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Shaking-induced dynamics of cold atoms in magnetic traps
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We describe an experiment in which cold rubidium atoms, confined in an elongated magnetic trap, are excited
by transverse oscillation of the trap center. The temperature after excitation exhibits resonance as a function of
the driving frequency. We measure these resonances at several different trap frequencies. In order to interpret the
experiments, we develop a simple model that incorporates both collisions between atoms and the anharmonicity
of the real three-dimensional trapping potential. As well as providing a precise connection between the transverse
harmonic oscillation frequency and the temperature resonance frequency, this model gives insight into the heating
and loss mechanisms and into the dynamics of driven clouds of cold trapped atoms.
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I. INTRODUCTION

It is common to determine the oscillation frequencies of
atoms in a magnetic trap by exciting their motion. A sudden
displacement of the trap excites a dipole (center-of-mass)
oscillation of the cloud at the trap frequency, while a sudden
compression or decompression induces quadrupole (width)
oscillation of the cloud. In many experiments, the trapped
cloud is long and thin, with transverse frequencies of 1 kHz
or above. The oscillation amplitude is then typically below
the resolution of the imaging system and therefore difficult to
observe directly. In that case, the oscillation may be driven,
and the excitation of the cloud may be detected through the
increase in its length, which results from heating. This exhibits
a resonant behavior, with a maximum temperature at a specific
driving frequency, related to the natural transverse oscillation
frequency.

This paper presents temperature resonances of magnetically
trapped atoms, induced by dipole oscillation, with six different
trap frequencies. These traps are formed on an atom chip
using the field of a permanently magnetized videotape. A
full characterization of the videotape traps is carried out
with particular emphasis on the effects of anharmonicity. Our
experimental results are compared with a numerical model that
provides valuable insight into the dynamics of the cold atoms
moving in the real confining potential of the trap under the
important influences of collisions and atom loss.

Several references already consider the dipolar excitation
of trapped particles by shaking the trap center [1–5]. The
first three are theory papers [1–3] that describe heating due
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to laser noise in harmonic optical traps far from resonance.
Reference [2] calculates the evolving energy distribution,
accounting for atom loss, in a truncated harmonic trap. Refer-
ence [4] describes measurements of the resonant frequencies
and laser cooling rates for ions in a shaken Penning trap. In
Ref. [5] Kumakura et al. investigate the excitation of neutral
atoms in a shaken cloverleaf magnetic trap. They measure
resonances in atom loss and temperature and discuss how
different ratios of atomic temperature to effective trap depth
result in either heating or cooling after shaking. They use a
classical one-dimensional (1D) equation of motion, without
collisions, to illustrate some features of their experiment.

There have also been discussions of parametric excitation,
i.e., modulation of the trap frequency, in various contexts.
These include heating and cooling of neutral atoms in optical
dipole traps [1–3,6–8], 1D optical lattices [3,7,9], or magnetic
traps [10] and measurement of oscillation frequencies for elec-
trons in a Penning trap [11,12], ions in a quadrupole trap [13],
or neutral atoms in a magneto-optical trap (MOT) [14,15].
We do not study parametric resonance here because there
is no straightforward way to modulate the frequency of our
videotape trap without also shaking its position. The same is
true of any permanent-magnet atom trap.

The experiments described here determine both the position
and the shape of the dipolar temperature resonances. We
also investigate these resonances theoretically with the aid
of a 3D numerical model that accounts simultaneously for
anharmonicity of the trap, atom loss due to finite trap depth,
interatomic collisions, and evolution of the collision rate
during the excitation. All these aspects of our model go beyond
what has been done before. Our model yields good quantitative
agreement between experiment and theory, even though we
use a rather simplified collision model. We anticipate that
our simplifying assumption could be exported to a number
of ensemble dynamic problems in order to achieve faster
simulations.

II. THE EXPERIMENT

Our experiment uses the field gradient of a magnetized
videotape to trap the atoms. The tape, lying in the xz plane,
has magnetization M1 cos(kx)x̂, where k = (2π/110) μm−1.
Above the surface, this magnetization produces a transverse
(i.e., in the xy plane) magnetic field of {Bx,By} =
B1e

−ky{− cos(kx), sin(ky)} [16], with B1 � 100 G. The
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FIG. 1. (Color online) Total field strength of magnetic trap versus position. The transverse bias field is Bb = 5.9 G along x̂. (Top row)
Overview along each Cartesian direction. (Bottom row) Zoom into the center shows the extrema of the modulation induced by the shaking
field b = 105 mG.

