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Time-domain perspective on Autler-Townes splitting in attosecond transient
absorption of laser-dressed helium atoms
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We present a theoretical study of the delay-dependent Autler-Townes (AT) splitting in transient absorption
spectroscopy of an isolated attosecond pulse in helium atoms subject to a delayed infrared (IR) pulse. We
concentrate on cases in which the IR pulse is resonant with the helium 1s2p-1s2s transition and provide
a time-domain perspective of the dynamics in the delay-dependent pump-probe system. We identify several
interesting delay-dependent features in the transient absorption spectrum such as AT splitting, oscillation between
absorption and emission at the resonant absorption frequency, and sub-IR-cycles oscillations. We then explain
the origins of these features in the time domain in terms of a strongly driven two-level system, in the language
of population transfer and coherent control.
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I. INTRODUCTION

Attosecond transient absorption uses a delay-dependent
pump-probe scheme to investigate ultrafast electron dynamics
down to the sub-femtosecond time scale [1,2]. The inherent
waveform synchronization of a strong infrared (IR) laser probe
pulse to an attosecond pump pulse produced via high harmonic
generation [3–6] allows very high precision control of the delay
time between them. In this way, a delay-dependent transient
absorption spectrum can be obtained and the sub-femtosecond
electron-photon dynamics can be retrieved. A wide range
of ultrafast dynamics has been revealed using attosecond
transient absorption, ranging from dielectric transitions in a
semiconductor [7], to electron motion in the valence shell [1],
and the relaxation dynamics of super excited oxygen [8],
covering a variety of areas in physics, chemistry, material
science, and biology [9], especially in attosecond transient
absorption spectroscopy [10–17].

Our recent papers [14,15] have investigated the transient
absorption spectrum in helium atoms, where we identified
interesting interference features near the ionization threshold.
In [14,15], the features in the absorption spectrum are mostly
explained in the frequency domain, in the language of inter-
fering contributions to the dipole moment corresponding to
different excitation pathways. In this paper we will investigate
the transient absorption dynamics in a time-domain picture,
using the language of population transfer and coherent control.
We focus on the transient absorption spectrum in the case
of Autler-Townes (AT) splitting near the 1s2-1s2p transition
in atomic helium (21.1 eV). We show that the traditional
AT splitting in a long IR pulse acquires rich absorption and
emission features in the isolated attosecond pulse (IAP) + IR
case, in addition to the two well-known absorption peaks [18].
The time-domain picture enables us to take advantage of the
fact that the wave packet created by the IAP is essentially
independent of the delay [15]. This allows us to separate
the dynamics of the system into a slow part related only
to the IR pulse and a fast part related only to the XUV
pulse. By doing this separation, we are able to explain the
transient absorption features in terms of a strongly driven
two-level system. A similar time-domain treatment has been
studied recently by Pfeiffer and Leone [18]. They presented an

approximate analytical solution for a three-level model which
can predict many of the features both within and beyond the
rotating-wave approximation (RWA). In this paper, we focus
on identifying the RWA and non-RWA features, studying how
the weight of their relative contributions changes with IR
intensity, and examining their dynamics using several different
pulse shapes.

The paper is organized as follows. In Sec. II, we begin with
the delay-dependent transient absorption spectrum calculated
by solving the time-dependent Schrödinger equation (TDSE)
for a helium atom, using the single active electron (SAE)
approximation [19,20]. We identify several interesting features
in the transient absorption spectrum and interpret them in
terms of a strongly driven two-level system. We categorize
these features into those that can be explained by the rotating-
wave terms (RWTs), and those that can be explained by the
counter-rotating terms (CRTs). In Sec. III, we focus on the
RWT features and use several models to study the delay and
frequency-dependent features that reveal how the familiar AT
splitting spectrum is built up in the time domain. In Sec. IV,
we study the effects of the CRTs and provide a simple model
which can reproduce some of the CRT features in the transient
absorption spectrum.

