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Dynamic formation of Rydberg aggregates at off-resonant excitation
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The dynamics of a cloud of ultracold two-level atoms is studied at off-resonant laser driving to a Rydberg
state. We find that resonant excitation channels lead to strongly peaked spatial correlations associated with the
buildup of asymmetric excitation structures. These aggregates can extend over the entire ensemble volume, but
are in general not localized relative to the system boundaries. The characteristic distances between neighboring
excitations depend on the laser detuning and on the interaction potential. These properties lead to characteristic
features in the spatial excitation density, the Mandel Q parameter, and the total number of excitations. As an
application an implementation of the three-atom CSWAP or Fredkin gate with Rydberg atoms is discussed. The
gate not only exploits the Rydberg blockade, but also utilizes the special features of an asymmetric geometric
arrangement of the three atoms. We show that continuous-wave off-resonant laser driving is sufficient to create
the required spatial arrangement of atoms out of a homogeneous cloud.
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I. INTRODUCTION

During the last few years immense research activities, both
experimentally and theoretically, were aimed at a detailed
understanding of the properties of ultracold gases whose atoms
are excited to states of high principal quantum number n.
Such highly excited Rydberg atoms have extreme properties
which make them promising candidates for a number of
fascinating applications [1,2]. Most importantly, they feature
long-range van der Waals (vdW) interactions, which lead to
interesting effects like the dipole blockade [3,4]. After the
initial work, which was mainly concerned with bulk properties
of Rydberg ensembles, the current effort focuses more and
more on spatially resolved observations. This is motivated
not the least by experimental progress [5,6] and theoretical
proposals [7,8] for spatially resolved excitation imaging. Also
on the theoretical side, in particular, rate equation models
[9–12] and full many-body simulations on truncated Hilbert
spaces [13–23] provide a handle to access spatially resolved
properties.

In this spirit, it has been predicted that spatial pair
correlations can be induced in a three-level Rydberg gas via the
so-called antiblockade arising from resonant excitations due to
single-atom Autler-Townes splitting [24]. These correlations
could be measured based on mechanical forces due to
the vdW interaction. The induced particle motion leads to
an encoding of position correlations into a time-dependent
Penning ionization signal [25]. Interestingly, in this way,
spatial information is gained without a spatially resolved
measurement. Following these works on spatial properties of
pairs of Rydberg atoms in large ensembles, it was subsequently
shown that also the Rydberg ensemble as a whole could
form crystalline structures in the Rydberg excitation density
[26–28]. In a repulsive vdW gas of Rydberg atoms, it can
be energetically favorable for a given number of excitations
to assume a highly ordered, crystalline state, with distances
between the excitations maximized. If the laser detuning
acts opposite to the interaction contribution, these ordered

states become the quantum mechanical ground state of the
system. It was proposed that such ground-state crystals (GSC)
could be produced using chirped laser pulses [26,27,29].
The chirp of the laser driving induces adiabatic passage to
the energetically most favorable state corresponding to the
crystalline excitation structure. For dipole-dipole interacting
spins in a lattice configuration, a scheme for growing ordered
structures by using resonant excitation processes similar to the
ones discussed here has been proposed recently [30].

Here we study regular excitation structures that arise in an
off-resonantly driven disordered gas at fixed laser detuning.
We analyze in detail the spatially resolved properties of a
one-dimensional (1D) disordered gas of Rydberg atoms via
numerical simulations on a truncated Hilbert space. The reg-
ular structures or aggregates predicted here are fundamentally
different from the GSC reported previously. First, the char-
acteristic distances between excitations do not depend on the
trap geometry, but only on the laser detuning and interaction
potential. Second, the structures are not spatially localized with
respect to the trap, but can float over a certain position range
between different realizations. Third, global observables, such
as the excitation number or the Mandel Q parameter, yield
results qualitatively different from those for the GSC. Also,
due to the floating nature of the aggregates, the total and the
excitation-number resolved spatial excitation densities exhibit
characteristic structures. Methods to experimentally verify the
aggregate structure are discussed. The underlying resonant
excitation mechanism is dynamical, inviting time-resolved
studies of the formation of spatial correlations. Part of our
predictions can already be probed through the detuning and
density dependence of the bulk total number of excitations
without the need for spatial resolution.