addition of a transverse bias field, Bb{cos(θ ), sin(θ )}, produces
an array of zeros in the total transverse field located at a height
y = ln(B1/Bb)/k. On Taylor expanding the field around any
of these zeros one finds a quadrupole field in the xy plane
whose orientation depends on the angle θ of the bias field.
The magnitude of the field grows linearly with the cylindrical
radius r according to |B| = kBbr , providing a cylindrically
symmetrical, linear confining potential μBgF mF |B| for
weak-field-seeking atoms with magnetic quantum number
mF and g factor gF (μB is the Bohr magneton). With the
addition of a further bias field Bzẑ, the trapping potential for
transverse displacements becomes approximately harmonic in
the region close to the axis, where kBbr � Bz. In that region,
atoms oscillate in the trap with a transverse frequency of

fr ≈ kBb

2π

√
μBgF mF

mBz

, (1)

where m is the mass of the atom. We use 87Rb atoms in the
(F = 2,mF = 2) ground state, for which gF mF = 1. The bias
field Bb is tuneable over the range 6–36 G, which varies the
distance from the trap to the videotape between 50 and 18 μm.
Over this range of positions the axial bias Bz drops from 2.58 to
2.51 G. These parameters give transverse harmonic oscillation
frequencies in the range 3–20 kHz. The axial bias field has a
minimum value near the center of the videotape and increases
roughly quadratically with z to form a weak axial trap with a
frequency of 15 Hz. In summary, this combination of videotape
fields and bias fields produces an array of cigar-shaped 3D
traps with strong transverse confinement and weaker trapping
along ẑ. For more details of videotape traps, see [16,17].

The top graphs in Fig. 1 show how the total magnetic field
strength |B| varies along the three Cartesian axes through the
center of the trap. These are calculated using a full numerical
model of the apparatus, with Bb = 5.9 G, directed along x̂.
The trap along x repeats every 110 μm because of the periodic
magnetization of the videotape, but only one of these is shown
as only one trap is used in the experiments. Along y, we see an

asymmetric trap, with a strong repulsive wall as the videotape
is approached and an asymptote far from the tape that is equal
to the total bias field strength. Along z, there is the weak
trapping due to the inhomogeneous axial bias field.

We load one such trap using an experimental sequence
similar to that described in [17]. The temperature of the atom
cloud depends on the bias field and ranges from 13 μK at Bb =
5.9 G up to 130 μK at Bb = 35.6 G. We then add a modulation
field b cos(2πf t) along x̂ + ŷ to displace the trap by a small
distance − b

kBb
cos(ωt) along x̂ + ŷ. We choose b = 105 mG,

which gives a shaking amplitude of 50–300 nm over the range
of transverse bias fields used. Zooming into the center of the
trap, the three bottom graphs in Fig. 1 show the extrema of
this modulation. The first two show the (equal) movements
along x and y resulting from our particular arrangement of
fields. The third shows the absence of movement along z and
also illustrates the modulation of the minimum field, due to
the variation of Bz with transverse displacement of the trap.
Since Bz affects the transverse trap frequency, this could cause
parametric heating, but the effect is considered in [18] and
found to be negligible.

With Bb initially set at 5.9 G, the atoms are shaken for
5 s and held for 1 s, after which the temperature of the trapped
cloud is determined by measuring its density distribution along
the z direction. This is done using a CCD camera to record
the absorption of resonant laser light [17], taking into account
the inhomogeneous Zeeman shift of the trapped atoms. The
experiment is repeated for a range of shaking frequencies to
map out a resonance curve, shown in the leftmost peak of
Fig. 2(a). The next two curves are obtained in the same way
with Bb = 8.9 G and Bb = 14.8 G. At still higher transverse
bias fields (Bb = 21.9, 29.6, and 35.6 G), the atoms are too
close to the videotape to yield clean absorption images. In
these three cases the trap is moved away from the surface by
lowering the bias to 3 G over 3 s before taking the image. This
weakens the trap, thereby cooling the cloud, and it is the lower
temperature in this final trap that we plot in Fig. 2(a).
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FIG. 2. (Color online) Temperature of the cloud after shaking for
5 s, plotted as a function of shaking frequency f . (a) Experimental
results. The points are measurements taken at six transverse bias
fields, Bb. Lines are Lorentzian fits to the data. (b) Simulation. Points
are calculated and lines are Lorentzian fits. From left to right, the
resonant peaks appear in order of increasing bias field Bb, as shown
on the legend.

