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Quantum-statistics-induced flow patterns in driven ideal Fermi gases
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While classical or quantum interacting liquids become turbulent under sufficiently strong driving, it is not
obvious what flow pattern an ideal quantum gas develops under similar conditions. Unlike classical noninteracting
particles which exhibit rather trivial flow, ideal fermions have to satisfy the exclusion principle, which acts as
a form of collective repulsion. We thus study the flow of an ideal Fermi gas as it is driven out of a narrow
orifice of width comparable to the Fermi wavelength, employing both a microcanonical approach to transport,
and solving a Lindblad equation for Markovian driving leads. Both methods are in good agreement and predict
an outflowing current density with a complex microscopic pattern of vorticity in the steady state. Applying a
bias of the order of the chemical potential results in a short-range correlated antiferromagnetic vorticity pattern,
corresponding to local moments of the order of a tenth of a magneton, eh̄/2m, if the fermions are charged.
The latter may be detectable by magnetosensitive spectroscopy in strongly driven cold gases (atoms) or clean
electronic nanostructures (electrons).
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I. INTRODUCTION

Experimental advances in the rapid quenching and imaging
of ultracold atoms [1–6], as well as in the microscopy
of nanoscale structures [7], make it possible to observe
interesting effects of current-carrying systems with specific
features attributable to their quantum nature. On the other
hand, it has long been known—ever since the beginning of
quantum mechanics [8]—that interacting or noninteracting
quantum fluids can be described in terms of hydrodynamic
equations [9–13]. In fact, the many-body time-dependent
Schrödinger equation is exactly equivalent to the equations
of motion for the density and velocity field, namely the
continuity equation and a hydrodynamic equation—albeit with
an unknown stress tensor [8,10,14]. As any viscous fluid,
interacting quantum liquids can exhibit a transition between
laminar and turbulent flows when driven strongly [13,15], and
experiments on electron liquids to detect this phenomenon
have been proposed [16–18]. It has been argued that electronic
systems close to quantum criticality are best suited to exhibit
such turbulence, as they feature a small ratio of shear viscosity
and entropy density, undoped graphene [16,19] or cold atoms
at unitarity above Tc [20] being probably the simplest such
systems.

More specific effects in the flow of quantum fluids have
been studied, both experimentally and theoretically [21–27], in
the context of vorticity and turbulence in superfluids, focusing
on the dynamics and the interactions of quantized vortices.
However, another interesting aspect of fermionic quantum
fluids has not received much attention so far. Complex flow
patterns are generally attributed to the particles’ interactions
which generate nonlinearity and chaoticity in the dynamics.
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With the advent of atomic gases where interactions among
atoms can be tuned to essentially zero [3], the question arises
whether the exclusion principle alone—a form of collective
repulsion—may lead to interesting flow patterns, if the Fermi
gas is driven out of equilibrium. This is in contrast to ideal
classical gases, which definitely do not have any interactions
to produce a finite viscosity and the associated turbulent effects
[27]. However, that nontrivial phenomena do arise in out-of-
equilibrium flow of free fermions was recently shown in 1d

gases [28–31], where the formation of shocks and interference
ripples after a local quench was observed, suggesting that
even more interesting phenomena could develop in higher
dimensions. Given that already in equilibrium, Pauli exclusion
leads to interesting interference phenomena in free fermions,
such as Friedel oscillations [32], one may expect even more
complex patterns out of equilibrium.

In this paper we study the simplest case exemplifying these
phenomena: driven ideal fermions in restricted geometries in
two dimensions. We show that they indeed develop nontrivial
vorticity patterns, which are manifestations of the Fermi
statistics. Antiferromagnetic patterns are found not only in
transients (unlike in the above-mentioned 1d studies), but
also in the long-time steady state. The latter should facilitate
their observation in experiments, such as most recent transport
measurements in cold atoms where constrictions as we
consider here have been realized [5,6]. Note instead that the
ideal Bose gas, if prepared in a condensed state at T = 0,
reduces to a single-particle problem, so that particular effects
of “anti-exclusion” are absent. However, we recall that the
case of free bosons is a pathological limit, which is likely to be
modified by any weak interaction, as it alters the low-energy
spectrum and thus ensures superfluidity, by establishing a finite
critical velocity.