II. TRANSIENT ABSORPTION SPECTRUM

We start by showing the transient absorption spectrum of
a helium atom, excited by an IAP with a full width at half
maximum (FWHM) duration of 356 as and a central frequency
at 25 eV, together with a four cycles IR pulse with a FWHM
duration of 34 fs and a wavelength of 2550 nm. The XUV
field has an intensity of 1.0 × 1011 W/cm2, and the IR laser
has an intensity of 3.0 × 1012 W/cm2. At this intensity, net
population excited from the ground state by the IR pulse can
be ignored compared to that excited by the XUV pulse. The
helium 1s2p-1s2s states are resonantly coupled by the IR
laser. We solve the TDSE in the SAE approximation to obtain
the time-dependent dipole moment using a pseudopotential
[21]. The single atom absorption spectrum is calculated by a
response function [21]

S̃(ω) = −2 Im[d̃(ω)Ẽ∗(ω)], (1)
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FIG. 1. (Color online) Full TDSE calculation of the transient
absorption spectrum. The XUV pulse has a FWHM duration of 356
as, centered at 25 eV. The IR pulse has a duration of 34 fs and a
wavelength 2550 nm, which is resonant with the 1s2p-1s2s transition.

where d̃(ω) and Ẽ(ω) are the Fourier transforms of the
time-dependent dipole and the electric field.1 This response
function represents the absorption probability density at a
certain frequency, so that positive (negative) ωS̃(ω) equals the
amount of energy gained (lost) by the atom per unit frequency
at ω. In calculating d̃(ω) we have included a dipole dephasing
time of T2 = 136 fs in d(t). The dephasing serves the dual
purpose of (i) taking into account spontaneous decay and
collisional broadening that would be present in an experiment,
and (ii) ensuring that d(t) goes smoothly to zero at the end of
the calculation. We have verified that using a longer T2 does
not change any of our conclusions.

The delay-dependent absorption spectrum calculated by
Eq. (1) is shown in Fig. 1. From the absorption spectrum we
can see several interesting features. The most dominant one is
the forklike structure around 21.1 eV, where the 2p absorption
line is split into two curved lines above and below the resonant
frequency when the XUV and IR overlap. This structure is
very similar to the ordinary AT splitting structure except the
spacing between the two features depends on the IR intensity
and thus changes with delay as the delay is scanned. Inside
the AT splitting structure, there are also forklike structures
going from positive to negative delays. Moreover, at large
negative delays (τ < −5), where the XUV pulse leads the IR
pulse, there are hyperbolic sidebands near the 2p resonant line.
These structures have also been seen recently in the absorption
spectrum of a laser coupled autoionizing system [16]. In
addition, in the region above and below the main AT splitting
structure, namely above 21.5 eV and below 20.5 eV, we can see
stripes across the delay scan. We will show that most of these
structures can be understood by considering a strongly driven
two-level system exhibiting both RWT and CRT behavior.

III. EFFECTS OF ROTATING-WAVE TERM

A. Move into the RWA regime

In the transient absorption scheme we study, the IR pulse
is resonant with the helium 2p-2s energy, so that the atomic

1Note that the choice of Fourier transform convention determines
the sign in Eq. (1). In this paper we use d̃(ω) = 1√

2π

∫ ∞
−∞ d(t)e−iωt dt ,

which gives the minus sign shown.

response near 21 eV is dominated by the 1s-2s-2p three level
dynamics (we drop the 1s label from the states from now on
as we will be working exclusively in the SAE approximation).
In this sense, we can use only the lowest three levels 1s-2p-2s

to approximate the dynamics of the field and the helium atom,
ignoring all the higher-energy states [14]. Moreover, since the
XUV pulse is short and weak in our case, we can approximate
it as a δ function with its strength proportional to the pulse
area of the full XUV field. With these approximations,
the effects of the XUV and IR pulse on the atom are separated
in the time domain: the XUV pulse will suddenly populate
the 2p state and then the IR pulse will manipulate the 2p

population by coupling it to the 2s state afterwards. After
the 2p state is populated at time t = 0, the 1s-2p dipole
will continue “ringing”at its natural frequency until the dipole
dephases. In addition to that fast oscillation, the IR pulse will
modify the 2p population on a much slower time scale. Thus
the time-dependent dipole moment can be separated into a
component that oscillates at the 1s-2p frequency ω0 (after the
XUV pulse), and a component f (t) due to the manipulation of
the 2p population by the IR field,

d(t) = f (t)eiω0t + c.c. (2)

This is shown in Fig. 2, where ω0 is the resonant frequency
of the 1s-2p transition. We have assumed the XUV pulse is
located at t = 0.