These temperature resonances show that the atoms absorb
energy most efficiently near a particular frequency. In the
case of a 1D harmonic trap, the physics would be that of a
driven, weakly damped harmonic oscillator, whose Lorentzian
resonance would be centered on the oscillator frequency with
a width given by the collision rate. The actual widths are much
greater than the collision rate, but nevertheless, motivated by
this thought, we fit a Lorentzian to each resonance curve and
plot the center frequencies (the lighter yellow squares) as a
function of Bb in Fig. 3. For comparison, the line in Fig. 3
shows the frequency of small transverse oscillations, given
by Eq. (1), with Bz evaluated at the center of the trap for
each value of transverse bias. The data points lie below this
line because (i) the most energetic atoms move out of the
region of small x,y, where the harmonic approximation of
Eq. (1) is valid, and (ii) the atoms are also displaced from the
center along z, where the increased value of Bz reduces the
radial frequency. These effects also produce inhomogeneous
broadening of the temperature resonances, making them wider
for the hotter clouds at higher bias fields, as seen in Fig. 2(a).

Numerically integrating the equations of motion in the full
trap potential, we have calculated the period of oscillation
along the x direction through the center of the trap. The
inverse of this is plotted as a function of amplitude Ax by
the solid lines in Fig. 4, the top (bottom) panel being for the
case of Bb = 5.9 (35.6) G. At small amplitude, the frequency

FIG. 3. (Color online) Frequency of temperature resonance ver-
sus bias magnetic field. Solid line, calculated harmonic frequency of
transverse oscillations at trap center; lighter yellow squares, measured
center frequencies of the temperature resonances in Fig. 2(a);
darker blue circles, center frequencies of the simulated temperature
resonances plotted in Fig. 2(b).

coincides with the harmonic approximation indicated by the
dotted line. At large amplitude, the potential approaches that
of a linear trap, and the frequency tends correspondingly to
1
4

√
μBkBb/(2mAx), indicated by the dashed line. The solid

circles (squares) mark the rms radius of the cloud in this
direction before (after) resonant heating. These show that the
atoms explore the anharmonic region of the transverse trap
even before the cloud is heated, and move further into this
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FIG. 4. (Color online) Frequency of oscillations along x̂ through
the center of the trap as a function of amplitude. (Top) Bb =
5.9 G. (Bottom) Bb = 35.6 G. Solid red line, frequency calculated
from numerical solution to full equation of motion; dotted green
line, harmonic approximation; dashed black line, linear potential
approximation; circles, rms cloud radius at initial temperature;
squares, rms cloud radius after heating at resonance.
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FIG. 5. (Color online) Frequency of small (harmonic) transverse
oscillations as a function of displacement z from the trap center.
Circles, rms cloud radius (half-length) at initial temperature; squares,
rms cloud radius (half-length) after heating at resonance.

region after heating. These frequency shifts are larger when
the bias field is larger. Figure 5 shows how axial displacement
from the center of the trap lowers the harmonic frequency
for small transverse oscillations. The essence of this effect is
already captured in Eq. (1) through the dependence of fr on
Bz, but here we show the result of the full numerical model of
our experiment. Again, the circles (squares) represent the rms
size, this time along z before (after) heating. Both of these
mechanisms contribute appreciably to the inhomogeneous
broadening seen in Fig. 2(a) and the lowering of the trap
frequency seen in Fig. 3.

For a more quantitative understanding of the resonances it
is necessary to build a dynamical model that allows the atoms
to collide. In the next section we develop such a model and
use it to simulate the data presented in Fig. 2(a).

III. SIMULATION

A. The role of collisions

Our goal here is to find a numerical model that is simplified
as far as possible, while still reproducing the data of Fig. 2(a).
We use the known currents and videotape magnetization
to determine an accurate 3D potential, U (x,y,z,t), for the
shaken magnetic trap. We note that the inclusion of gravity
has no significant effect because these traps are so strong
vertically. The cloud of approximately 105 atoms is represented
by an ensemble of 500–5000 point particles, this being
sufficient to represent the average properties of the ensemble.
The three initial velocity components for each particle are
chosen at random from the Maxwell-Boltzmann distribution
corresponding to initial temperature Ti , which is the baseline
temperature in Fig. 2(a) for that particular trap. Similarly,
the initial positions are distributed with a probability density
proportional to exp[−U (x,y,z,0)/(kBTi)], where kB is the
Boltzmann constant. The classical equations of motion are then
integrated numerically to follow the movement of the particles.