The paper is organized as follows. In Sec. II we introduce
the model and the methods to be employed. In Sec. III we
present the main physical results, while their experimental
verification is discussed in Sec. IV. Conclusions are given
in Sec. V.
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FIG. 1. (Color online) Studied setup: a narrow channel (A)
connected to a wide region (B). In the microcanonical setup the dashed
boundaries at ±L are hard walls, while they represent Markovian
leads in the Lindblad approach. For large L, the steady-state pattern
near the orifice may be expected to be the same in the two approaches.

II. MODEL

In this work, we consider a two-dimensional Fermi gas in
the setup shown in Fig. 1: a narrow channel (A) of width
ε is connected at x = 0 to a much wider region (B) of width
W = 4ε (in all figures, if not specified otherwise). We study the
current flow, as the out-of-equilibrium free Fermi gas is driven
from A to B. We are interested in the limit of very long regions,
L → ∞. This problem is solved using two complementary
approaches: the microcanonical formalism [33,34] for a closed
system, and the Lindblad equation in what was called the “third
quantization” formalism [35,36] for a driven open system.
While the first method allows us in principle to follow the entire
dynamics at every instant of time, the second one accesses
directly the steady-state properties.

A. Microcanonical approach

We prepare fermions of mass m in the ground state of the
Hamiltonian H0 = − h̄2

2m
∇2 + Vinθ (x) at chemical potential μ,

in the setup of Fig. 1, where θ (x) is the Heaviside step function.
This results in average densities n̄A and n̄B in regions A, and
B, respectively. We consider L � 1/n̄Aε, so as to simulate
a quasi-infinite system. At t = 0, we suddenly quench the
potential to H = − h̄2

2m
∇2 + Vfinθ (−x), and study the ensuing

time evolution. As explained below, we only work with
combinations of biases (Vin,Vfin) for which either the initial
or the final potential is zero. In all numerical implementations
we discretize the system on a square lattice with lattice constant
a, using a tight-binding model with hopping g = h̄2

2ma2 .
In order to highlight the effect of quantum statistics

within the microcanonical approach, we compare two different
protocols. The first protocol, which we refer to as expansion
into fermions, starts from an initial state with a roughly
equal average density throughout the closed geometry. This
is obtained by fixing the initial potential to Vin = 0 which
establishes a chemical potential μ in the sample. At t = 0,
a bias of the order of the chemical potential, Vfin ≈ μ/2, is
turned on in region A, so as to push the fermions out of the
narrow channel into the large box B. Under the influence of this
bias, the fermions are forced to exit from the narrow channel,
and flow into the Fermi sea, which is already present in the
box B. Note that the density profile of the latter is not entirely
uniform, but oscillates in the transverse direction, because of
the boundary conditions imposed at y = ±W .

In the second protocol, which we refer to as expansion into
free space, the initial state is prepared by applying a large
potential Vin � μ to region B, such that the gas is initially
confined to the narrow channel only. At t = 0, the potential is
released, and the gas is left to expand freely (Vfin = 0) into the
empty region B.

We will compare these two protocols to highlight the role
of finite density, and its oscillations in region B. The latter
are relevant only in the expansion into fermions protocol. The
quasisteady states obtained within that protocol are the closest
to the steady states that one can realize within driven open
systems, which will be addressed in the next subsection.

We are interested in a quasisteady current flow in the
vicinity of the orifice, within a large time window h̄/μ �
t � L/vF , where vF ≈ √

2μ/m. In order to ensure this, we
always choose the conserved number of fermions N , and the
potentials Vin/fin such that the narrow channel is populated with
a finite density in the initial state. In an expansion into fermions
where no potential is applied in the initial state, i.e., Vin = 0,
a finite initial density in channel A requires that n̄Bε2 > π

4
(assuming that n̄BW 2 � 1, which we always ensured). Since
the wave function remains a Slater determinant at all times, it is
enough to solve for the time-dependent single-particle eigen-
values, and eigenfunctions before the quench, H0ψ

(0)
α (x,y) =

Eαψ (0)
α (x,y), and afterwards, Hψβ(x,y) = Eβψβ(x,y). To

this effect, both the pre- and postquench Hamiltonians H0

and H , respectively, are exactly diagonalized, and the time-
dependent density and current density are obtained as