The absorption spectrum, which is related to the Fourier
transform of the time-dependent dipole moment, is basically
determined by the IR manipulation part f (t) with a spectral
shift of ω0. Thus the three-level two-field problem is further
simplified to a two-level one-field problem, with only the 2p

and 2s states and the IR field involved. The two-level system
is described by the equations

iĊ2s = μ1EIR(t,τ )e−iω1tC2p, (3a)

iĊ2p = μ1EIR(t,τ )eiω1tC2s , (3b)

FIG. 2. (Color online) Schematic representation of our transient
absorption model. The XUV pulse starts the dipole oscillation of
the atom. The time-dependent dipole d(t) contains both the fast
oscillation at the 1s-2p transition frequency ω0, and the slow
oscillation f (t), which is determined solely by the residual part (pink
area) of the IR pulse. Since the fast oscillation gives only a translation
in the frequency domain, the shape of the absorption spectrum is
exclusively determined by the slow modulation.
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FIG. 3. (Color online) Stepping into the RWA regime as we decrease the ratio �/ω1. Absorption spectrum calculated by Eq. (3) using (a)
the original �/ω1 = 1.4, (b) �/ω1 = 0.7, (c) �/ω1 = 0.35, and (d) �/ω1 = 0.18. The non-RWA features such as subcycle oscillations and
stripes are eliminated, while the RWA features of the main AT splitting are preserved.

with initial condition

C2s(0) = 0, (4a)

C2p(0) = C0
2p, (4b)

where C2s and C2p represent the 2s and 2p amplitudes in
the rotating frame, respectively. ω1 is the 2p-2s transition
frequency, which is also the IR frequency since in our case
the IR pulse is always resonant with the 2p-2s transition. C0

2p

is the initial 2p population just after the XUV has passed,
and is proportional to the XUV pulse area. EIR(t,τ ) is the
time- and delay-dependent IR field. μ1 is the dipole transition
element between the 2s and 2p states. The absorption spectrum
resulting from this two-level model is shown in Fig. 3(a) and
is in very good agreement with the full TDSE calculation in
Fig. 1.

The model calculation in Fig. 3(a) encompasses effects of
both RWTs and CRTs. This is in part because the IR field is
relatively strong so that the RWA is not well defined. Using
the dipole matrix elements from the same potential as the
full calculation in Fig. 1, we can calculate the peak Rabi
frequency � is 0.7 eV at an IR intensity of 3.0 × 1012 W/cm2.
This Rabi frequency is larger than the 2p-2s frequency of
0.5 eV, and the RWA weak-coupling condition is therefore
not fulfilled [22]. In Figs. 3(b)–3(d), we explore features in
Fig. 3(a) which can be attributed to RWTs, by gradually
decreasing the ratio �/ω1. This is done by increasing the
IR carrier frequency while keeping the Rabi frequency fixed
to maintain the same coupling strength. Since we want to
keep the IR field resonant with the 2p-2s transition, we also
increase the 2p-2s energy difference at the same time as
we increase the IR carrier frequency. Figures 3(b)–3(d) then
show that the delay-dependent AT-splitting peaks, the forklike

structures inside the AT peaks, and the hyperbolic sidebands
are all due to the RWTs, whereas the subcycle oscillations and
the “stripes” above and below the main features are eliminated
in the RWA regime.

B. Trigonometric envelope IR pulse

In this section, we study the RWA features in the absorption
spectrum by analytically solving the two-level TDSE in the
RWA, which reads [23,24]

iĊ2s = 1
2�(t,τ )C2p, (5a)

iĊ2p = 1
2�(t,τ )C2s , (5b)

where �(t,τ ) is the time- and delay-dependent envelope
of the IR pulse multiplied by the dipole transition element
μ1. The above equations have a closed-form solution for a
trigonometric envelope (cos2 or sin2) for delays when the XUV
and IR pulses overlap (see Appendix A):

C2p(t,τ )

= C0
2pcos

[
�0

4ω1

(
ω1t + n sin

ω1τ

n
+ n sin

ω1(t − τ )

n

)]
,

(6)

where τ is the delay between the centers of the XUV and IR
pulses, n is the total number of cycles in the full IR pulse,
and �0 is the Rabi frequency corresponding to the peak IR
intensity. C0