The two curves in Fig. 6(a) show how the energy of the
cloud increases with time when the trap having Bb = 21.9 G
is shaken at 7.2 kHz. These parameters correspond to the
peak of the palest blue dashed resonance curve at 7 kHz in
Fig. 2(a). A simple model without collisions produces the
green (lower) curve in Fig. 6(a). Particles are placed in the trap
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FIG. 6. (Color online) Simulation of 105 atoms in a trap having
Bb = 21.9 G. The trap is shaken by a modulation field of 105 mG
amplitude and 7.2 kHz frequency over the time interval t = 0.1–5.1 s.
The initial temperature is 71 μK. These parameters correspond to
the resonant peak of the palest blue dashed curve in Fig. 2(a). This
simulation uses 500 particles. Green (lighter) curves, no collisions;
blue (darker) curves, momentum is redistributed through collisions.
(a) Increase of total energy with time. (b) Number of atoms remaining
within the volume of the trap, with the initial atom number being
Ni = 105.

at time t = 0, which remains static for the first 0.1 s. Then the
shaking is switched on and the energy rises rapidly, increasing
by 20% over the next 0.1 s. This is due to the excitation of
particles whose transverse oscillation frequency is close to
the drive frequency. Once they are sufficiently excited, the
anharmonicity moves these particles out of resonance. Because
the resonant group has been depleted, there is almost no
subsequent energy increase even though the shaking continues
until t = 5.1s. The shaking is then switched off, leaving the
cloud to evolve freely over the last second of the simulation.
This behavior disagrees with the experiment. In reality, the
temperature doubles [though not in Fig. 2(a) because there
the trap was relaxed before recording the temperature]. The
discrepancy is removed when we allow the simulation to
redistribute the momentum through collisions.

The following very simple model of momentum redis-
tribution is sufficient for our purpose. The thermally aver-
aged atom-atom scattering cross section is σ = 8πa2/(1 +
2πa2mkBT/h̄2), where a = 5.53 × 10−9 m is the s-wave
scattering length [19] and T is the temperature of the
cloud. The average relative velocity between particles is v =√

16kBT /(πm) [20]. Knowing the mean density of trapped
atoms, n, we obtain a mean collision rate per atom, nσv. At
appropriate time intervals (short compared with the inverse
collision rate), the numerical integration is paused and a
random number is generated for each particle to determine
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whether it has had a collision. Ideally, this should account
for the local variations of density [21], which we ignore here
in order to keep the model simple. If there is no collision,
the atom continues unperturbed. Otherwise, the momentum of
the particle is redirected by the collision, according to some
angular distribution. For the data presented here, we used that
of elastic scattering from an infinitely heavy sphere. However,
we find that the results are quite insensitive to the chosen
distribution and there is nothing special about this particular
one. Given our experimental conditions, the average time
between collisions is 30–100 ms at the start of the excitation,
and this becomes longer as the cloud heats up.

With the momentum redistribution thus incorporated, we
obtain the dark blue (higher) curve in Fig. 6(a). Now, the
ensemble is able to continue absorbing energy after the initial
absorption because the depleted velocity group is steadily
replenished through collisions. The refilling rate slows down
as the atoms become more energetic, and this is responsible
for the saturation of heating, seen in Fig. 6(a). In this case,
the energy doubles over the 5 s of shaking and our model
approximates well the measured heating of the atom cloud.

Figure 6(b) plots the number of atoms in the trap as a
function of time, with collisions (blue, lower) and without
(green, higher). In the collision-free case, few atoms leave the
trap because the heating is weak and because the phase space
is not efficiently sampled in the absence of collisions. By
contrast, when collisions are included, the cloud heats much
more strongly and the energetic atoms are more easily able to
find an exit route from the trap. There is competition between
the heating rate due to resonant excitation and the cooling rate
due to evaporation from the trap. In this example, the heating
is dominant because the trap is deep in comparison with the
mean energy absorbed by each atom.

Figure 7(a) shows calculated energy spectra in the absence
of collisions. The ordinate is the probability density for a
given energy, normalized to unity, while the abscissa shows
that energy, normalized to the trap depth U0 = 1.2 mK. The
solid red curve (t = 0.1 s), showing the initial distribution
just before the trap starts to shake, has a single peak just
below E = 0.2U0. After only 100 ms of shaking (dotted green
curve, t = 0.2 s) a deep notch appears in the distribution
close to the energy of the initial peak. This shows that atoms
close to that energy, having an oscillation period close to
the period of the drive, are the ones excited by the shaking.
Their excitation causes a second peak in the distribution at
approximately E/U0 = 0.3. There is no further significant
change in the distribution, even after 5 s of shaking, as shown
by the dashed blue curve. This behavior is to be compared
with Fig. 7(b), which shows energy distributions for the same
simulated experiment when collisions are included. The initial
distribution is the same, as is the notch appearing at 0.2 s, but
in this case continued shaking does produce additional heating
because the collisions refill the velocity group that absorbs
energy from the drive. This is clearly seen in the growing
probability on the high-energy end of the spectrum.