〈n̂(x,y,t)〉 =
∑
α∈occ

∑
β,β ′

ψ∗
β (x,y,t)ψβ ′ (x,y,t)�∗

βα�β ′α,

〈Ĵ(x,y,t)〉 = h̄

m
Im

[ ∑
α∈occ

∑
β,β ′

ψ∗
β (x,y,t)

×∇ψβ ′(x,y,t)�∗
βα�β ′α

]
, (1)

where

�αβ = 〈
ψ (0)

α

∣∣ψβ

〉
(2)

are overlaps between eigenstates of the initial and final
Hamiltonian, and the time evolution is simply given by

ψβ(x,y,t) = ψβ(x,y)e−iEβ t . (3)

The summation over α in Eq. (1) is restricted to the set of
states (labeled as occ) that are occupied in the initial Fermi
sea. Herein lies the central difference with a system of ideal
bosons, where only the lowest energy state would be occupied,
which leads to rather trivial patterns. We found numerically
that at any fixed position close to the orifice, after an initial
transient a steady state establishes, a result which is in fact not
obvious for free fermions.

B. Lindblad equation

In order to directly access the nonequilibrium steady-state
properties and compare with the microcanonical results we
consider again the setup of Fig. 1, but now taking the dashed
boundaries to represent couplings to driving Markovian baths.
The density matrix ρ(t) of this open quantum system evolves
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according to a master equation, expressed in Lindblad form
as [35,36]

dρ

dt
= L̂ρ := − i

h̄
[H0,ρ] +

∑
b,y

(
2Lb

yρLb†
y − {

Lb†
y Lb

y,ρ
})

.

(4)

For convenience we directly formulate a discrete version of
the problem on a lattice with spacing a and hopping amplitude
g = h̄2

2ma2 . The operators Lb
y , which are linear in the fermions,

represent the coupling at coordinate y on boundary b ∈ {A,B}
to independent baths. This allows for an exact solution via
the method of third quantization [35,36]. To describe driving
from A to B we choose LA

y = √

Ac†(x = −L,y) and LB

y =√

Bc(x = L,y), where c†,c are creation and annihilation

operators, respectively.

III. RESULTS

In this section we present physical results obtained within
the two formalisms, and compare them. Our main result is
the existence of two density regimes, connected by a smooth
crossover in n̄ε2. In the high-density regime (n̄ε2 � 1) the
Fermi wavelength is small as compared to the channel width
ε, and the flow behavior can be explained by semiclassical
diffraction theory. In contrast, in the low-density regime
n̄ε2 ∼ 1, the Fermi wavelength is comparable with the channel
width and the flow exhibits peculiar patterns that result from
interference and effects of Pauli exclusion, i.e., the fermionic
statistics.

A. Quasisteady state in the microcanonical approach

Within the microcanonical formalism, we found that, after a
short transient time following the quench, the formed current
and vorticity patterns remain remarkably stable under time
evolution. Only much later, when waves reflect from the
boundaries at x = ±L flow back to the junction, this pattern
is obviously disturbed [cf. Ref. [37] for a visualization of
the initial dynamics which result eventually in the nontrivial
quasisteady flow pattern of Fig. 4(a)]. This observation
strongly suggests that a genuine quasisteady state forms within
our microcanonical setup, which is well defined and infinitely
long lived in the thermodynamic limit L → ∞. Note that this
is a nontrivial result, especially for noninteracting particles,
since it is not obvious that in the absence of interactions and
randomization of momenta a steady state should establish. The
existence of such a steady state makes it meaningful to ask for
the equivalence between this microcanonical setup and the
transport formalism based on a driven open system.

B. Equivalence of transport approaches

The steady state of the open system and the quasisteady
state that establishes in the microcanonical approach (both
within the expansion into fermions and expansion into free
space protocols) are usually closely related, except close to
the boundaries. In fact, the two approaches to transport are
expected to be equivalent in the thermodynamic limit, if
interactions and impurity scattering induce thermalization and
momentum randomization far from the junction. However, for

noninteracting fermions the equivalence of the two methods
is not guaranteed, since reflected waves from the contacts
at x = ±L can coherently propagate back to the junction.
Despite this caveat we found that the two approaches give
quantitatively very similar results in the high-density regime
n̄ε2 � 1, where reflections appear to be of minor importance,
whereas in the low-density regime the agreement is only
qualitative. In that regime we expect the microcanonical
approach to be a better description for a realistic system with
weak but finite interactions. We therefore present our central
results for the low-density regime within that framework.