2p is the initial 2p population just after the XUV
has passed, which is proportional to the XUV pulse area. Using
the above equation, we can calculate the response function
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FIG. 4. (Color online) (a) Response function calculated directly
from Eq. (6). (b) Closeup from (a), showing that the Rabi oscillation
at the resonant line matches with the oscillation of the final 2p state
amplitude (white line).

directly, which is shown in Fig. 4(a). It looks very similar to
Fig. 3(d). The final-state amplitude at the end of the IR pulse
can also be written down, as a function of delay:

C
f

2p(τ ) = C0
2pcos

{
�0

4ω1

(
nπ + ω1τ + n sin

[
ω1τ

n

])}
. (7)

A plot of Eq. (7) (normalized) is shown in Fig. 4(b) overlayed
in white on the absorption spectrum. We see from Fig. 4(b)
that the final-state amplitude oscillates between positive and
negative values, which matches well to the oscillation of the
response function between absorption and emission on the
2p resonant line at 21.1 eV. This oscillation in final-state
amplitude comes from the fact that as we are scanning the XUV
pulse, the remaining IR pulse area will change as a function of
delay. This causes the response function to oscillate between
absorption (when the 2p amplitude at the end of the IR pulse is
large and positive) and emission (when the 2p amplitude at the
end of the IR pulse is large and negative). A similar reversal of
absorption to emission by manipulating the coherence is also
seen in our earlier paper on absorption in laser-dressed helium
atoms [25]. In the earlier work, however, we studied a very
different configuration, using a long, resonant XUV pulse and
a short IR control pulse.

C. Square envelope IR pulse

Next, we explore the RWA structures even further by
simplifying the model to consider a square IR pulse envelope
in the RWA regime. As shown below, this enables us to write
out an explicit expression for the response function. We ignore
the sudden turn on and off effect of the IR pulse and directly
model the effect of the IR pulse as purely a Rabi cycling of the
2p-2s population. The amplitude of the 2p state as a function
of time can be written as follows.

When the XUV and IR pulses overlap,

C2p(t) =
{

C0
2p cos �t

2 , 0 < t < τ2,

C0
2p cos �τ2

2 , τ2 � t,
(8)

and when the XUV leads the IR pulse,

C2p(t) =

⎧⎪⎨
⎪⎩

C0
2p, t < τ1,

C0
2p cos �(t−τ1)

2 , τ1 � t < τ2,

C0
2p cos �τ0

2 , τ2 � t,

(9)

where � is the IR Rabi frequency, which is a constant in
this case. τ1 and τ2 are the start and end of the IR pulse
and τ2 − τ1 equals the duration of the IR pulse τ0. The delay
scan is characterized by varying τ which is defined as the
delay between the center of the XUV and IR pulses, so that
τ = −(τ1 + τ0

2 ). As in the case of the trigonometric envelope,
a negative delay means that the XUV arrives before the center
of the IR pulse.

After writing down the state amplitude, we can calculate
the time-dependent dipole moment and the response function.
After a short derivation (see Appendix B), we get the delay-
dependent response function S̃ in these two cases (constant
factors are omitted).

When the XUV and IR pulses overlap,

S̃(ω,τ ) = τ1 + τ0

2
sinc

[
(τ1 + τ0)

(
� + �

2

)]

+ τ1 + τ0

2
sinc

[
(τ1 + τ0)

(
� − �

2

)]

+ cos
�(τ1 + τ0)

2
e−α(τ1+τ0)

× Re

[
α − i�

α2 + �2
e−i�(τ1+τ0)

]
, (10)

and when the XUV pulse leads the IR pulse,

S̃(ω,τ )

= τ1sinc(�τ1)

+ τ0

2
cos

[
�τ1 + τ0

2

(
� + �

2

)]
sinc

[
τ0

2

(
� + �

2

)]

+ τ0

2
cos

[
�τ1 + τ0

2

(
� − �

2

)]
sinc

[
τ0

2

(
� − �

2

)]

+ cos
�τ0

2
e−α(τ0+τ1)Re

[
e−i�(τ0+τ1) α − i�

α2 + �2

]
. (11)

In these equations, � = ω − ω0, τ1 = −(τ + τ0
2 ), and α ≈ 1

T2
is the decoherence factor.

