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Stimulated optical forces offer a simple and efficient method for providing optical forces far in excess of
the saturated radiative force. The bichromatic force, using a counterpropagating pair of two-color beams, has
so far been the most effective of these stimulated forces for deflecting and slowing atomic beams. We have
numerically studied the evolution of a two-level system under several different bichromatic and polychromatic
light fields, while retaining the overall geometry of the bichromatic force. New insights are gained by studying
the time-dependent trajectory of the Bloch vector, including a better understanding of the remarkable robustness
of bi- and polychromatic forces with imbalanced beam intensities. We show that a four-color polychromatic force
exhibits great promise. By adding new frequency components at the third harmonic of the original bichromatic
detuning, the force is increased by nearly 50% and its velocity range is extended by a factor of 3, while the
required laser power is increased by only 33%. The excited-state fraction, crucial to possible application to
molecules, is reduced from 41% to 24%. We also discuss some important differences between polychromatic
forces and pulse trains from a high-repetition-rate laser.
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I. INTRODUCTION

Since their inception, optical forces have become an
invaluable tool in atomic and molecular physics, playing
a dominant role in the preparation and study of ultracold
neutral species. These forces can be divided into two main
categories, spontaneous and stimulated. As the names imply,
spontaneous optical forces rely on spontaneous decay of a
system to accomplish momentum transfer, while stimulated
forces make use of the surrounding light field to drive both
absorption and emission. Stimulated forces have the advantage
of allowing much greater forces at the cost of more complex
optical configurations.

Previous experiments have demonstrated the effectiveness
of stimulated forces, which rely on coherent momentum
transfer between a system (e.g., an atom) and the light field.
Grimm and coworkers [1] made use of rectified optical dipole
forces to deflect an atomic Cs beam by several m/s, later
improving on this result by developing the much stronger
optical bichromatic force (BCF) and using it to decelerate
the atoms nearly to rest [2]. The basic principles of the BCF,
which utilizes two-color beams with symmetric detunings
±δ from resonance, are reviewed in Sec. II below. Further
work by Metcalf et al. [3–5] expanded on this idea by using
bichromatic forces to focus and decelerate an atomic beam
of metastable helium (He*). More recently, our group has
designed and evaluated two schemes for longitudinal slowing
of a beam of metastable helium by several hundred m/s
[6,7]. In one approach, an amplified laser was used at a
large detuning from resonance to extend the velocity range
over which the force is effective, but it became clear that a
complicated high-power multistage design would be needed.
In the other, deceleration by nearly 400 m/s was achieved using
two ordinary diode lasers in a chirped bichromatic slowing
configuration that compensated the changing Doppler shifts.
As described in Ref. [6], an upgraded version using slightly
larger laser detuning and higher power is predicted to slow He*
to velocities suitable for magneto-optical trap (MOT) loading.
Enhanced MOT loading using BCF slowing has already been

demonstrated for atomic Rb, for which Doppler shifts are of
much less concern [8].

The most important limits constraining the bichromatic
force are the magnitude of the force, the velocity range, and the
excited-state fraction. Though it might seem counter-intuitive,
the magnitude of the force is perhaps the least important
of these, simply because it is so large. Under typical BCF
conditions the stopping distance for a typical atomic beam
would be on the order of 1 cm if a constant force could be
maintained. Instead, the attainable velocity reduction is usually
limited either by the velocity range of the force or by losses
unrelated to the BCF cycle itself, a particular concern if the
BCF is to be applied to molecular systems [9]. For molecules,
there is a strong motivation to reduce the excited-state fraction
in order to reduce radiative losses into “dark” states with the
wrong vibrational or rotational quantum number. These losses
effectively terminate the BCF cycle and thereby limit the time
interval available for deceleration.

