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Roton excitations in a trapped dipolar Bose-Einstein condensate
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We consider the quasiparticle excitations of a trapped dipolar Bose-Einstein condensate. By mapping these
excitations onto linear and angular momentum we show that the roton modes are clearly revealed as discrete
fingers in parameter space, whereas the other modes form a smooth surface. We examine the properties of
the roton modes and characterize how they change with the dipole interaction strength. We demonstrate how
the application of a perturbing potential can be used to engineer angular rotons, i.e., allowing us to controllably
select modes of nonzero projection of angular momentum to become the lowest energy rotons.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) with dipole-dipole in-
teractions (DDIs) have been realized with highly magnetic
atoms [1–3]. This interaction is both long ranged and
anisotropic and is predicted to open up an array of new
phenomena for exploration using ultracold atomic gases [4,5].
An important prediction is that a rotonlike excitation will
emerge in a dipolar BEC which is tightly confined along
the direction that the dipoles are polarized [6]. There has
been significant theoretical interest in schemes for detecting
rotons [7–11] and on the role of rotons in the behavior of
dipolar BECs, such as response to perturbations [12], the
critical velocity for the breakdown of superfluidity [13,14],
pattern formation [15,16], and density fluctuations [11,17,18].

Initial theoretical predictions of Santos et al. [6] were made
for a BEC of dipoles polarized and confined in the z direction
(i.e., untrapped in the xy plane). In this case the quasiparticles
are plane waves and the rotons occur as a local minimum
in the dispersion relation at wave vector krot ∼ 1/az, where
az is the z confinement length [19]. While robust numerical
techniques for calculating the quasiparticles of a fully trapped
dipolar BEC have been developed (e.g., see [20]), there has
been no comprehensive study of rotons for the trapped system.
However, some aspects of the lowest energy rotons in the
trapped system have emerged in studies of condensate structure
and stability [21–26]. Recent work [27] presented an approx-
imate description of the trapped rotons by requantizing a
local density treatment of the excitation spectrum, enabling an
analytic prediction for the roton spectrum and wave functions.

In this paper we directly examine the structure and
properties of the roton modes that emerge in a pancake-
shaped, trapped dipolar BEC using full three-dimensional
numerical calculations. We produce a dispersion-relation-like
characterization for the quasiparticle excitations by mapping
these excitations onto linear and angular momentum, and use
this to identify the rotons. Strikingly, in the trapped system
the rotons emerge as fingers in the dispersion-relation-like
characterization (see Fig. 1). We then examine the properties
of the rotons in each finger, as well as consider how the
fingers change with the DDI strength. Finally we show that
by perturbing the harmonic trap with a repulsive Gaussian
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potential the character of the roton fingers can be modified.
Notably, we observe that modes with higher values of angular
momentum projection become the minimum energy rotons
in each finger, thus allowing a controllable way to produce
angular rotons (i.e., where the lowest energy roton is one with
a nonzero angular momentum projection) [21].

II. FORMALISM

The condensate wave function (normalized to unity) is
found by solving the nonlocal dipolar Gross-Pitaevskii equa-
tion (GPE) [28] for the lowest energy ground state

μψ0 =
[
−h̄2∇2

2M
+ V (x) +

∫
dx′N0U (x − x′)|ψ0(x′)|2

]
ψ0,

(1)

where M is the atomic mass, μ is the chemical potential, and
N0 is the condensate number. For dipoles polarized along z the
interatomic interaction potential is of the form

U (r) = gδ(r) + 3gdd

4π

1 − 3 cos2 θ

|r|3 , (2)

where the short-range interaction is characterized by the
contact parameter g = 4πash̄

2/M , with as being the s-wave
scattering length. The DDI parameter is gdd = μ0μ

2
m/3, where

μm is the magnetic dipole moment, and θ is the angle between
r and the z axis. In what follows we will consider a case
where the contact interaction is tuned to zero (e.g., by a
Feshbach resonance). Results for nonzero contact interaction
are qualitatively similar, and usually what is important is
the proximity to the stability boundary (e.g., see Fig. 4 and
associated discussion of Ref. [17]).

The atoms are taken to be confined by a harmonic potential

V (x) = 1
2Mω2

ρ(ρ2 + λ2z2), (3)

with aspect ratio λ = ωz/ωρ . Note that in Sec. III D we
consider adding an additional perturbation to V (x).