Figure 5(a) shows the delay dependence of the response
function of a 93 fs square IR pulse (the same full length as
the trigonometric pulse case) using these equations. Other
parameters are identical to that in Fig. 3(a). We can see many
similarities between the square pulse result and the RWA result
of the trigonometric pulse case in Fig. 4(a). First of all, the
response function around the resonant frequency oscillates
between absorption and emission with a period of one-half of
the Rabi cycles. We note that the oscillation period in the square
IR case is exactly one-half Rabi period, whereas the period in
the trigonometric pulse case is approximately the averaged
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FIG. 5. (Color online) (a) Response function of the square IR
pulse calculated from Eq. (10) and Eq. (11). We see similar features
as for the trigonometric pulse case shown in Fig. 3(d) and Fig. 4(a). (b)
The formation of the AT splitting structure, starting from a resonant
(Lorentzian) line shape, as the atom experiences more and more
cycles of the trapezoidal IR pulse, starting from large positive delays.
Zero delay corresponds to the center of the IR pulse overlapping with
the XUV pulse.

instantaneous Rabi period, such that it has a larger period
in the beginning and end of the pulse and a smaller period
in the center of the pulse. Second, in both cases, we have
nested forklike structures, one inside another. In the square IR
case, the fork structure consists of little steps, and is almost
straight, while in the pulse case, the fork structure follows
the IR pulse shape. Third, at about delay τ = −5, there is a
broomlike structure in both cases. Finally, at large negative
delays (τ < −6), there are stripes at the AT splitting lines, on
top of which there are sinclike sideband structures.

Now we will use the model in Eqs. (10) and (11) to explain
the structures of Fig. 5(a). We first study the features when the
XUV and IR pulses overlap, in the region −5.5 < τ < 5.5.
In this case, the response function is described by Eq. (10).
It contains three terms: the first two terms are from the
contribution of the time interval when the IR pulse is on (from
0 � t � τ2) and the third term is from the contribution of the
dipole “ringing”after the IR pulse is over (t > τ2). We can
see from Eq. (10) that the first and second terms are both
sinc functions, which give rise to the two absorption peaks

located at ω0 ± �/2 and their interference gives the forklike
structures inside. We note that as the IR pulse duration gets
longer, the sinc function will compress to a narrower frequency
region. This weakens the inner structure compared to the
main structure. In the limit of a continuous-wave IR pulse,
these two sinc functions will collapse into two δ functions
located at ω0 ± �/2, and there will be no inner structure,
in agreement with the ordinary AT splitting. The curving of
the main AT structure with delay was also predicted in [18],
but in that work the inner structures are very faint because
the IR intensity is high and the two main AT features are
therefore separated further and interfere less. We can also see
from Eq. (10) that at the resonant frequency 21.1 eV (� =
0), the absorption is dominated by the dipole ringing term
1
α

cos �(τ1+τ0)
2 e−α(τ1+τ0). This term results from the combined

effect of a Rabi cycles oscillation term cos �(τ1+τ0)
2 and a

ringing decay term e−α(τ1+τ0).
Next we study the case when the XUV is leading the IR

(τ < −5.5), which is described by Eq. (11). In this case, the
response function contains four terms. The first term comes
from the contribution of the waiting time between XUV start
and IR start (0 � t � τ1), the second and the third terms are the
IR Rabi cycling term (τ1 � t � τ2), and the fourth term comes
from the dipole ringing after the IR pulse is over (t > τ2).
When τ < −5.5, the IR manipulation of the population doesn’t
change with delay. The only thing that does change when
scanning the delay is the waiting time between the arrival of the
XUV pulse and that of the IR pulse. This has two effects. First,
during this waiting time, the dipole will oscillate at the 1s-2p

natural frequency, which gives a large absorption contribution
at the 2p line at 21.1 eV, as we can see from both the first
term in Eq. (11) and Fig. 5(a). Second, it will introduce a time
translation of the IR manipulation (Rabi cycling) and thus
introduce a delay-dependent phase to the absorption spectrum
created by the IR pulse. This can also be seen by comparing
the second and third terms in Eq. (11) to the first two terms
in Eq. (10). This delay-dependent phase will change the AT
absorption lines into delay-dependent stripes, as we see at
around 20.7 eV and 21.5 eV in large negative delay in both
the square IR pulse and the trigonometric IR pulse cases. A
similar phenomenon was also reported in recent experiments
by Ott et al. in [26], where they demonstrated that the transient
absorption lineouts can change from Lorentzian to Fano shape
by varying this delay-dependent phase.