In this paper we describe detailed numerical calculations
for a two-level atom or molecule subjected to bichromatic or
polychromatic laser beams in the BCF configuration—a pair of
counterpropagating multicolor beams with an adjustable phase
shift. The forces and ensemble behavior due to stimulated
optical forces are calculated by direct numerical solution of the
optical Bloch equations (OBEs). We pay particular attention
to the time evolution of atomic excitation, which has not
previously been investigated in a way that allows systematic
examination. We also carefully investigate the robustness of
bichromatic and polychromatic forces against imbalances in
intensity between counterpropagating beams. Insensitivity to
beam imbalance is vital for successful experimental realiza-
tions because an intensity balance of less than 5%–10% is very
difficult to attain over an extended area.

We begin with a discussion of the conventional two-color
bichromatic force, with an emphasis on factors that define its
limits as a practical slowing mechanism. An unusual “Bloch
cylinder” plot is introduced to graphically visualize some
of the more obscure aspects of bichromatic forces. We then
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discuss a proposed extension to multicolor or polychromatic
forces (PCFs) and more specifically to a four-color stimulated
force. Heuristic arguments based on pulse areas suggest that
additional rf sidebands at ±3δ should reduce the excited-state
fraction while maintaining a large optical force, and this
prediction is verified by the actual modeled behavior. We
show that for an increase of just 33% in the total laser
power, large improvements can be obtained not only in the
excited-state fraction, but also in the magnitude and velocity
range of the force. The projected improvements are sufficiently
large to make the four-color scheme attractive both for
molecules and for atomic beam deceleration. We also briefly
discuss considerations that arise in the many-color limit of a
continuous train of short pulses.

II. BICHROMATIC FORCE

As the name suggests, the bichromatic force is a particular
realization of a two-color stimulated optical force, first
proposed in the late 1980s by Voı̆tsekhovich et al. [10]. It uses
counterpropagating pairs of two-color laser beams to stimulate
excitation and emission in an ensemble of atoms or molecules.
As shown in Fig. 1, each beam has components detuned by
rf frequencies ±δ from resonance. These near-resonant beams
interfere to form beat notes with a period π/δ as illustrated.
Because the full period of the beat note envelope is actually
2π/δ, there are phase reversals between adjacent pulses, which
will play an important role in our discussion of the robustness
of bichromatic and polychromatic forces.

The intensity of the beat notes is adjusted such that each
“pulse” of duration π/δ has an area of approximately π in
units normalized to the Rabi frequency [11]. In a simplified
model of the BCF usually called the π -pulse model, the
pulses from the right and the left are regarded as if they were
nonoverlapping short pulses, so that an atom at the center
experiences alternating π pulses that cause a repeating cycle
of excitation from the right followed by stimulated emission
from the left. Each excitation or stimulated decay produces a
momentum change h̄k, at a rate, δ/π , set by the beat frequency.
This will continue until radiative decay randomly resets the
atom into the ground state. By adjusting the phase between
the counterpropagating beat-note trains from the right and the
left, one can control the probability that radiative decay will

0 + kv 0 kv

v
++ — ++ —

FIG. 1. (Color online) Simple π -pulse model of the bichromatic
force on a two-level atomic or molecular system, based on Fig. 1
in Ref. [6]. From each direction, a pair of beams symmetrically
detuned from resonance by rf frequencies ±δ interfere to form beat
notes, each with an area of approximately π . Because the beat-note
envelope (blue dashed line) alternates in sign as shown, the Rabi
frequency exhibits similar sign reversals. For high velocities, a
Doppler offset of ±kv may be necessary to bring the system within
the velocity range of the force.

restart the system in the correct right-left sequence, thereby
controlling the average direction of the applied force. The
maximum decelerating force on an ensemble of atoms occurs
when the phase shift between beats corresponds to half of a
beat note or χ = π/4, where χ is the phase of the electric
field envelope. This optimal phasing yields a time-averaged
bichromatic force on each atom of

Fbich = h̄kδ

π
. (1)

These results for the force and the optimal phasing remain
valid in more accurate treatments using doubly dressed atoms
or numerical methods, although the optimal pulse area for each
beat note increases to 1.559π when the overlapping beats
are fully taken into account [7,12,13]. The optimization of
these parameters is explored in Refs. [6,7,13], together with
discussions of the sensitivity of the BCF to deviations from the
optimal values. However, the effects of imbalanced intensities
between counterpropagating beam pairs have not been well
understood, and we address this topic below.