The fluctuations of the condensate are described by the field
operator

δ̂(x) ≈
∑

j

[uj (x)α̂j − v∗
j (x)α̂†

j ], (4)

where the quasiparticle modes {uj ,vj }, with respective
energies εj , are obtained by solving nonlocal Bogoliubov–
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FIG. 1. (Color online) Roton fingers in the spectrum of a trapped
dipolar BEC. (a), (b) Two views of the quasiparticle excitations of a
trapped dipolar condensate mapped against their angular momentum
projection m and effective linear momentum 〈kρ〉j [see Eq. (5)]. The
individual mapped excitations are represented by dots and separated
into two categories: (i) a smooth nonrotonic background part indicated
by (blue) dots joined by lines to form a surface; (ii) the roton
fingers indicated by (red) dots that extend as linear chains below
the nonrotonic background. (c), (d) Two views of the roton fingers
for the same case shown in (a), (b). Parameters: λ = 20 and D = 220.

de Gennes equations [20], which can also be obtained by
linearizing about the Gross-Pitaevskii dynamics (e.g., see
[20,29]). The quasiparticle operators {α̂j ,α̂

†
j } satisfy standard

bosonic commutation relations. In pancake traps with λ 	 1
roton-like excitations can emerge when the DDI is sufficiently
strong, and is the regime we focus on here.

We adopt harmonic oscillator units defined by the radial trap
frequency, i.e., h̄ωρ and aρ = √

h̄/Mωρ as the units of energy
and length, respectively. We follow Ref. [20] and introduce
D = 3N0gddM/4πh̄2aρ as the dimensionless DDI parameter.
To put this parameter into the context of current experiments,
the case of D = 220, λ = 20 (which we consider in Fig. 1)
corresponds to about 25 × 103 164Dy atoms in a trap with
ωρ = 2π × 11 s−1. Our numerical techniques for solving the
dipolar GPE and Bogoliubov–de Gennes equations have been
described elsewhere [17].

III. RESULTS

A. Roton fingers

We begin by considering the quasiparticle spectrum of a
dipolar condensate in a λ = 20 pancake-shaped trap for DDI
strength of D = 220, which is sufficiently large for roton

modes to develop. To visualize the excitations we plot each
one against its z projection of angular momentum m [30] and
its effective linear momentum, which is assigned by

〈kρ〉j ≡
√∫

dk k2
ρ[|ūj (k)|2 + |v̄j (k)|2]∫

dk[|ūj (k)|2 + |v̄j (k)|2]
, (5)

where ūj (k) = F{uj (x)} and v̄j (k) = F{vj (x)} are the quasi-
particle amplitudes in momentum space, with F the Fourier
transform operator. We note that the mapping to an effective
linear momentum for excitations in a trapped dipolar conden-
sate was used in [13] for m = 0,1,2.

The results of this mapping, shown in Fig. 1, provide a use-
ful visualization of the quasiparticle excitations. Figures 1(a)
and 1(b) reveal that while the majority of modes form a
reasonably smooth surface, two discrete fingers of modes
extend below this surface. These fingers represent the roton
modes in the trapped system. For clarity in what follows we
will exclusively refer to modes within the fingers as rotons.
All remaining modes, constituting the smooth surface, will be
referred to as the nonrotonic background modes.

In Figs. 1(c) and 1(d) we show the roton fingers in isolation
and label the lower energy finger by the quantum number
n = 0, and the higher finger by n = 1. As we show in Sec. III B,
this quantum number corresponds to the number of nodes in the
k-space wave functions of the quasiparticles. Within the fingers
the particular roton modes are then distinguished by their
angular momentum projection m. Each finger has a minimum
energy at m = 0 and the energy of the finger modes increases
with increasing m up to some maximum (i.e., m = 13 for the
n = 0 finger, and m = 7 for n = 1) after which the finger joins
the nonrotonic background [31]. The assignment of modes into
roton fingers is unambiguous except for the last (i.e., highest
m) modes which join up to the nonrotonic background. We
find that this mapping procedure is applicable for geometries
with λ � 10 where the fingers are sufficiently pronounced
to distinguish from the nonrotonic background modes. The
original results presented in Ref. [21] for trapped rotons
considered cases with λ ∼ 8. We have applied our mapping
to this case, and find that the fingers have ∼2 modes and are
not easily distinguished from the nonrotonic background. In
the cases we have examined we do not find any roton fingers
developing in the dispersion-relation-like branches for higher
axial excitations (i.e., z excited modes).