Finally, in Fig. 5(b) we use a trapezoidal IR pulse to
illustrate how the characteristic AT splitting structure is built up
in the time domain. The response function is calculated within
the RWA for a 130 fs trapezoidal IR pulse, which has two cycles
for the turn on and turn off, and 11 cycles of the peak intensity.
At large positive delay (τ > 5.5), the IR pulse is leading the
XUV pulse and has no effect on modifying the absorption;
thus the absorption line has a regular Lorentzian shape. At
τ ≈ 5.5, the atom starts to experience a few cycles of the IR
pulse before it ends, and the Lorentzian line shape changes into
complicated structures involving both absorption and emission
as discussed above. At large negative delay (τ < −5.5), as the
atom experiences more cycles of the IR pulse, the AT splitting
peaks start to build up and the inner structures start to disappear.
The overall delay scan gives a clear indication of how the AT
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splitting is formed from the Lorentzian line shape. We note
that it is the combination of the few-cycles IR pulse and its
subcycle synchronization to the XUV pulse that allows for
probing the dynamics of the AT feature. A similar proposal for
studying the evolution of the well-known Fano line shape of
autoionizing states has recently appeared in [27].

IV. EFFECT OF COUNTER-ROTATING TERM

A. Subcycle oscillations

The full TDSE calculation in Fig. 1 shows that there
are subcycle features that appear across the delay-dependent
spectrum. These subcycle oscillations have been seen recently
in transient absorption experiments [12,13,17]. In this section,
we will focus on these subcycle oscillation features. From
Fig. 3 we can see that when we move the system into the
RWA regime, the subcycle features disappear while the main
AT structure remains. This means the subcycle oscillations
are related to the CRTs. We can investigate the strength
and frequency of these subcycle oscillations by following
the maximum value of the response function along the AT
splitting line. The result is shown in Fig. 6, where the subcycle
oscillation in the absorption along the AT splitting line is shown
for four different �/ω1 ratios, the same as in Fig. 3. Figure 6
shows that the frequency of these oscillations is approximately
2ω1, and their modulation depth is basically proportional to
�/ω1 as one would expect from the RWA. The stripes above
and below the main AT splitting are also from the CRTs.
To explicitly study these CRT effects, one would need an
approximate analytical solution containing the CRT terms,
which has proven to be a very difficult task in general [28,29].
Here we use a crude model of the 2ω1 effect.

We have the analytical solution of the trigonometric pulse
under the RWA in Sec. III B. We may try to add the effects of
the CRT directly into that solution. Since the CRTs have a 2ω1

effect as we see in Fig. 6, we could model the CRT effects by
adding a term sin(2ω1t) directly into the time-dependent state
amplitude. As we have seen, the strength of the CRTs may be
characterized approximately by the ratio �/ω1, since strong

FIG. 6. (Color online) Subcycle oscillation retrieved from the
absorption spectrum, by following the center of the AT splitting
absorption line, in four different �/ω1 ratios in Fig. 3. The figure
shows that the subcycle oscillation strength is basically proportional
to the carrier frequency, and the oscillation frequency is about two
times the carrier frequency.

FIG. 7. (Color online) Adding 2ω1 oscillation directly into the
time-dependent state amplitude [Eq. (12)] reproduces the subcycle
oscillation and the delay-dependent stripes. These stripes can be
explained as a result of frequency mixing in the dipole oscillation.

coupling results in large CRT effects. Combining all of these
estimates, we get a model time-dependent 2p amplitude:

C2p(t,τ )

= C0
2pcos

[
�0

4ω1

(
ω1t + n sin

τω1

n
+ n sin

ω1(t − τ )

n

)]

×
(

1 + β
�(t,τ )

ω1
sin[2ω1(t − τ )]

)
, (12)

where �(t,τ ) = cos2[ω1(t−τ )
2n

] is the time- and delay-dependent
Rabi frequency, and β is a free parameter which we take to be
1/2.