We find that two characteristic lengths arise in an off-
resonantly excited gas. These length have a fixed ratio of 21/d

for an interaction potential V ∼ 1/rd and can be explained
by two different resonant excitation channels connected to
one-photon and two-photon processes, respectively. As an
application, we show this unique property can be used to
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construct a quantum gate. We find that the gate fidelity
sensitively depends on the specific geometric arrangement
of the excited atoms. High fidelity is achieved, as our
resonant excitation scheme automatically self-assembles the
optimum arrangement out of a homogeneous cloud of atoms,
independent of the laser parameters.

II. MODEL AND HAMILTONIAN

Our model system is a one-dimensional cloud of Rydberg
atoms in two-level and frozen-gas approximations [2]. We
assume temporally and spatially constant laser intensity and
wavelength. The corresponding many-body Hamiltonian in a
suitable interaction picture and rotating wave approximation
reads (h̄ = 1) [2,13,15]

H =
N∑

i=1

[
−�s(i)

ee + �

2
σ (i)

x

]
+ C6

N∑
i<j

s(i)
ee s

(j )
ee

r6
ij

, (1)

with s
(i)
αβ = |α〉i〈β| and σ (i)

x = s(i)
eg + s(i)

ge for atom i. The first
part of this Hamiltonian contains a sum over single-atom
contributions. It includes the detuning � between laser
frequency and atomic transition frequency, and the laser
coupling between the ground state |g〉 and Rydberg state |e〉
with Rabi frequency �. The second part accounts for the
vdW interactions between two atoms in the Rydberg state at a
mutual distance rij . We numerically solve the time-dependent
Schrödinger equation with Hamiltonian (1) for given atom
positions ri and parameters C6, �, and �, starting from an
initial state with all atoms in the ground state. For a many-body
system, a naive integration is impractical, as the number
of states grows exponentially with the particle number. We
overcome this problem by exploiting the Rydberg blockade to
truncate the Hilbert space to the physically relevant subspace
[15,31]. All simulation results are checked for convergence
with respect to the truncation parameters. Additionally, to
obtain a convergence of the ensemble state with time, a Monte
Carlo sampling over runs with different atom positions is
employed [15,31–33]. In all the simulations shown here, the
Rabi frequency was kept at � = 10 MHz, and the interaction
strength at C6 = 6.6 THz μm6. This choice, however is
not restrictive since the results can be mapped to any other
parameter values by rescaling time and length. For these
parameters, the systems studied in this work would typically
converge at physical evolution times of about 2 μs, while the
reported observables have been obtained at time 5 μs.

III. RESULTS

A. Spatial correlations

Here we show that characteristic geometric excitation
structures form out of the homogeneous cloud of atoms under
continuous laser driving. For this we study the pair correlation
function

g(2)(r) = 1

Np(r)

∑
i,j

′
〈
si
ees

j
ee

〉
〈
si
ee

〉〈
s
j
ee

〉 , (2)

where
∑′

i,j sums over pairs with distance in [r,r + �r]
and Np(r) is the total number of such pairs. g(2)(r) is a
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FIG. 1. (Color online) (a) Pair correlation function g(2)(r) as a
function of interparticle distance r and detuning �. Dashed lines are
theoretical prediction for resonance positions as explained in the main
text. (b) Sections through (a) at detunings �/� = 3,5,7. Parameters
are L = 30 μm, N = 30, � = 10 MHz, and C6 = 6.6 THz μm6.

measure for the conditioned probability for an excitation
if another excitation is already present at a distance r . As
shown in Fig. 1, pronounced resonances emerge in g(2) at
regularly spaced distances for detunings � > �. At large
detunings (�/� � 1) and without the interaction (C6 → 0),
the laser field is off-resonant with all transitions and does not
induce excitations. But if the vdW interaction is included, it
can shift transitions to higher excited states into resonance
with the laser [21,24,25,30]. A closer look at Fig. 1 reveals
a sequence of double resonances. The first resonance at
the lowest interparticle distance is the well-known resonant
pair excitation [24] in which the ground state is resonantly
coupled to a doubly excited state via two-photon excitation
if 2� = C6/r6

res,2. We identified the second maximum at
slightly higher r as the resonant transition from an m-fold
to an (m + 1)-fold excited state, satisfying � = C6/r6

res,1. The
two conditions are shown as the two lower dashed lines in
Fig. 1(a) and coincide very well with the maxima of g(2)