C. High-density regime

We first discuss the high-density regime, which features
rather simple semiclassical diffraction patterns. At high densi-
ties, n̄ε2 � 1, the Fermi wavelength is much smaller than the
width of the orifice. Hence, a semiclassical diffraction picture
is expected to hold. Accordingly, we find a relatively simple
steady-state pattern. For a representative set of parameters

A/g = 
B/g = 0.256, the current density pattern and the
absolute value of its vorticity (|∇ × J|) are shown in Fig. 2(c),
as well as the density pattern in Fig. 2(d). In Fig. 2(a), we
show the total current J in the plane of couplings to the leads.
Interestingly, J is nonmonotonic in 
A,B . Along every line of
constant ratio 
A/
B it reaches a maximum and decreases as
1/
A,B at strong coupling [see Fig. 2(b)], similarly as was
observed in related studies in 1d [38–43].

The most prominent feature of the current pattern in
Fig. 2(c) is a diffraction beam exiting from the orifice, whose
angle is determined by the transverse momentum of the highest
propagating band in channel A (here the second band). Those
beams are reflected at y = ±W/2 and give rise to two islands
of intense vorticity around (4ε,±ε/2). They are thus simple
boundary effects due to reflections at finite W ; see also the
density pattern in Fig. 2(d). The main characteristics of this
regime is a rhomboidal region of very small vorticity centered
at (2ε,0). The microcanonical approach reproduces all these
features at high densities, n̄ε2 � 1. In particular, for both
protocols we defined in the microcanonical ensemble, we
found matching conditions of the driven systems, such that
density and current-density patterns in the respective steady
states coincided.

In Fig. 3 we show the result for an expansion into free
space (for reasons of illustration only), with a finite initial
density n̄Aε2 ≈ 5 in channel A. The gas is then left to expand
freely (with Vfin = 0) into the empty region B. The most
important characteristics of the vorticity pattern is again the
empty rhomboidal region of size ∼W 2 close to the orifice. This
is a main feature of the semiclassical high-density regime,
where only simple diffraction at the orifice is observed. It
results in two beams, which, however, produce little interesting
interference and vorticity patterns. Nevertheless, the very
good agreement between the microcanonical and the Lindblad
approach to transport is an interesting result in itself. It
suggests that the two approaches can be used essentially
interchangeably to describe steady states out of equilibrium, up
to the caveat that in a fully coherent system, interference with
reflections from the far boundaries may result in differences,
as we will discuss below in the low-density regime. The
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FIG. 2. (Color online) Steady state from the Lindblad equation at high average density, n̄ε2 ≈ 2.5. (a) Total current J in units of h̄

2m
n̄3/2ε

as a function of the bath couplings 
A,B/g. (b) Current as a function of driving, evaluated along the dashed red line (
A = 
B ). At 
 � g, the
dependence is nonmonotonic. (c) Current density field J(x,y) (red arrows) superimposed on a contour plot of |∇ × J|, for 
A,B = 0.256g. The
orifice is marked by a solid bold line. (d) Corresponding density pattern. Distances are measured in units of the orifice width ε [but note that
the aspect ratio is 2:5 in (c) and (d)]. In all plots lighter colors correspond to larger values (linear scale).

latter seems to be of negligible importance in the high-density
regime, however. Note that this equivalence of approaches
is quite analogous to the equivalence of thermodynamic
ensembles in equilibrium statistical mechanics. However,
while such an equivalence appears rather natural in the context
of interacting, fully chaotic systems, it is much less obvious
for free fermions, as we discussed above. For the latter even
the existence of a quasisteady state in the closed system could
not be anticipated a priori [14,33]. It would be interesting to
understand this phenomenon from the perspective of quantum
chaos in many-fermion systems.

D. Low-density regime

The flow pattern is much more interesting at low density,
n̄ε2 ∼ 1, where quantum effects are more pronounced. In

this regime, additional structures in the current and vorticity
develop within the rhomboidal region, which was nearly
vorticity free at high density. In Fig. 4(a), we show the current
and vorticity pattern computed within the microcanonical
formalism at time t ≈ 16 h̄/μ, before reflections at x = ±L

occur. Here, we study the protocol corresponding to expansion
into fermions. The emerging steady-state current pattern ex-
hibits preferential zigzag-shaped stream lines, and thus differs
markedly from the simple picture predicted by semiclassical
diffraction theory. As one should expect, the spatial scale
of the vorticity variations is set by the interparticle distance
∼ 1√

n̄
, i.e., the Fermi wavelength. Note that here the islands

of vorticity close to the orifice (x < 4ε) are not simply due
to the reflection of outflowing waves from the boundaries at
y = ±W/2.