A. Numerical solution of the optical Bloch equations

To systematically study the evolution of an ensemble over
time, both for the BCF and its polychromatic generalizations,
the OBEs for a two-level atom are solved in the rotating-wave
approximation for a multicolor light field. This direct numer-
ical approach, originally developed by Söding and coworkers
[2], has proven quite reliable for modeling the bichromatic
force even in the presence of dynamically changing conditions
[6]. We solve the OBEs in the form [7]

du

dt
= −γ u − δasymv − Im[�(t)]w,

dv

dt
= δasymu − γ v + Re[�(t)]w, (2)

dw

dt
= Im[�(t)]u − Re[�(t)]v − 2γ (w + 1),

where γ is the excited-state lifetime and �(t) is the time-
varying Rabi frequency. In the present context the parameter
δasym is useful mainly to allow modeling of asymmetric
detunings—it is the shift of the optical carrier frequency
relative to the atomic resonance frequency. The Bloch vectors
u, v, and w can be expressed in terms of the density matrix
ρij :

u = ρ12 + ρ21, v = i(ρ12 − ρ21), w = ρ22 − ρ11. (3)

Thus w = −1 corresponds to a pure ensemble of ground-state
atoms and w = +1 to the excited state.

It remains to determine the Rabi frequency � in Eqs. (2) for
the multiple laser fields used in the BCF and its PCF general-
ization. For a resonant BCF configuration with symmetrically
detuned bichromatic fields incident from each direction, the
total electric field is a sum of two beat-note trains,

E(z,t) = 2E0 cos[ω(t − z/c)] cos[δ(t − z/c) + χ/2]

+ 2E0 cos[ω(t + z/c)] cos[δ(t + z/c) − χ/2],

(4)

where each field component has amplitude E0, the detunings
from resonance are ±δ, and χ is the left-vs-right phase shift
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discussed previously in association with Fig. 1. Assuming that
the beat-note length is large compared to the size of the laser
interaction region, c/δ � 	z, the dependence on ω can be
factored out to yield

E(z,t) ∼= 2E0e
iωt [cos(kz) cos(δt) cos(χ/2)

+ i sin(kz) sin(δt) sin(χ/2)] + c.c., (5)

where k = ω/c, as is customary.
In the rotating-wave approximation (RWA), the correspond-

ing Rabi frequency is readily found from Eq. (5) and the
electronic dipole matrix element μe,

�BCF(t) = 4μeE0

h̄
[cos(kz) cos(δt) cos(χ/2)

+ i sin(kz) sin(δt) sin(χ/2)]. (6)

This expression can easily be extended to polychromatic fields
with detunings ±δ, ±2δ, . . . , and real amplitudes En. The Rabi
frequency then becomes

�(t) = 4μe

h̄

nmax∑
n=1

En[cos(kz) cos(nδt + θn) cos(nχ/2)

+ i sin(kz) sin(nδt + θn) sin(nχ/2)], (7)

where the additional phases θn are harmonic phases that define
the Fourier superposition of the frequency components nδ.
For convenience in the discussions that follow, we collect the
factors defining the Rabi frequency for each harmonic n as
�n ≡ μeEn/h̄. We note that, for the ordinary BCF with n = 1,
the π -pulse condition can be expressed as �1 = (π/4)δ, and
the optimal value is slightly larger at �1 = √

3/2 δ [4,6].
Our computer models use slightly extended versions of

Eqs. (6) and (7) that can also accommodate Doppler shifts
	ω = ±kv for moving atoms. In addition, we can optionally
incorporate left-vs-right intensity imbalances by assigning
separate electric field amplitudes EL and ER depending on
the direction of incidence. We have solved the resulting OBEs
[Eqs. (2)] using both a standard FORTRAN ODE solver [14]
and the built-in differential equation solver in MATHEMATICA

Version 8. Apart from fine-grained numerical noise, the
agreement is excellent in all cases that we tested, inspiring
confidence in the stability and accuracy of the numerical
solutions.