from the numerical simulation results. We can thus directly
trace back the emergence of spatial correlations to resonant
excitation channels. Starting from a doubly excited state with
interatomic distance rres,2, a triply excited state emerges. This
is also illustrated in Fig. 2(a) where we show the bare energies
(diagonal elements of the Hamiltonian) as a function of the
detuning. It can be seen that, as long as the density of states
is sufficiently high around zero energy, pair states and triplet
states are available that can be excited resonantly. For the
later analysis it is crucial to note that, due to the mutual
interaction shifts, the third atom has distance rres,1 �= rres,2,
such that an asymmetric three-particle structure is created.
This triplet causes the third resonance line at rres,1 + rres,2 in
Fig. 1(a). Subsequent resonances originate from higher-excited
states, which most likely occur again at distances rres,1 from
the respective previous structures. In total, for highly excited
states, a regular chain of atoms with a single “defect” formed
by the initial pair of atoms is created.

Interestingly, the triply excited state is distinguished by a
ratio rres,1/rres,2 = 21/d for an interaction potential V ∼ 1/rd ,
independent of the trap size and the laser parameters. In
this sense, the interaction potential leads to a self-assembly
of asymmetric excitation structures. This invites applica-
tions exploiting the robust and definite asymmetric spatial
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FIG. 2. (Color online) (a) Illustration of the resonant excitation
channels. Bare state energies [diagonal part of the Hamiltonian
(1)] as a function of the laser detuning. We used a sample of 16
atoms randomly placed in a one-dimensional trap. The energy of
m-fold excited states decreases with slope m. The solid red (upper
gray) and black lines mark states that are resonantly coupled to
the ground state for a certain detuning �. Note that in a dressed
state picture (eigenstates of the Hamiltonian) all the crossings would
become avoided ones. (b) Dependence of the two-photon excitation
linewidth on the detuning. The solid line is obtained from Eq. (3), red
crosses are obtained from the numerical simulations. The inset shows
the detuning-dependent transformation of energetic resonances into
spatial resonances via the interaction potential V (r) = C6/r6.

configuration with distances rres,1 and rres,2 between the
excitations, created out of a homogeneous cloud of atoms.
An example for this will be discussed in Sec. IV.

Next, we analyze the structure of the spatial correlations
at high detunings in more detail. Figure 1(b) shows that the
pair correlation resonances become narrower with increasing
detuning. The origin of this effect is illustrated in the inset
of Fig. 2(b). The resonances are of Lorentzian shape in
energy space as a function of the detuning. The interaction
potential V (r) translates this dependence on the detuning
into a distance dependence. For the same energy-resonance
width, the position-space resonances become narrower as the
distance decreases at which the laser moves into resonance.
Hence, an increase of the detuning leads to a reduction of
the resonant width. For the particular case of a two-photon
resonance, the energetic resonance width depends on the
detuning itself. To quantify this, we adiabatically eliminate
the singly excited states in the two-atom problem. This is
valid if � is much larger than both � and the two-photon
detuning V − 2�. The resulting effective Rabi frequency is
�2/�, which means that the full width of the resonance with
respect to the two-photon detuning (power broadening) is
2�2/�. Linearizing the potential around rres,2 we obtain the
position-space width of the two-photon resonance

� = 2�2

�

(
dV

dr

)−1

r=rres,2

= 1

6

�2

�2

(
C6

2�

)1/6

. (3)

As shown in Fig. 2(b), the numerical simulation data fully
agrees with Eq. (3) up to an overall prefactor of about 2 due
to additional atoms in the trap which broaden the resonance
compared to the idealized two-atom case. Note that since the
potential is not strictly linear across the width of the resonance,
the spatial shape of the resonance peaks is asymmetric.

In summary, we find that in the limit of large �, the
position-space two-photon resonance width decreases as

�−13/6. Therefore, in our model, resonant excitations are only
possible at definite positions with lattice spacings determined
by the shape of the interaction potential. In the limit of large
detuning all features of the pair correlation function can be
understood in terms of two-atom properties.