(a) (b)
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ŷ
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x̂

FIG. 3. (Color online) Quasisteady state in the high-density regime (n̄Aε2 ≈ 5), evaluated within the microcanonical formalism (free
expansion into an initially empty region B). The observed patterns, shown for the late time t ≈ 250 h̄/μ, are qualitatively very close to the
steady state found in open systems. (a) Current density superimposed on the absolute value of the vorticity, and (b) density. x and y coordinates
are in measured in units of the orifice width ε. Note the aspect ratio 2:5 of the axis scales.
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FIG. 4. (Color online) Current density J and contour plot of |∇ × J| computed in the microcanonical quasisteady state, for increasing
density. From left to right: n̄ε2 ≈ 1.1, n̄ε2 ≈ 2.2, n̄ε2 ≈ 4.8. The most interesting patterns are observed at relatively low density, n̄ε2 ∼ 1.

We interpret the origin of the complex current patterns as
arising from current flow through regions that exhibit boundary
induced Friedel oscillations in the steady-state density. These
oscillations are provoked by a finite lateral confinement (finite
W ), even though W 2n̄ may be fairly large. The current flow
appears to avoid regions of higher density in the steady state,
which leads to nontrivial vorticity patterns. This is illustrated
in Fig. 5, which shows that in an expansion into fermions, the
y component of the current density is strongly anticorrelated
with the density oscillations in region B in the steady state.
This suggests that one may view both effects as consequences
of Pauli exclusion, which leads to Friedel oscillations in the
density and the currents, in the steady state.

The patterns farther from the orifice (x � 4ε) depend,
naturally, rather strongly on the presence of the boundaries,
as they are dominated by interference of waves that are
reflected from the boundaries. If instead one considers periodic
boundary conditions in the y direction, the patterns are
dominated by interference of waves that wind around the
cylinder. However, near the orifice, the effect of changing
boundary conditions is much less pronounced. Even though
the vorticity pattern is modified quantitatively, it remains
qualitatively similar (see Appendix A).

Even though from Eq. (1) it is clear that the current density
is simply the superposition of single-particle contributions, the

0 5 10 15

0.04

0.05

0.06

0.07

0.08

0.09

0 5 10 15

0.04

0.05

0.06

0.07

0.08

0.09

-5            0            5          
ŷ
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FIG. 5. (Color online) The profile of the spatial density (dashed
blue line) and the y component of the current density (solid red line)
along the cross sections at x = 2ε (a), and 4ε (b). Density oscillations
and the current are anticorrelated. The corresponding values have
been rescaled to visually pronounce the anticorrelated behavior.

resulting pattern is quite nontrivial, as forward and backward
propagating states superpose, each with their individual inter-
ference patterns. The higher the initial density the larger is
the number of superposed modes, which tends to smoothen
the interference patterns. Interesting patterns survive for low-
density n̄ε2 � π/4, while in the limit n̄ε2 → ∞ we expect to
recover the classical limit where all nontrivial features are
smeared out. We illustrate this trend in Fig. 4, where the
current patterns obtained for increasing densities are shown.
Nontrivial structures emerge at low density where the Fermi
wavelength is comparable with the orifice width, provided
that current is flowing into a nonempty region B. Under these
circumstances the Pauli exclusion leads to boundary induced
Friedel oscillations in region B, which appear to play a crucial
role, and induce the observed vorticity patterns.

The importance of an appreciable density of fermions in
region B and the associated density oscillations in the steady
state can be best appreciated by comparing an expansion
into fermions with an expansion into free space. We work at
low density (n̄ε2 ≈ 1.3) within the microcanonical formalism.
Figure 6(a) shows the steady-state pattern of current and
vorticity in an expansion into fermions.