For any fixed location, the coordinate origin can be selected
so that z = 0 and the Rabi frequency is purely real. If
the calculations are initialized in the ground state and the
bichromatic detuning asymmetry δasym is zero, the first of
Eqs. (2) indicates that the u component of the Bloch vector
remains close to zero for short times, γ t � 1. We can thus
disregard the behavior of the u component to study the behavior
of the stimulated cycling for short times, allowing us to plot the
trajectory of the Bloch vector in the v-w plane as a function
of time. An example of the resulting “Bloch cylinder” plot
calculated under optimal BCF conditions is shown in Fig. 2
and reveals some aspects of the Bloch vector evolution that
were previously not clearly understood.

The most striking feature is a clear deviation from the
simplified model of alternating π pulses that act in pairs to
cycle the atomic excitation. Rather than simply oscillating
between the poles of the Bloch sphere (as is suggested

FIG. 2. (Color online) The evolution of the Bloch vector for a
two-level system in an optimally configured bichromatic light field.
The system is initialized in the ground state and allowed to evolve
without radiative damping. This plot was computed for a bichromatic
detuning of δ = 125γ and deceleration parameters of χ = π/4 and
�1 = √

3/2 δ.

by the π pulse model), the Bloch vector initially rotates
counterclockwise through nearly 5π/2 in response to an initial
pair of beat notes and then reverses direction and follows a
similar trajectory backwards. The additional wrapping of the
Bloch vector is symmetric about the ground state of the system,
but these excursions illustrate an increase in the excited-state
fraction for the ensemble as compared to an idealized short-
pulse sequence. The overall four-pulse periodicity, which has
apparently not previously been noted, stems from the phase
reversal between successive pulses in the beat-note trains,
as indicated by the (+) and (–) signs in Fig. 1. This causes
the corresponding Rabi frequencies to alternate in sign, or
equivalently the pulse areas can be said to alternate between
positive and negative values. As we discuss below, the full
reversal of the Bloch vector evolution after four pulses helps
to explain why the BCF is highly robust in the presence of
imbalanced beam intensities, both in numerical calculations
and in laboratory experiments.

In addition to modeling the ensemble behavior, solving the
OBEs for atoms with fixed nonzero velocities allows us to
calculate a force profile for the BCF as a function of velocity.
As in previous work [2,6], the force is calculated at each
velocity by use of Ehrenfest’s theorem. The force profiles
shown in Fig. 3 exhibit the familiar features of the BCF: the
force is proportional to the detuning and so is the velocity range
over which it is effective. The horizontal axis is in scaled units
of γ /k, which for the example of He* corresponds to units
of 1.755 m/s, and the vertical axis is in units of the saturated
radiative force from a monochromatic beam, Frad = h̄kγ /2.
Because the stimulated cycling rate depends on δ rather than
γ , the magnitude of the bichromatic force is typically far in
excess of the radiative force, by a factor of about 2δ/(πγ ).
The numerous narrow spikes in Fig. 3 are not numerical noise,
but higher-order resonances somewhat related to “doppleron”

043418-3



S. E. GALICA, L. ALDRIDGE, AND E. E. EYLER PHYSICAL REVIEW A 88, 043418 (2013)

FIG. 3. (Color online) Numerically calculated force profiles as a
function of velocity at two values of the bichromatic detuning δ, using
optimal values for χ and �1 as in Fig. 2. The vertical axis is scaled
in units of the radiative force Frad and the velocity in units of γ /k.
The magnitude and the width of the force both scale linearly with δ.
The many sharp spikes are multiphoton resonances and are typically
unobservable (see text).

resonances [15,16]. They are typically unobservable under
experimental conditions due to decoherence and deviations
from pure two-level behavior.