Using Eq. (12), we can get a model response function, as
shown in Fig. 7. We can see that by putting in a 2ω1 oscillation
directly into the state amplitude, the model can reproduce the
striped structure outside the main AT splitting region. These
stripes appears at 2ω1 difference from the AT splitting (at about
ω0 ± 2ω1 ± �0/2), which is reasonable since they represent
the frequency mixing of the �/2 and 2ω1 components in
the time-dependent dipole. Absorption (and emission) is
possible at these frequencies because they are all within the
broad bandwidth of the IAP. Adding the 2ω1 component by
hand to the state amplitude also generally reproduces the
tilt of the subcycle oscillations, with a positive (negative)
tilt of the stripes above (below) the AT structure. This is
because the subcycle oscillations originate in an interference
between the excitations that are separated by 2ω1; see for
instance [15]. These excitations result directly from adding
the (lowest-order nonlinear) 2ω1 term to C2p. We note, though,
that since the simple model incorporates neither higher-order
terms nor the change of the effective Rabi frequency, it does
not agree quantitatively with the numerical solution of the
two-level system in Fig. 3(a), particularly on the phase of the
fringes.

V. SUMMARY

We have studied the absorption of an IAP in the presence
of an ultrafast, delayed IR pulse which strongly couples
two excited states. We found that this system presents rich
dynamics on the time scale of the IR pulse duration (tens of
femtoseconds in our case), especially when the IR intensity is
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high enough that several Rabi periods are completed within
the duration of the pulse.

We have shown that the well-known Autler-Townes split-
ting of an absorption line in the presence of a resonant
coupling field generalizes and becomes delay dependent when
the coupling pulse is short. We also found prominent, delay-
dependent interference features which lead to both absorption
and emission within the AT structure. We showed that the
dynamics of this delay dependence can be understood from
the time-dependent population dynamics of a strongly driven
two-level system. We also discussed how the formation of
the AT splitting structure from the regular Lorentzian line
shape can be probed in the scenario studied here, in which an
attosecond XUV pulse is synchronized to the few-cycles pulse
that causes the AT splitting.

Finally, we showed that although the main AT structure and
its delay dependence are well described within the rotating-
wave approximation, the full delay-dependent absorption spec-
trum is strongly influenced by counter-rotating terms which
give rise to sub-IR-cycle oscillations as well as additional
absorption lines corresponding to nonlinear mixing of the IR
frequency and the Rabi frequency.
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APPENDIX A: TRIGONOMETRIC IR PULSE

The simplified two-level equation in the RWA reads

iĊ2s = 1
2�(t,τ )C2p, (A1a)

iĊ2p = 1
2�(t,τ )C2s , (A1b)

with the initial condition of

C2s(0,τ ) = 0, (A2a)

C2p(0,τ ) = C0
2p, (A2b)

where C0
2p is the initial 2p population just after the XUV has

passed. Since the XUV is weak, C0
2p can be approximated

as a pure imaginary number. This equation has the following
solutions:

C2s(t,τ ) = −iC0
2p sin

φ(t,τ )

2
, (A3a)

C2p(t,τ ) = C0
2p cos

φ(t,τ )

2
, (A3b)

where

φ(t,τ ) =
∫ t

0
�(t ′,τ )dt ′. (A4)

When the IR pulse has an envelope of cos2, the delay-
dependent IR field is

EIR(t,τ )

=
{E0

IR cos2 ω1(t−τ )
2n

sin [ω1(t − τ )] , 0 � t � πn
ω1

+ τ,

0, πn
ω1

+ τ < t

(A5)

and �(t,τ ) is the time- and delay-dependent Rabi frequency

�(t,τ ) =
{

�0 cos2 ω1(t−τ )
2n

, 0 � t � πn
ω1

+ τ,

0, πn
ω1

+ τ < t,
(A6)

where �0 = μ1E0
IR

h̄
is the Rabi frequency corresponding

to the peak IR intensity. Substituting Eqs. (A6) into
Eqs. (A3) and (A4), we get the time- and delay-dependent state
amplitude:

C2p(t,τ ) =
⎧⎨
⎩

C0
2pcos

[
�0
4ω1

(
ω1t + n sinω1τ

n
+ n sinω1(t−τ )

n

)]
, 0 � t � πn

ω1
+ τ,

C0
2pcos

[
�0
4ω1

(
nπ + ω1τ + n sinω1τ

n

)]
, πn

ω1
+ τ < t.

