zero binding energy at k = 0. In this case, we find three
four-body states appearing in the final Efimov cycle (the poles
close to t = −4.1, −5.6, and −7.1). There is thus no conflict
with the theorem of Amado and Greenwood [37] that there
are only a finite number of these four-body states. We denote
the corresponding scattering length by a3. When we further
decrease a, we find that the values a

(n)
4 at which these states

cross the four-atom threshold are related to a3 by

a
(0)
4 /a3 � 0.438, a

(1)
4 /a3 � 0.877, a

(2)
4 /a3 � 0.9967.

(15)

For the two lowest states, these ratios are within 5% of the
results of exact solutions to the four-body equations [13,14],
and hence they are also in reasonable agreement with the
experimental numbers [18]. The third state lies extremely
close to the atom-trimer threshold. If it is real, then it will be
a challenge to observe both numerically and experimentally.
However this state may just be an artifact of our truncation
since improvements to the action which shorten the Efimov
cycle might make it unbound.
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Returning to the double-exponential behavior observed
during the evolution, the scale k

(n)
4 at which the nth excited

four-body state appears can be written in the form

k
(n)
4 = k3 exp[α e−βn], (16)

where α � 1.53, β � 2.06, and k3 denotes the scale corre-
sponding to the atom-trimer threshold for the next three-body
Efimov state. This describes the energies of all states except
the lowest (n = 0) to a very good approximation. The ratios
between scales for subsequent states can be expressed in the
form of a universal scaling function,

k
(n+1)
4 /k

(n)
4 = (

k3/k
(n)
4

)1−exp(−β)
. (17)

A similar scaling relation between the binding energies has
also been found by Hadizadeh et al. [15,16], although its
functional form is quite different and it predicts at most three
four-body states in an Efimov cycle. More importantly, and in
contrast to the results of those authors, the scales at which our
states appear do not depend on any new four-body scale: The
parameter α in Eq. (16) has a fixed value which is independent
of the initial conditions we impose on the four-body couplings.
The independence of any four-body parameter also applies to
the physical states discussed above.

V. CONCLUSIONS

In summary, we have used the FRG to study systems of
four bosons close to the unitary limit. In contrast to previous
approaches, we introduce a dynamical trimer field and use this

to match the channel structure of the Faddeev-Yakubovsky
equations. In the physical limit, where the cutoff scale tends
to zero, we examine the points at which three- and four-body
states pass through zero energy as we vary the atom-atom
scattering length. We find three four-body states in the last
Efimov cycle. The lowest two of these pass through zero for
scattering lengths that are in good agreement with the results of
exact solutions of the Faddeev-Yakubovsky equations [13,14]
and with experimental observations [18]. The third state is
extremely weakly bound and so may be an artifact of our
truncated action.

In the unitary limit, the evolution generates an infinite
number of four-body resonant states during each Efimov cycle,
although it seems unlikely that all of these persist to the
physical limit. These states lie just below each atom-trimer
threshold and follow a double-logarithmic, or “super-Efimov”
pattern [24]. They obey a universal scaling relation analogous
to that of Ref. [15]. However the scales at which they appear
are independent of the initial conditions on the four-body
couplings. This supports the conclusion of Refs. [12,39] that
there is no additional relevant parameter in four-boson systems
with contact interactions.
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[3] R. E. Grisenti, W. Schöllkopf, J. P. Toennies, G. C. Hegerfeldt,
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