We contrast the above protocol with an expansion into
empty space, with very similar initial density in region A.
Figure 6(b) shows the resulting flow pattern, which exhibits
hardly any interesting features. We interpret this as being
due to the low steady-state density of fermions in region B,
such that density oscillations in that area are very weak and
have little effect on the current flow. The main conclusion
from this comparison is that it is not merely the geometry
that is relevant for producing interesting interference patterns
in driven fermions, but also the presence of an appreciable
steady-state density in the relevant spatial regions.

For a driven open system, we obtain similar steady-state
properties, but the details of the flow patterns differ, due to the
pronounced role of reflections from the boundaries at x = ±L,
which act as a semitransparent wall causing partial reflection
of the particle flux. These reflected waves are also the cause of
minor differences in the density patterns of Figs. 2(d) and 3(b).
Consequently, the reflected and incoming waves interfere to
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FIG. 6. (Color online) (a) The current-density pattern and the intensity of the corresponding vorticities are shown for n̄ε2 ≈ 1.3 in the
microcanonical quench protocol (snapshots are taken at time t ≈ 16 h̄

μ
): (a) Vin = 0 (roughly homogeneous initial density), Vfin ≈ μ/2 applied

to region A; (b) expansion into empty space, Vin � 1 (region B initially empty), Vfin = 0. The vorticity patterns in the two cases are evidently
very different. In particular, in case (b) of the expansion into the initially empty region B, there is no evidence of nontrivial features in the current
flow and vorticity close to the orifice, in contrast to case (a). This shows that a finite density in region B and the associated Friedel oscillations
in the steady state are important for the formation of nontrivial flow patterns. In both cases, we chose W = 14ε so that the boundaries at ±W

are rather far from the orifice and the difference between the two quench protocols is evident. The color code is the same for both figures. Note
the aspect ratio of 7:5 of the axis scales.

form a complicated structure of currents and vorticities (see
Appendix B for the corresponding figures and discussion).

IV. POSSIBLE EXPERIMENTAL VERIFICATION

If the fermions are charged, such as in a 2d electron
gas (which may still be considered weakly interacting in the
presence of a strong dielectric) a complex current pattern as in
Fig. 4(a) generates a nontrivial magnetic-field distribution. To
obtain the same, one defines

b(r = {x,y,z}) = μ0

4π

∫
dx ′dy ′j(r′) × r − r′

|r − r′|3 , (5)

where μ0 is the permeability of vacuum, and j is the 2d number
current density of atoms in the x-y plane (z = 0). It then
follows from the Biot-Savart law that the magnetic field B(r)
generated by moving particles of charge e is given by

B(r) = eb(r). (6)

For strong drivings (Vfin ∼ μ) in the considered geometry,
typical magnetic moments associated with the circulation
patterns are of the order of a tenth of a magneton μ = eh̄

2m
,

that is, in principle, an experimentally accessible intensity.
Interestingly, the vorticity maxima organize in a short-range
correlated antiferromagnetic pattern, which realizes an out-
of-equilibrium staggered flux state, cf. Fig. 7, reminiscent
of equilibrium staggered flux phases proposed in strongly
correlated 2d systems [44,45]. Similar patterns arise from
currents of magnetically (electrically) polarized neutral atoms.
The electric (magnetic) fields due to such moving dipoles are
proportional to a derivative of the field pattern of Fig. 7, and
are given by

E(r) = −(m · ∇)b(r). (7)

with E(r) being the electric field, and m the static magnetic
moment. Similarly, the magnetic field produced due to polar-
ized neutral particles with a static electric dipole d is given by

B(r) = (d · ∇)b(r). (8)

However, these fields may be too weak to be detected by
present experimental means. It may be interesting to look for
similar patterns in systems which have spin-orbit coupling,
e.g., in cold atoms.

Apart from the currents, the density patterns computed in
this paper can be measured experimentally by resonant light
absorption in atomic gases in optical lattices. The limiting
resolution is currently ∼660 nm [46], which is smaller
than typical Fermi wavelengths in those systems. The setup
discussed here has already been realized in recent experiments
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FIG. 7. (Color online) The z component of the magnetic field
generated by a charged current flow as in Fig. 4(a): The quasisteady
state exhibits a staggered flux close to the orifice.
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(a) (b)

ŷ

1

-1

0
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FIG. 8. (Color online) Comparison between (a) closed and (b) periodic boundary conditions at y = ±W/2 (here W = 4ε) in the low-density
regime (n̄ε2 ≈ 1.1). Shown is the current density, superimposed on the vorticity contour plot, as obtained within the microcanonical approach,
with Vin = 0, and Vfin ≈ μ/2. Two nontrivial patterns close to the orifice at (x,y) ≈ (2ε, ±ε/2) are encircled in yellow. The x and y coordinates
are measured in units of the orifice width ε. Note the aspect ratio 2:5 of the axis scales. The color code is the same for both figures.