B. Excitation density and excitation statistics

1. Number of Rydberg excitations

After having established the formation of stronger spatial
ordering with increasing detuning, we now address the ques-
tion of how this ordering manifests itself in various observables
related to the spatial distribution of Rydberg excitations. We
start with the number of Rydberg excitations Nryd. Figure 3(a)
shows that Nryd increases with detuning starting from the
resonant case, assumes a maximum at some positive detuning,
and then decreases towards larger values of �. The initial
increase can be attributed to the presence of the off-resonant
excitation channels at positive detuning, which also lead
to a better packing of the Rydberg excitations. But with
increasing detuning, the spatial excitation resonances become
more narrow, as shown in Fig. 2(b). Therefore, the number
of atom pairs with distance compatible with the resonant
distance reduces. Consequently, starting from a certain critical
detuning, the total number of excited atoms decreases with
increasing �. For higher densities, this effect is expected to
set in at higher detunings, since at a given resonance width, the
number of pairs having a distance within the resonant range
increases with density. This is supported by our numerical
simulation data, as the maximum of the number of Rydberg
excitations Nryd is shifted to higher detunings for higher
densities, see Fig. 3(a).

2. Rydberg excitation statistics

Next we investigate the distribution of the number of
excitations, which is characterized by the Mandel Q parameter

Q =
〈
N̂2

ryd

〉 − 〈N̂ryd〉2

〈N̂ryd〉
− 1. (4)

For a Poissonian distribution of excitation numbers, like in
a coherent state, the Q parameter is zero, while for sub-
Poissonian statistics it is negative. In previous proposals on
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FIG. 3. (Color online) (a) Total number of excited atoms and
(b) Mandel Q parameter as a function of the detuning. Q∗ is the
corresponding parameter evaluated without the ground state fraction.
Solid lines show N = 30; dashed lines show N = 45. C6 and L are
as in Fig. 1.
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GSC, for a given detuning, a definite number of excitations
was predicted in the system. Then, ideally Q reaches the value
−1 for a Fock state.

In contrast, Fig. 3(b) shows that in our setup the Q

parameter assumes a minimum at a detuning close to that of
the maximum in Nryd, but then increases again towards larger
�. The interpretation of this result is related to the behavior of
Nryd. Initially, the off-resonant channels for ordered excitation
structures lead to a decrease of Q.

However, towards larger detunings, i.e., smaller resonance
widths, there is an increasing probability that there are few or
even no atom pairs at the resonant distance in the ensemble.
Furthermore, the spatial width of the resonant pair excitation
(aggregate nucleation) decreases faster with the detuning than
the width for subsequent resonant excitation of further atoms
(aggregate growth). Therefore, once a resonant pair is excited,
there is a high probability that further atoms connected to
this initial seed are excited subsequently. This then leads to a
nonzero probability to detect no excitation at all and at the same
time to the emergence of aggregates of size two and higher,
while the population of singly excited states is very low. A
signature for this effect is that at large detunings the system
evolves into a bimodal excitation distribution, with one fraction
in the ground state, and the second fraction distributed around
a parameter-dependent excitation number. This observation
is supported by corresponding results shown in Fig. 3(b) for
Q∗, which is the ordinary Q parameter evaluated without the
ground state fraction. It can be seen that Q∗ remains low even
for higher detunings �.

We thus conclude that in the present case of off-resonantly
excited Rydberg gases, super-Poissonian rather than sub-
Poissonian excitation number statistics are a sign of ordered
structures and the buildup of strong correlations, in contrast to
the properties of the GSC.

3. Position-resolved Rydberg excitation density

The sharply peaked g(2) function in Fig. 1 indicated that the
distances between excitations predominantly are multiples of
the resonant excitation distances. But interestingly, this does
not translate into a peaked structure in the spatially resolved
excitation density. Figure 4(a) shows that at low detuning
(� ≈ �), as is well-known [31], an enhancement of the
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FIG. 4. (Color online) (a) Rydberg excitation density in excita-
tions per micrometer vs. position in the 1D trap and detuning. Dashed
line: Resonance line corresponding to 2� = C6/r6 as explained in the
text. (b) Excitation density for �/� = 7 split into excitation-number
subspaces.