From calculations like those shown in Fig. 3, the magnitude
of the force is found to be in agreement with Eq. (1), and the
full width of the velocity profile (including negative velocities)
can be estimated to be [6]

	v � δ

k
. (8)

So long as the beat notes have the optimal pulse area, the
force will increase in proportion to an increasing bichromatic
detuning δ. However, to maintain the required pulse area the
Rabi frequency must also be increased proportionally to δ,
so the required laser intensity increases quadratically. More
specifically, the required intensity in each detuned component
beam is given by

Ib = 2Is

(
�n

γ

)2

, (9)

where �n is linear in δ (e.g., �1 = √
3/2 δ in the case of ideal

BCF), thereby making very large detunings impractical.
We have previously found that as the detuning increases

there is increased sensitivity to imbalanced beam intensities
[6]. However, numerical modeling showed much less sensitiv-
ity than a simple estimate based on the π -pulse model using
pulse pairs, and we also noted that the simple estimate appeared
to overstate the sensitivity by a factor of 2 for the only case in
which direct comparison with experiment is possible [2].

Much of this can be explained by examining the Bloch
cylinder plots for calculations using imbalanced beams. In
Fig. 4, the Bloch vector trajectory is plotted for a left-right
intensity imbalance of 25%, where imbalance is defined as
(Ileft − Iright)/Iright. In the simplified π pulse model there

FIG. 4. (Color online) End-on view of the Bloch cylinder for an
intensity imbalance of 25% between bichromatic beams from the
left and the right. The thick straight lines show the turning points
of the Bloch vector trajectory. Here the axis of symmetry shifts
appreciably to the right of the ground state at w = 0, but there is
still no accumulating offset of the Bloch vector phase.

would be a shift in the angle of the Bloch vector after each pulse
pair, resulting in a cumulative error that would reverse the sign
of the force after several cycles. Instead we see that the Bloch
vector continues to execute a repetitive cycle, since a complete
group of four pulses still has a total pulse area of zero. However,
the center of symmetry is slightly shifted away from the ground
state, as evidenced by the asymmetric locations of the turning
points in the figure. This slightly increases the excited state
fraction, but more importantly, it greatly affects the force
profile. As shown in Fig. 5, the average force is reduced by
about a factor of 3 under these conditions. A more complete
picture of the force reduction force can be gained from Fig. 6,
where the relative force as a function of intensity imbalance is
shown for several values of the bichromatic detuning. For large

FIG. 5. (Color online) Top: BCF velocity profile for ideal param-
eter values at detuning δ = 250γ (same as the upper trace in Fig. 3).
Bottom: Velocity profile for a left-right intensity imbalance of 25%.
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FIG. 6. (Color online) As imbalance between pulses increases,
the force slowly degrades, at a rate that increases as the rf detuning δ

is increased from 125γ to 500γ .

imbalances at large detunings, examination of the force profiles
reveals that they are increasingly dominated by the “hash” of
very narrow multiphoton resonances. Because the presence of
these resonances relies on a high level of coherence in a pure
two-level system, the calculations in this range are expected
to overestimate the force that could be realized under actual
experimental conditions.

B. Excited-state fraction

As mentioned previously, the excited-state fraction is
of particular interest because it determines the ensemble-
averaged radiative decay rate. For molecular systems a small
fraction of radiative decays will unavoidably “leak” to dark
states from which further cycling cannot occur, so the time
interval during which the BCF can decelerate molecules is
inversely proportional to the excited-state fraction [9]. If this
fraction can be reduced while keeping the magnitude of the
force constant, the velocity change attainable in a decelerator
will increase correspondingly.

This fraction can easily be calculated from the time
evolution of the Bloch vector. Unlike the results discussed so
far, it is important to include the effects of radiative damping
by integrating Eqs. (2) over a sufficiently large time interval,
γ t � 1. For BCF deceleration under optimal conditions, the
calculated excited-state fraction is 41%, independent of the
detuning δ. This is somewhat smaller than the value of
nearly 50% for the ordinary radiative force on a two-level
system, because the radiative force normally involves strongly
saturated near-resonant excitation while the BCF utilizes large
detunings.