[5,6] where 6Li atoms are confined in a geometry with a narrow
constriction connecting two reservoirs.

V. CONCLUSION

Using two complementary approaches, we have analyzed
both the steady-state properties and the transient dynamics
of an ideal Fermi gas pushed out of an orifice into a wider
region. Pauli exclusion was found to strongly influence the
current flow of fermions at finite density: it induces current
patterns with staggered local moments of appreciable size,
formed by itinerant fermions in an out-of-equilibrium steady
state. The latter may be used to experimentally probe the
predicted patterns. Since these effects are after all interference
phenomena, we expect them to be robust towards weak
interactions. It would be interesting to extend the present study
to disordered systems and compare with the predictions of very
heterogeneous current flow with substantial steady vorticity
therein [47]. We expect that density inhomogeneities due to
Friedel oscillations from strong impurities (which take the role
of the walls at ±W ) will lead to similar interesting vorticity
patterns under a nonequilibrium steady state.
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APPENDIX A: INFLUENCE OF BOUNDARY CONDITIONS

We analyzed the influence of boundary conditions on the
formation of nontrivial current patterns in closed systems,
by considering different boundary conditions. We used the
microcanonical formalism with Vin = 0, and Vfin ≈ 1

2μ, in the
low-density regime n̄ ≡ n̄B ≈ n̄A ≈ 1.1/ε2, where nontrivial
patterns appear. In Fig. 8(b) we show patterns obtained with
periodic boundary conditions where y = ±W/2 are identified.

We observe that the main qualitative features of the patterns
close to the orifice (x � 4ε ∼ W ) are still present with periodic
boundary conditions; in particular, the two islands of vorticity
close to (x,y) ≈ (2ε,±ε/2) still form. However, one should
not expect quantitative agreement near the orifice.

APPENDIX B: STEADY STATE OF OPEN SYSTEMS
IN THE LOW-DENSITY REGIME

In an open system the current flow is controlled by the
strength of the couplings 
A,B to the external leads. The low-
density regime, where the Fermi wavelength is of the order of

ŷ

1

-1

0

2                    4                    6                    8   

x̂

FIG. 9. (Color online) The current density superimposed on the
absolute value of the vorticity, as obtained with a low average density,
n̄ε2 ≈ 1.1. In this regime quantum interference effects are strong, as
in closed systems, but they differ quantitatively, because of important
reflections at the leads x = ±L, which are absent in the quasisteady
state analyzed in closed systems. x and y coordinates are in measured
in units of the orifice width ε. Note the aspect ratio 2:5 of the axis
scales.
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the orifice width, is obtained, e.g., by tuning the injection rate

A, such that 
A

g
� 1.

For this regime, the current and vorticity patterns of the
steady state are shown in Fig. 9. The rhomboidal region of
size ∼W 2 close to the orifice contains several intense local
maxima of the vorticity, in qualitative agreement with what is
found using the microcanonical approach to closed systems.
However, along with this feature a much more complicated
structure of vorticity develops throughout the wide region
B. This arises because the coupling to the absorbing bath at
x = L = 10ε acts only as a semitransparent wall (it becomes
fully transparent only in the limit of infinite absorption

B → ∞). These effects due to reflected waves survive even
close to the junction, because of the lack of dephasing and
randomization in this noninteracting system. While some

reflection is certainly also present in the higher density regime,
its relative effect is apparently much smaller, so that the driven
open system and the quasisteady state of the closed system are
qualitatively very similar.

In contrast to the involved structure of the steady state
of the open system, the microcanonical approach can ac-
cess the quasisteady current pattern before reflections from
the boundary at ±L occur. It is thus more suitable to
reveal the effects induced on the current pattern by quan-
tum statistics, and separating them from simple reflection
effects. The most interesting effects due to Pauli exclu-
sion are found at low densities n̄Aε2 � 1, in the rhom-
boidal region close to the orifice where the reflection of
diffracted beams from either boundary do not play much of a
role.
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