population occurs close to the trap edges. In a simple blockade
picture this is due to the fact that for an atom close to the trap
edge, the probability to be blockaded by a nearby excitation
is smaller since less atoms are present in its vicinity. At
high detuning, the excitation density has a rather complicated
steplike dependence on the position and the trap edges become
depleted. This can be explained with a geometric argument: If
we consider, e.g., the doubly excited states, we notice that these
are only populated if the distance between the excited atoms is
the resonant one. If we now ask how such a pair of excitations
with fixed distance can be placed in the 1D ensemble volume,
and assume that each of these possibilities is realized with
equal probability, it becomes clear that atoms located within
one resonant radius from the ends of the trap are excited only
half as often as atoms at the center. This explains the outermost
edges in the excitation density. The dashed line in Fig. 4(a)
indicates the position rres,2 away from one edge of the ensemble
coinciding with the position of the step in excitation density,
clearly supporting this interpretation. The other edges can
be explained analogously, taking into account higher excited
states. This is also illustrated in Fig. 4(b) in which the excitation
density is split up into contributions of states with different
excitation numbers. Again, e.g., the plateau structure of the
doubly excited states confirms the above reasoning. Note that
in higher dimensions the condition of resonant excitation is
fulfilled for various positions of the third excitation and thus it
is less localized. These results indicate a second fundamental
difference of the regular structures found in our setup from
previous proposals. The GSC are located at fixed positions
relative to the trap borders. In our case, however, the resonant
excitation structures are not fixed relative to the ensemble,
but can float over a certain position range in the atom gas
from realization to realization. This leads to the characteristic
differences in the excitation density shown in Fig. 4.

C. Dynamical buildup of correlations

To reveal the emergence of spatial order in our setup, a
measurement as illustrated in Fig. 5 could be performed.
In each run, a certain excitation pattern is obtained. To
compensate for the floating, the positions of the leftmost
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FIG. 5. (Color online) Illustration of the aggregate formation:
Positions of the excitations are determined from the exact quantum
state by a Monte Carlo procedure mimicking a measurement. The
distances of the excitations to the leftmost excitation are collected in
a histogram. Note that the scale of the ordinate in (c) and (d) differs
from (a) and (b). The height of the two-photon resonance is 12 in (c)
and 19 in (d). Parameters are as in Fig. 1, �/� = 6. In (d) the steady
state has been reached. Excitation times are given in microseconds.
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excited atoms in the different runs are matched by a shift
of the position axis. Then, the shifted data of the different
runs are averaged. A histogram of 2000 runs analyzed in
this way is shown in Fig. 5 and clearly shows the strongly
peaked structure at long times. At short excitation times the
correlation peaks build up successively. Remarkably, after
500 ns the qualitative features of the steady-state situation
are already present. Thereafter, only the absolute height of the
peaks increases. This successive buildup of correlation peaks
can be attributed to a finite propagation speed of entanglement,
that was studied in lattice geometries recently [34].

It can be seen from Fig. 5 that the correlations decrease
with increasing distance, unlike in an ideal crystal. But the
correlations extend over a multiple of the interaction length
scale. Consistent with our interpretations, we found that the
characteristic distances between excitations are independent
of the ensemble volume.

IV. QUANTUM GATE WITH ASYMMETRIC STRUCTURES

We now turn to a specific application exploiting the
spatially asymmetric excitation structure, and show that the
generated spatial structures are optimal in the sense that they
maximize the success probability of our proposed application.
For this we consider an implementation of a three-particle
quantum gate [1,35–37]. Based on the approach used in
Ref. [6], the excitation structure generated in the first step can
be isolated by removing ground state atoms with a resonant
laser pulse, and subsequently mapped onto ground states
by resonantly driving a transition to a rapidly decaying p

state. That way, a spatial arrangement of ground state atoms
is prepared that corresponds to one specific realization of
the original excitation structure. In the case that three atoms
survive this procedure, their mutual distances are rres,2, rres,1,
and rres,2 + rres,1, and we denote the three atoms as C, A, and
B as indicated in Fig. 4(a), respectively.

We exploit this asymmetric arrangement of atoms to imple-
ment a controlled SWAP (CSWAP) or Fredkin gate. Depending
on the state of the control atom C, atoms A and B shall
interchange their states or not. The qubits are stored in two
hyperfine components of the ground state |0〉 and |1〉 that can
both be coupled to the Rydberg state |e〉. The gate protocol
consisting of five laser pulses is illustrated in Fig. 6(a). As
an example, two possible evolution sequences for initial states
|CAB〉 = |010〉 or |110〉 out of the full truth table are shown
in the bottom part of Fig. 6(a).