B. Simulated resonances

Figure 2(b) shows our simulated temperature resonances
at each of the six different values of the bias field. After
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FIG. 7. (Color online) Simulated energy spectra of 105 atoms,
initially at 71 μK in a trap having Bb = 21.9 G. They are shaken
over the time interval t = 0.1–5.1 s by a 7.2-kHz field of amplitude
b = 105 mG. These are the same parameters used in Fig. 6 and
at the resonant peak of the palest blue dashed curve in Fig. 2(a).
This simulation uses 5000 particles. (a) Without collisions. (b) With
collisions. Solid red curves, initial thermal distribution just before
shaking; dotted green curves, after 0.1 s of shaking; dashed blue
curves, after 5 s of shaking.

the shaking stops in the experiment, we allow the atoms to
thermalize for 1 s before measuring the temperature. In the
simulation, we simply take the final energy as a measure of the
temperature that would be reached in equilibrium. The central
frequencies of these simulated resonances agree very closely
with the experiment, as indicated by the darker blue circles in
Fig. 3.

The peak temperature rises are also remarkably well repro-
duced by the simulations, given the simplicity of the model.
In particular, these model collisions redistribute momentum,
but do not permit rethermalization of the energy distribution
because the energy of a given atom is conserved in the collision.
Despite that, the energy increase in the model reproduces
all the measured temperature rises to well within a factor of
two and that remains the case for a variety of model angular
distributions.

The widths of the simulated resonant peaks are a little too
large, by a factor of 1.5–2. In searching for an explanation
we simulated the yellow (8.9 G) resonance with the initial
temperature reduced from 13.3 μK to 7 μK. This only reduced
the width by 10%, so we do not think a temperature calibration
error can explain the discrepancy between the measured and
calculated widths. It could well be that our very simple
collision model causes the resonances to be too broad, although
we do not see a clear reason why that should be so.
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FIG. 8. (Color online) Simulated ratio of final atom number N

to initial number Ni as a function of the excitation frequency. The
color/grayscale code corresponds to that of Fig. 2, with corresponding
arrows marking the temperature resonance frequencies. For the lowest
three bias fields, the lowest barrier to escape is along y (360 μK,
520 μK, and 880 μK in order of increasing bias field), while for
the highest three, it is along z (∼1200 μK). For comparison, the
measured initial cloud temperatures before the excitation take values
of 13.4 μK, 13.3 μK, 16.7 μK, 71 μK, 98 μK, and 132 μK, in order
of increasing bias field.

Figure 8 shows the simulated resonances in atom loss for
the same six bias fields used in Fig. 2. We see that the dips in
atom number are on the low-frequency side of the temperature
resonances indicated by arrows. This is because the energetic
atoms most likely to be driven out of the trap are also those most
able to explore the anharmonic regions and hence to oscillate
at lower frequencies. The same behavior has been reported by
several groups for both parametric shaking [8–10,22,23] and

shaking of the trap center [5], in agreement with the results of
our simulations.

IV. SUMMARY AND CONCLUSIONS

We have measured the temperature rise in a cigar-shaped
cloud of cold atoms after shaking it sinusoidally in the
transverse direction. Unlike most previous measurements, we
have modulated the position of the trap, not its curvature.
We have recorded temperature resonances as a function of
frequency for several values of the bias field that controls the
curvature of the transverse trapping potential. Essential to the
interpretation of our measurements is the understanding that,
at the temperatures involved, atoms oscillate with a wide range
of transverse frequencies in the trap and hence that the central
frequencies of the observed resonances lie below the calculated
harmonic frequencies for small oscillations.

We have developed a simple numerical model that has
provided a clear quantitative understanding of the driven
dynamics. When compared with other models and simulations
in the literature, this provides one of the most detailed and
complete attempts to reproduce the observed resonances. No
other models include both the collisions between particles
and the anharmonicity of the trapping potential, yet both of
these are shown to be essential for a full understanding of the
behavior.
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