B. Roton mode character

1. Roton mode functions in position and momentum space

In Fig. 2 we examine the radial behavior of the u

quasiparticle amplitudes for the roton modes of both fingers.
In position space [Figs. 2(a) and 2(c)] we see that the lowest
m modes in each finger are localized to the central region
of the condensate while as m increases the rotons begin to
delocalize as the fingers join to the nonrotonic background.
The momentum space [Figs. 2(b) and 2(d)] behavior of the
roton modes shows that (i) the modes are localized about
kρ ∼ 4/aρ ∼ 1/az, where az = √

h̄/Mωz is the z confinement
length (note, 1/az ≈ 4.47/aρ). This can be taken to define
a roton wave vector krot; and (ii) the roton modes have a
characteristic harmonic oscillator form (although displaced to
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FIG. 2. (Color online) Roton mode functions in position and
momentum space. The u quasiparticle amplitudes for the roton modes
are shown for the [(a), (b)] n = 0 and [(c), (d)] n = 1 fingers [as
identified in Fig. 1(d)] as a function of angular momentum projection.
The rotons are shown in (a), (c) position space along the ρ axis, and
in (b), (d) momentum space along the kρ axis. The scaled condensate
amplitude in position space is shown for reference in (a), (c). Note
that the quasiparticle amplitudes are of the form u(x) = u(ρ,z)eimφ ,
etc., and we plot these along the x axis, i.e., taking φ = 0. Parameters:
λ = 20 and D = 220.

be centered at krot), with the n quantum number corresponding
to the number of nodes in the momentum wave function.

2. Phonon-roton comparisons: Density fluctuations

In Fig. 3 we compare a variety of quasiparticles including
a phononlike mode, a roton mode, and a mode of similar
effective linear momentum to the roton mode, but which
resides in the nonrotonic background. In Fig. 3(a) we show
a two-dimensional projection of the same data presented in
Fig. 1, but limited to |m| � 2, and identify the modes we use
for this comparison. In addition to examining the behavior of
the uj and vj amplitudes of the quasiparticles individually, it is
of interest to consider the density fluctuations, δn̂ ≡ n̂ − 〈n̂〉,
where n̂ = N0|ψ0|2 + √

N0ψ0(δ̂† + δ̂) + δ̂†δ̂ is the density
operator, and we have assumed that ψ0 is real. To leading order
(taking δ̂ to be small) the density fluctuations are given by

δn̂(x) =
√

N0

∑
j

[δnj (x)α̂j + δn∗
j (x)α̂†

j ], (6)

where δnj = ψ0(uj − vj ) is the density fluctuation amplitude
associated with quasiparticle j .

The uj and vj components of the phonon mode [Fig. 3(b1)]
extend over the size of the condensate. Since the uj and vj are
in phase and almost equal, the associated density fluctuation
δnj is small [Fig. 3(b2)]. The roton mode [Fig. 3(c1)] has
a short wavelength and is localized near the center of the
condensate. Due to this localization, and because the uj and vj

amplitudes of the rotons are out of phase, the associated density
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FIG. 3. (Color online) Comparison of quasiparticle modes.
(a) The spectrum of excitations mapped to a dispersion for the
case in Fig. 1, only showing modes with angular momentum
projection |m| � 2. The m = 1 phonon, m = 0 roton, and a nonrotonic
background m = 0 mode (of similar 〈kρ〉j to the roton mode) are
identified with arrows. These modes are analyzed below in subplots
(b1) and (b2), (c1) and (c2), and (d1) and (d2), respectively. (b1),
(c1), (d1) Quasiparticle u (solid blue line) and v (dashed red
line) amplitudes, and the scaled condensate amplitudes (light gray
line). (b2), (c2), (d2) Corresponding density fluctuations. Parameters:
λ = 20 and D = 220.

fluctuation has a peak value that is approximately 100 times
larger than for the phonon mode. This difference in behavior
occurs because of the momentum dependence of the
interaction: The interaction between the condensate and its
excitations is repulsive (i.e., suppressing density fluctuations)
at long wavelengths, whereas it becomes attractive (i.e.,
enhancing density fluctuations) at wavelengths similar to
az (also see Fig. 5 of Ref. [17]). The enhanced density
fluctuations of dipolar BECs has also been identified in
Refs. [11,18,32]. For comparison a mode with similar
effective linear momentum to the roton mode, but not within
the roton finger, is shown in Fig. 3(d1).