In step 1, a resonant π pulse on atoms C and B evolves them
to |e〉 if they are initially in |1〉, but leaves them untouched if
they are in |0〉. Step 2 is a resonant π pulse on atom A. Again, it
induces excitations of A from |1〉, but not from |0〉. But due to
the excitation blockade, in addition the excitation only occurs
if neither C nor B are excited. Therefore, atom A is excited in
this step for initial state |010〉, but not for initial state |110〉,
see Fig. 6(a). The crucial step is the detuned

√
2π pulse (step

3) in the middle of the sequence applied to all three atoms. The
corresponding effective Hamiltonian is shown schematically in
Fig. 6(b). Because of the detuning, it decomposes into several
approximately independent subspaces. Due to this separation,
its main effect is an interchange of states |0e0〉 and |00e〉.
Besides this desired exchange, |ee0〉 would also be resonantly

FIG. 6. (Color online) (a) Illustration of the gate protocol and
level scheme of a single atom. The truth table is given for two
exemplary initial states |CAB〉 = |010〉 and |110〉. Depending on
the control qubit C, qubits A and B interchange their states, or not.
(b) Hamiltonian of the detuned pulse (blue in gate protocol). The
thickness of the bars stands for the value E of the diagonal element
of the corresponding state (with m Rydberg excitations). Double
arrows indicate laser couplings. In the blue subspace, the state |0e0〉
evolves into |00e〉 under the

√
2π pulse.

coupled to |eee〉 causing unwanted dynamics. But due to the
blockade in the second step, |ee0〉 and |eee〉 are never accessed,
such that this channel can be neglected. Steps 4 and 5 repeat
the first two steps in reverse order, and effectively evolve the
atoms back into a superposition of ground states |0〉 and |1〉.

We have implemented this five-step sequence on the
full three-atom state space and numerically simulated the
dynamics. To quantify the quality of the gate for arbitrary
input states, we use the gate fidelity

Fgate = 1

8

∑
i

∣∣〈	(i)
∣∣	(i)

id

〉∣∣2
, (5)

where 	
(i)
id and 	(i) are the ideal target and the numerically

obtained output state, respectively. We also calculate the
confidence Fbell with which a maximally entangled state
|	〉bell = (|001〉 − |110〉)/√2 can be prepared from the un-
entangled initial state (|010〉 + |110〉)/√2. Figure 7(a) shows
Fgate as a function of �/� and the deviation δr of rAB from
rres,1. The fidelity increases with �/� since the decomposition
of the Hamiltonian into independent subspaces improves with
�. We also find that Fgate is very sensitive to variations in rAB ,
and reaches the optimum value only for δr = 0. In Fig. 7(b)
results for both Fgate and Fbell with optimized rAB and
integrated over the distribution of distances rAB that results
from the preparation using the resonant excitation scheme
are shown. We notice that the entanglement fidelity is even
more sensitive to variations in rAB than the gate fidelity. The
reason is that the Bell state preparation strongly depends on
the relative phases that the different product states acquire
during the gate operation. These phases are more difficult
to control, the higher �/� becomes. Thus they counteract
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detuning � and imperfections δr of the spatial arrangement of the
three atoms. (b) Fgate and Fbell for the optimal rAB and averaged over
a Lorentzian distribution of distances rAB . The fidelity is relatively
insensitive to variations in rCA.

the decreasing coupling between the subspaces of the
Hamiltonian and decrease the fidelity.

It is crucial to realize that the required separation of
the Hamiltonian into different subspaces only arises due to
the asymmetric distances rCA/rAB �= 1. Furthermore, already
small deviations in the optimum distance δr lead to a
significant degradation of the gate fidelity. In our setup this
optimum distance is automatically achieved for each given
laser detuning, because the resonantly excited correlated
structures are created with atomic distances such that the laser
detuning condition required for the gate operation is satisfied.
It is in this sense that the self-assembly of the excitation
structures is optimal.

An obvious drawback of the proposed scheme is that after
generating the resonantly excited triples out of a homogeneous
sample, one does not know where exactly the atoms are
localized due to the floating nature of the excitation structures.
This will spoil the required single atom addressability. A
solution could be to use a dense sample in a small trap
that accommodates at most three excitations, such that the
range for the floating is smaller than the distances between the
excitations. However, this still leaves two possible orientations
for the created resonant structure. Alternatively, one could use
a lattice geometry for the whole protocol. This would have the
advantage that after preparing the asymmetric structure, one
could determine the positions of the individual atoms, e.g.,
by fluorescence imaging. The disadvantage would be that the
irrational distance ratio of 21/6 is difficult to realize. If single
site addressability is achieved, the initial state preparation
can be realized by coupling the two hyperfine states by a
microwave field. For readout, one could employ state selective
fluorescence imaging, as described in Ref. [6].