It is also interesting to compare this result with the value
predicted by careful application of the isolated π -pulse model.
Assuming an optimal left-vs-right phase χ = π/4, and that the
atom is cycling in the correct sequence to produce deceleration
as in Fig. 1, the atom spends 1/4 of its time in the excited
state. But once it radiatively decays during one of these

excited-state intervals, the cycle is reversed and the atom
spends 3/4 of its time in the excited state until it again
decays, resuming the original cycling. The reversed cycle is
short-lived compared to the correct one because of its large
excited-state fraction. Taking a properly weighted average over
these cycling conditions, the estimated excited-state fraction
is 37.5%, which is remarkably close to the exact value of 41%
calculated numerically for actual BCF conditions.

The π -pulse perspective suggests that if beat-note pulse
pairs from the left and the right could be moved closer together
without disrupting the cycling, a reduced excited-state fraction
would result. It was this idea that initially motivated us to
consider a polychromatic variation in which additional rf
sidebands at ±nδ are introduced to produce a shorter-duration
beat note pulse, allowing closer pulse proximity without
excessive overlap.

III. POLYCHROMATIC FORCES

As discussed in the previous section, a reduction of
the excited-state fraction requires a reduction in the time
between excitation and deexcitation pulses, which requires
the production of narrower, better-separated pulses. This can
be done by adding additional rf sidebands to the bichromatic
beam, allowing a measure of control over the pulse shape and
the timing of sequential pulses. Our hope was that this could
allow not only a reduction in the left-right phase offset χ

in Eq. (7) but also an opportunity to use the new adjustable
parameters to optimize the characteristics of the stimulated
force, in a simple version of coherent control.

A. Four-color forces

In principle, a train of delta-function pulses could be
produced by adding an infinite number of odd harmonics of
the detuning ±δ. We thus started our investigations by adding
symmetric components at ±3δ, although we have subsequently
also briefly studied the effects of adding additional components
at ±2δ or ±5δ. One might expect that these new third-harmonic
components should be added in phase with the fundamental
components at δ and with the same amplitude, since this
corresponds to the lowest-order approximation to a delta
function. However, this requires systematic confirmation. It is
not trivial to optimize the stimulated force with these additions,
because the phase shift χ and the Rabi frequencies �n must
be reoptimized each time a change is made.

Numerically solving the optical Bloch equations over a
coarse parameter space spanning pulse phases χ ∈ [0,π ] and
Rabi frequencies �n ∈ [0,2δ] (where δ is again the principal rf
detuning) yielded an excitation fraction minima in the region
of �1 = �3 = δ and χ ≈ π/6. The force was then calculated
with finer granularity in this region. The qualitatively best
compromise between force width, force magnitude, and
excited-state fraction was determined to lie at �1 = �3 = δ

and χ = π/6 with an average excited-state fraction of 24%.
This is a 41% reduction compared to the ordinary BCF. We
can also compare this to the predictions of the isolated π -pulse
model. Using the same argument as in Sec. II B with a phase
of π/6, the predicted excited-state fraction is 27.8%. This is
again very close to the numerical calculation, but unlike the
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FIG. 7. (Color online) The evolution of the Bloch vector for a
two-level system in a four-color light field. The system is initialized
in the ground state and allowed to evolve under ideal deceleration
conditions. Note the behavior is much closer to the π -pulse model
than the bichromatic case, with the notable exception that the
overall periodicity still involves four pulses, not two. The excited-
state character of the system is greatly reduced compared to the
BCF case in Fig. 2. This plot was computed for a fundamental
detuning of δ = 125γ and deceleration parameters of χ = π/6 and
�1 = �3 = δ.

bichromatic case the numerical value is actually slightly better
than the π -pulse estimate.