043606-3



R. N. BISSET, D. BAILLIE, AND P. B. BLAKIE PHYSICAL REVIEW A 88, 043606 (2013)

160 170 180 190 200 210 220 230 240
0

1

2

3

4

5

n = 0

n = 1

n = 2
(a)

D

j
/
h̄
ω

ρ

160 180 200 220 240
3

4

5

D

k
ρ

j
a

ρ

500 550 600 650 700 750
0

2

4

6

8

10

n = 0

n = 1

n = 2

n = 3
n = 4
n = 5

(b)

D

j
/
h̄
ω

ρ

500 600 700
4

5

6

D

k
ρ

j
a

ρ

0 1 2 3 4 5 6 7
0

50

0

2

4

6

8

10

12

14

16

m

k ρ jaρ

(c)

j
/
h̄ω

ρ

FIG. 4. (Color online) Emergence and properties of roton fingers. The energies of the lowest (m = 0) roton in each finger for (a) λ = 20,
(b) λ = 40. Insets: the respective effective linear momenta of the m = 0 rotons in each finger. (c) The dispersion-relation-like characterization
of a λ = 40 dipolar BEC at D = 700 [this case is indicated by a gray vertical line in (b)]. The m = 0 rotons at the start of each finger are
marked with the symbols used to represent them in (b).

3. Development of fingers

How the fingers emerge as DDI strength D increases is
considered in Fig. 4, where we present results for both λ = 20
and λ = 40. The first fingers appear when D is sufficiently
large (for λ = 20 the fingers first emerge at D ∼ 160 and for
λ = 40 they emerge at D ∼ 450). As D increases the fingers
decrease in energy and become longer (i.e., extend to over
a larger m range), and additional fingers emerge from the
nonrotonic background. For a sufficiently large DDI strength
Dcrit the lowest (n = 0) finger will fall to zero energy [33],
and will become imaginary for D > Dcrit, signaling that the
condensate is dynamically unstable [20,21]. For higher trap
aspect ratios a greater number of fingers emerge before the
onset of the dynamical instability, e.g., for λ = 20 we find that
three fingers emerge by Dcrit ≈ 240 [see Fig. 4(a)]; for λ = 40
we find that six fingers emerge by Dcrit ≈ 728 [see Fig. 4(b)].

4. Finger dislocations: Phonon-roton avoided crossings

We also note that while the roton fingers are generally
smooth functions of m [see Figs. 1(d) and 4(c)], for certain
parameters we observe that particular roton modes dislocate
from the finger by having a 〈kρ〉j value that is significantly
less than the other modes in that finger. The origin of these
dislocations is avoided crossings between roton and phonon
modes in the same m subspace [34]. We demonstrate this
in Fig. 5 where we consider such a crossing that affects the

n = 0, m = 0 roton. In Fig. 5(a) we show the roton mode
dislocated from the finger in the midst of such a crossing,
noting that the coupled phonon mode undergoes a matching
dislocation to a higher momentum value.

To explore this crossing we vary the DDI strength. As
D increases the roton mode energy decreases, crossing the
relevant phonon mode energy [see Fig. 5(b)]. Due to the
coupling between these modes they undergo an avoided
crossing during which the two modes hybridize, leading to
a significant change in 〈kρ〉j [Fig. 5(c)]. We emphasize that
these avoided crossings can occur for any value of m; however,
because the coupling between phonon and roton modes is weak
they tend to occur in very narrow parameter regimes.

C. Relation to predictions of Jona-Lasinio et al. [27]

In Ref. [27] Jona-Lasinio et al. developed an analytic
description of rotons in a trapped dipolar BEC. We briefly
review their results and comment on its relationship to our full
numerical treatment.

A central idea of Ref. [27] is that after integrating out the
tightly confined (z) degree of freedom, a local quasiparticle
spectrum ε(kρ,ρ) can be obtained for the in-plane coordinates,
with the ρ dependence arising from the variation of the
condensate density. When the system exhibits a roton it
emerges as a local minimum in ε(kρ,ρ) at finite wave vector
kρ = krot and at the trap center where the condensate density is
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FIG. 5. (Color online) Avoided crossings of phonon (typically
low 〈kρ〉j ) and roton (typically high 〈kρ〉j ) modes. (a) The spectrum
of excitations mapped to a dispersion for D = 197.382 only showing
modes with angular momentum projection |m| � 2. The m = 0
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identified with arrows, as is the location of the finger that the
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is λ = 20.