The preparation of the atom structure and the gate protocol
itself could be further affected by atomic motion, e.g.,
induced by mechanical repulsion between the constituents of
a resonantly excited pair. It has been show recently that this
can deteriorate the resonant pair excitation mechanism [38].
In our case it would probably lead to a further broadening of
the position space resonances and also to additional dephasing
effects [39] during the gate operation, since for the initial
state |001〉 and |010〉, the state |0ee〉 is temporarily populated,
which suffers from the repulsion between atoms A and B.
The consistent inclusion of motional degrees of freedom in a

many-body system of long range interacting atoms, however,
remains an unresolved challenge.

V. DISCUSSION AND SUMMARY

In summary, we have shown that regular Rydberg excitation
structures form at off-resonant laser driving. These structures
differ from previously studied ground state crystals, as their
characteristic distances are independent of the ensemble
length, as they are not localized relative to the gas, and as
the Mandel Q parameter, the Rydberg excitation density and
the total number of Rydberg excitations yield qualitatively
different results. We have shown how these structures build
up dynamically and found that the ratio of the two different
emerging characteristic lengths depends on the interaction
potential only.

As an application, we have shown that excitation struc-
tures generated by off-resonant laser driving can be used
to implement an efficient three-qubit quantum gate, because
the excitation scheme automatically generates an asymmetric
spatial arrangement out of a homogeneous atom cloud such
that an optimum gate operation is achieved for the given laser
parameters. This asymmetry that the gate protocol relies on,
is a feature that is inherent to resonantly generated structures
and cannot be found in ground state crystals. Extensions to
other gates like CNOT or Toffoli are straightforward. We also
expect that the general concept of self-assembly of optimum
asymmetric excitation structures will find other applications.

Experimentally, laser excited Rydberg atoms in a quasi-
one-dimensional dipole trap could be used to verify our
theoretical predictions. Depending on the capabilities of the
experimental setup, different predictions can be probed. As
the simplest observable, the total number of excited atoms
could be measured as a function of the detuning and the
density. This way, the shift of the maximum of the Rydberg
excitation to higher detunings with increasing density and
the increasingly super-Poissonian excitation statistics at very
high detuning could be verified as a first manifestation of
the resonant excitation channels. A position-resolved mea-
surement of the excitations would allow us to verify the
predicted resonance peaks in g(2), and the formation of the
ordered structure as described in Sec. III C. By determining
the position of the resonances as a function of the detuning,
the precise structure of the interaction potential could also be
probed. Furthermore, the spatial dependence of the various
excitation-number subspaces arising from the floating nature
of our aggregates could be analyzed. Realizing an excitation
volume with sharp boundaries, for example by using flat
top beams, one could investigate the enhanced excitation
density close to the trap border in the case of resonant
excitation which is suppressed in the far off-resonant case
(see Fig. 4). The resonant excitation aggregates are formed
dynamically throughout the time evolution and do not require
a thermalization of the system. This invites a time-resolved
study of the dynamic formation of spatial correlations.

In approximately 1D systems or higher-dimensional sys-
tems, the higher-order resonance conditions do not uniquely
determine the positions of all involved particles. This leads
to a broadening of the corresponding resonances in g(2).
Also decoherence due to spontaneous emission, finite laser

043410-6



DYNAMIC FORMATION OF RYDBERG AGGREGATES AT . . . PHYSICAL REVIEW A 88, 043410 (2013)

linewidth, or effects of atomic motion will lead to a broadening
of the resonance peaks in g(2). All these effects lead to a sup-
pression of the resonant two-photon processes compared to the
off-resonant single-photon excitation, which sets limits to the
observation of higher-order resonance peaks in experiments.

Finally, we note that very recently, super-Poissonian exci-
tation statistics have been observed in experiments operating
at off-resonant driving in the strongly dissipative regime
[40,41]. We expect that the mechanism of aggregate formation
discussed here leading to a bimodal distribution of excitation
numbers still applies in the presence of substantial decoher-
ence. The main difference would be that, rather than resonantly

excited pairs, off-resonantly excited single atoms function as
initial grains for the aggregate formation [40].
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