The reasons for the large improvement in excited-state
fraction are evident when we examine the ensemble evolution
for the four-color force in a Rabi cylinder plot, as shown in
Fig. 7. As expected, the four-color field generates ensemble
behavior more closely resembling that of a pair of separated
π pulses than the bichromatic case in Fig. 2. In particular,
there are two key differences. First, the trajectory wobbles
much less around the ground state during the low-intensity
portions of the cycle. This of course translates to significantly
less excited-state character in the system. Second, we note that
successive points on the trajectory plots are separated by equal-
sized time steps. Hence one can extract qualitative information
on the velocity of the Bloch vector. In comparison with the
bichromatic ensemble behavior, the four-color force moves
much more quickly through the excited state (sparse dots)
than its two-color counterpart and then much more slowly as it
lingers near the ground state (dense dots). These considerations
also reduce the excited-state fraction relative to the BCF.

The four-color force also offers a much-improved velocity
range, as well as a significantly increased magnitude. As shown
in Fig. 8, the maximum force magnitude in the four-color
case is increased by roughly 50% over the bichromatic force.
This increase is notable, but not too surprising given the 33%
increase in total laser power required to generate the four-color
pulse trains. The more remarkable feature of the four-color
force is its extremely wide velocity range, increased by nearly
a factor of 3 relative to the BCF. In Fig. 8, the 125γ -detuned
four-color force is able to achieve the static range of the

FIG. 8. (Color online) The forces due to bichromatic and four-
color light fields at their respective optimal deceleration conditions.
The width of the four-color force is nearly equal to the width of a
bichromatic force with triple the rf detuning, but at only 15% of the
laser power that it would require.

375γ -detuned bichromatic force at roughly 15% of the total
laser power that the BCF would require.

Polychromatic forces are also even more robust than the
BCF against imbalances in left-vs-right beam intensities.
Figures 9–11 show this behavior. It is evident from Fig. 10
that there is almost no effect from imbalances up to 5%
except at extremely large detunings approaching 500 γ , which
is outside the range used in experimental work to date. At
larger imbalances a gradual degradation is predicted. Like the
BCF case, the force reduction is probably underestimated for
large imbalances at large detunings, because here it comes
mostly from sharp multiphoton resonances, many of which
are probably eliminated by decoherence under experimental

FIG. 9. (Color online) Four-color PCF velocity profiles for δ =
250γ show a significant reduction of the force for a 25% imbalance,
but less than for the BCF in Fig. 5, and this reduction largely
disappears at velocities above 80 γ /k.
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FIG. 10. (Color online) The four-color force is extremely ro-
bust against small beam intensity imbalances, although as the
detuning increases, the force becomes increasingly sensitive to large
imbalances.

conditions. In the Bloch cylinder plot of Fig. 11, we note
that a 25% imbalance causes a noticeable shift of the axis
of symmetry away from the ground state, but the shift is
smaller than that in Fig. 4 and the total excursions are much
smaller. This likely accounts for the increased robustness of
the four-color force.

We have also briefly investigated the impact of adding
additional frequency components at ±5δ, and as one might
expect, the benefits are not nearly so dramatic as for the
initial additions at ±3δ. Also, the addition of still more colors
increases the likelihood that inadvertent transitions to distant
states will compromise the desired two-level cycling system.
Finally, we have confirmed numerically that adding a second
harmonic at ±2δ is deleterious in all regards, because it

FIG. 11. (Color online) For the case of a 25% beam imbalance,
we see that the axis of symmetry again shifts away from the ground
state. However, the symmetry shift is much less than that of the BCF
case shown in Fig. 4.

destroys the symmetry of the odd-harmonic superposition.
Thus we see little reason to go beyond the four-color case
except under unusual circumstances.

B. Producing four-color beams

It might seem at first that a major obstacle in realizing the
four-color PCF is the production of a laser beam with the
required coherent superposition of four different frequencies.
Fortunately, this is easier than one might expect, because
the frequencies are evenly spaced at intervals of 2δ. They
can be obtained by a slight variation of the standard scheme
used to produce beams for BCF experiments, which utilizes a
double-passed acousto-optic modulator (AOM) in which both
the zero-order and the first-order beams are retroreflected [4].
If the entering zero-order beam is at frequency ω − δ and the
acoustic frequency of the AOM is 2δ, the output consists of two
beams that, if merged, contain equally spaced frequencies at
ω − 3δ, ω − δ, ω + δ, and ω + 3δ. We plan to test this scheme
with a metastable helium beam in our laboratory, where ample
laser power will soon be available using tapered laser diode
amplifiers that are rated to provide more than 1 W at 1083 nm.