highest. Expanding about this minimum to second order yields

ε(kρ,ρ) ≈ εmin + h̄2

2M∗
(kρ − krot)

2 + 1

2
m∗ω2

∗ρ
2, (7)

where the energy minimum εmin, the roton effective mass
M∗, and the effective confinement frequency ω∗ have been
introduced. By requantizing Eq. (7) in momentum space, a
spectrum of the form

Enm �
[

m2 − 1
4

2(krotl∗)2
+ n + 1

2

]
h̄ω∗ (8)

is obtained, valid for krotl∗ 	 1, where l∗ = √
h̄/M∗ω∗.

Equation (8) should approximately describe the spectrum of
our roton fingers. The physics used as the basis of this approach
indeed qualitatively explains many of the results we observe,
e.g., the localization in position and momentum space, and the

harmonic oscillator-like form of the roton wave functions in
momentum space (see Fig. 2). Our roton spectrum does exhibit
a quadratic dependence on m for small values of m [e.g., see
Fig. 1(d)], as predicted in Eq. (8), but this eventually crosses
over to being approximately linear in m for higher m values.
More generally, within the parameter regime we have studied
(i.e., λ = 20 and λ = 40 pure dipolar BECs) we do not obtain
quantitative agreement with the analytic spectrum. This can be
seen from Fig. 4 where the fingers are not equally spaced in
energy, as predicted by Eq. (8). This suggests that anharmonic
corrections to Eq. (7) are significant. This anharmonicity is also
evident because the higher energy modes (i.e., both higher m

and n values) tend to shift to lower values of effective linear
momentum [see insets to Figs. 4(a) and 4(b), and Figs. 1(c)
and 4(c)]. This means that we cannot unambiguously assign a
single krot to describe the rotons in the trapped system. Many
of the anharmonic effects may be described by the full local
quasiparticle spectrum introduced in [27] prior to making the
quadratic approximation [i.e., Eq. (7)] [35].

D. Engineering the roton spectrum

In this section we consider the effect that a more general
type of external potential has on the rotons in a dipolar BEC.
To do this we add to our harmonic trap a Gaussian perturbing
potential of the form

Vpert(x) = V0 exp

(
− ρ2

σ 2
0

)
, (9)

characterized by its strength V0 and width σ0. With this addition
the combined potential is a flat bottomed trap for small positive
values of V0 (V0 < 1

2Mω2
ρσ

2
0 [36]) and becomes toroidal

shaped for larger V0. We restrict our attention to perturbing
potentials with σ0 much greater than the roton wavelength
∼az to ensure that the added potential smoothly modifies
the condensate density profile rather than coupling strongly
to the rotons and giving rise to strong density oscillations
(e.g., see [12,37]). We note that the effect of a barrier-type
perturbation in the z direction was considered in Ref. [23],
and found to enrich the stability properties compared to the
harmonically trapped case. Also Lu et al. [38] examined the
properties of a condensate in a box potential, and predict
the formation of spatial density oscillations in the condensate
due to the sharp edges of the potential.

In Fig. 6 we show the condensate density and the roton
fingers for a perturbation of width σ0 = 2aρ . For V0 = 1h̄ωρ

[Fig. 6(a)] the perturbing potential flattens the central conden-
sate density, and causes the energies of the first few (m � 3)
n = 0 modes to become almost degenerate [Fig. 6(b)]. As the
strength of the perturbing potential increases the condensate
develops a local minimum in density at trap center [Figs. 6(c)
and 6(e)]. When this occurs the roton fingers take a different
character: The minimum energy in each roton finger occurs
at a nonzero angular momentum projection (msoft) [Figs. 6(d)
and 6(f)]. In these cases the lowest energy roton propagates
around the ring of maximum condensate density of radius
ρmax, causing azimuthal fluctuations in the density of this ring.
We also note that when the condensate density is sufficiently
biconcave [as in Fig. 6(e)], the first two fingers of the roton
spectrum become degenerate, having the same energy and 〈kρ〉
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FIG. 6. (Color online) Condensate density profile and roton finger
structure under the influence of a perturbing potential. (a), (c),
(e) The condensate density profile (solid black line) and the total
external potential (dashed blue line) for the various cases considered.
(b), (d), (f) Lowest two roton fingers obtained from the corresponding
quasiparticles. (g) The radial location of the condensate maximum
density ρmax and the m value of the lowest energy roton msoft as V0

increases. Inset: msoft/ρmax ratio for the data in the main plot. Shaded
thick line shows that as V0 increases the ratio remains approximately
constant. Arrows indicate the relevant vertical axis for data in
subplots. Results for σ0 = 2aρ and [(a), (b)] D = 251.26, V0 = 1h̄ωρ ;
[(c), (d)] D = 274.47, V0 = 3h̄ωρ ; [(e), (f)] D = 285.53, V0 = 9h̄ωρ .
Values of D for all results chosen so that D max{|ψ0|2}a3