(A7)

Therefore, the final-state amplitude of the 2p state as a function of delay is

C
f

2p(τ ) = C0
2pcos

[
�0

4ω1

(
nπ + ω1τ + n sin

ω1τ

n

)]
. (A8)

APPENDIX B: SQUARE IR PULSE

For the case of the square IR pulse, the time-dependent dipole moment is

d(t) = μ0[C∗
1s(t)C2p(t)e−iω0t + c.c.], (B1)

where C2p(t) is the 2p state amplitude written in Eqs. (8) and (9), and μ0 is the dipole transition matrix element of 1s-2p. Since
the XUV is weak, the ground-state amplitude C1s is set to 1 at all times, and the dipole moment simplifies to

d(t) = 2μ0Im[C2p(t)] sin(ω0t). (B2)
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When the XUV overlaps the IR pulse, the Fourier transform of the dipole moment is

d̃(ω) = 2μ0Im
[
C0

2p

]
√

2π

{∫ τ2

0
cos

�t

2
sin(ω0t)e

−iωtdt +
∫ ∞

τ2

cos
�τ2

2
sin(ω0t)e

−iωt e−αtdt

}
. (B3)

Since we are only interested in the response near ω0 (and not −ω0), we keep only the resonant eiω0t term and obtain

d̃(ω) = μ0Im
[
C0

2p

]
√

2πi

{
τ1 + τ0

2
e− i

2 (�+ �
2 )(τ1+τ0)sinc

[
τ1 + τ0

2

(
� + �

2

)]

+ τ1 + τ0

2
e− i

2 (�− �
2 )(τ1+τ0)sinc

[
τ1 + τ0

2

(
� − �

2

)]
+ α − i�

α2 + �2
e−α(τ1+τ0)e−i�(τ1 + τ0)cos

�(τ1 + τ0)

2

}
, (B4)

where � = ω − ω0 and τ1 = −(τ + τ0
2 ). If the XUV pulse is approximated as a δ function E(t) = Aδ(t), then the response

function is

S̃(ω,τ ) = Aμ0

π
Im

[
C0

2p

]{τ1 + τ0

2
sinc

[
(τ1 + τ0)

(
� + �

2

)]
+ τ1 + τ0

2
sinc

[
(τ1 + τ0)

(
� − �

2

)]

+ cos
�(τ1 + τ0)

2
e−α(τ1+τ0) Re

[
α − i�

α2 + �2
e−i�(τ1+τ0)

]}
. (B5)

Similarly, when the XUV is leading the IR pulse, the 2p state amplitude is written in Eq. (9). The Fourier transform of the
dipole moment can be written as

d̃(ω) = μ0Im
[
C0

2p

]
√

2πi

{
τ1e

− i
2 �τ1 sinc

�τ1

2
+ τ0

2
e−i�τ1e− i

2 (�+ �
2 )τ0 sinc

[
τ0

2

(
� + �

2

)]

+ τ0

2
e−i�τ1e− i

2 (�− �
2 )τ0 sinc

[
τ0

2

(
� − �

2

)]
+ α − i�

α2 + �2
e−α(τ0+τ1)e−i�(τ0+τ1) cos

�τ0

2

}
(B6)

and the response function is

S̃(ω,τ ) = Aμ0

π
Im

[
C0

2p

]{
τ1sinc(�τ1) + τ0

2
cos

[
�τ1 + τ0

2

(
� + �

2

)]
sinc

[
τ0

2

(
� + �

2

)]

+ τ0

2
cos

[
�τ1 + τ0

2

(
� − �

2

)]
sinc

[
τ0

2

(
� − �

2

)]
+ cos

�τ0

2
e−α(τ0+τ1)Re

[
e−i�(τ0+τ1) α − i�

α2 + �2

]}
. (B7)
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