If may also be possible to generate the four-color beams
by injecting rf radiation at multiples of δ into an electro-optic
phase modulator (EOM) with amplitudes chosen to suppress
the carrier. However, an examination of the FM sideband
spectrum for pure phase modulation indicates that at least
three rf harmonics must be superposed to produce the correct
pattern, and probably more, so the AOM-based scheme seems
more appealing.

C. Pulse trains

As stated previously, the basic concept behind the four-color
force is that the addition of more colors creates a narrower
pulse. In that spirit, why is it that we do not simply use
a pulsed laser, or equivalently a chopped cw laser? This is
indeed a possibility. The first (and so far only) demonstration
of stimulated forces on molecules used a train of mode-locked
laser pulses [17], and recently the group of Derevianko [18]
has proposed the use of a carefully tailored train of ultrashort
π pulses to produce stimulated cooling of molecules.

However, there are a few important limitations. One is the
purely technical issue that short-duration pulses with an area
of ∼π are not easily produced at arbitrary wavelengths. A
more basic concern is that short-duration pulses inherently
have broad linewidths, extending across much of the visible
spectrum for femtosecond pulses. This will usually make it
impossible to drive a pure two-level system, because numerous
additional transitions will lie within the bandwidth. The
proposal in Ref. [18] is a special case that actually exploits
the large bandwidth—here, the frequency-domain “teeth” of a
phase-stabilized frequency comb are carefully matched to the
rotational spacings of a molecule.

A more subtle but equally important consideration is that a
simple pulse train lacks the robustness of polychromatic forces
against left-vs-right beam intensity imbalances. As explained
in Sec. II A, it is the phase alternation between successive beat
notes that gives rise to this robustness, because after a full
four-pulse period (two pulses from the left and two from the
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right), the net pulse area is zero even for imbalanced beams.
Pulse trains from a pulsed laser lack this phase alternation, and
in fact they typically lack any phase coherence at all except
in the case of a phase-stabilized frequency comb. Thus any
imbalance between pairs of counterpropagating pulses will
result in a residual phase on the Bloch sphere that accumulates
with time, eventually reversing the direction of the force. This
problem has been confirmed in our numerical simulations by
removing the sign alternation in the interference envelope. As
expected, the sensitivity to imbalance then reverts to that of
the simple π -pulse model as described in Sec. II c of Ref. [6].

IV. SUMMARY

We have numerically studied the properties and behavior of
systems under several different bichromatic and polychromatic
light fields. With the assistance of “Bloch cylinder” plots
of the Bloch vector trajectory, we show that the surprising
robustness of polychromatic forces with imbalanced beam
intensities stems from sign alternation of the pulse areas in
a train of beat notes. This has important consequences for
stimulated-force schemes relying on pulsed lasers. We also
analyze the excited-state fraction in detail and show that, for

the ordinary BCF under optimal conditions, the time-averaged
excited-state fraction is 41%.

A proposed extension to four-color polychromatic forces
shows great promise. By adding components at ±3δ to the
usual BCF beams at ±δ, the velocity range is increased by
nearly a factor of 3, the average excited-state fraction is
reduced to 24%, and the force is increased by nearly 50%.
The total laser power is larger only by a factor of 4/3, a
modest price to pay compared with the factor of 9 that would
be required for a BCF configuration at detuning 3δ. We also
predict that the four-color force is significantly more robust
in the presence of imbalanced beam intensities, especially if
compared with a BCF with an increased detuning.

Plans are under way to test these ideas in metastable He,
where a longitudinal decelerator would benefit greatly from
the increased velocity range. However, the greatest promise
may be for applying stimulated optical forces to molecules,
where a decreased excited-state fraction directly impacts the
time available for the force to act prior to loss from radiative
decay to dark states.
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