ρ = 4.740,
to ensure the system is approximately the same distance from the
stability boundary.

values, at low m [as in Fig. 6(f)]. This appears to occur when
the roton modes become well localized (spatially) in the dense
condensate ring, and have a small amplitude at trap center.

We find that the m value of the softest roton mode (msoft) is
related to the radius at which the condensate density maximum
occurs, and can be controlled by adjusting the height and width
of the perturbation potential. Assuming that the softest mode
causes an azimuthal buckling around the condensate ring at
the roton wavelength we expect that krot ≈ msoft/ρmax. From
this it follows that msoft should increase proportional to ρmax

if krot is assumed to be constant. This relationship is verified
in Fig. 6(g) and the inset.

IV. CONCLUSION AND OUTLOOK

In this paper we have explored the properties of rotons in
pancake-shaped dipolar BECs using fully three-dimensional
solutions of the dipolar Gross-Pitaevskii and Bogoliubov–de
Gennes equations. We have shown that rotons in the trapped
system emerge as fingerlike chains when visualized using
a momentum mapping technique, and that the quasiparti-
cle modes are localized in both position and momentum
space. Ronen et al. [21] established the connection between
the condensate developing a modulated (biconcave) density
profile and the condensate becoming dynamically unstable due
to a so-called angular roton (i.e., a roton mode with m = 0).
They studied spontaneously occurring biconcave states, i.e.,
those which occur in a pure harmonic trap in particular regions
of interaction and trap geometry parameter space. For large
aspect ratio traps, where the roton modes become clearly
identifiable, such spontaneous biconcave states only occur near
the stability boundary (e.g., see [10,38]), and may be difficult
to access experimentally. Importantly, our results show that
imposing the density modulation using a perturbation also
gives rise to angular rotons, and that these can be produced
reasonably far from the stability boundary. Furthermore, by
adjusting the perturbation, angular rotons with large angular
momentum projection can be controllably engineered.

Important questions remain about the regime in which
mean-field predictions may be quantitatively accurate. For
the uniform dipolar BEC it has been shown that density
fluctuations arising from the rotons can be significant at finite
temperature [32] (also see [39]). Thus Bogoliubov theory
may be limited to low temperatures T � Tc, where Tc is the
condensation temperature [40].

Finally, we briefly discuss how aspects of rotons might
be verified in experiments. One possibility is to measure
the number fluctuations within finite-sized cells, as has been
implemented in a number of experiments with pancake-shaped
condensates (e.g., see [41]). It was shown in Ref. [11] that
such measurements can be made sensitive to individual m = 0
roton modes, revealing the location and size of the roton mode.
Another possibility suggested in Ref. [42] is that the shape
of the lowest energy mode can be revealed by quenching
the system across the stability boundary (e.g., by making
the s-wave scattering length negative). In particular, this
procedure reveals the presence of an angular roton through
the development of a nontrivial angular distribution in the
system post quench (c.f. the d-wave symmetry of a dipolar
BEC collapsing from a nearly spherical trap observed in
Ref. [43]). An alternative approach is to use some form of
energy sensitive spectroscopy technique, such as collective
mode or Bragg spectroscopy, which have already seen initial
applications to dipolar BECs [44,45].
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K. Rzążewski, ibid. 87, 043620 (2013).

[40] K. Glaum, A. Pelster, H. Kleinert, and T. Pfau, Phys. Rev. Lett.
98, 080407 (2007).

[41] C.-L. Hung, X. Zhang, L.-C. Ha, S.-K. Tung, N. Gemelke, and
C. Chin, New J. Phys. 13, 075019 (2011).

[42] R. M. Wilson, S. Ronen, and J. L. Bohn, Phys. Rev. A 80, 023614
(2009).

[43] T. Lahaye, J. Metz, B. Fröhlich, T. Koch, M. Meister,
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