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Quantum and classical features of the photoionization spectrum of C60
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By considering photoionization of the C60 fullerene, we elucidate the contributions of various classical and
quantum physics phenomena appearing in this process. By comparing the results, based on the ab initio and
model approaches, we map the well-resolved features of the photoabsorption spectrum to single-particle and
collective excitations which have a different physical nature. It is demonstrated that the peculiarities arising in the
photoionization spectrum of C60 atop the dominating plasmon excitations have a quantum origin. In particular, we
demonstrate that a series of individual peaks can be assigned either to the optically allowed discrete transitions or
to the ionization of particular molecular orbitals of the system. The analysis performed gives detailed information
on the nature of numerous features in the photoabsorption spectrum of C60.
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I. INTRODUCTION

The dynamics of electron excitations and dynamical pro-
cesses of fullerenes and other carbon-based nanoscale systems
have been the topic of intensive experimental and theoretical
research for more than several decades (see, e.g., Refs. [1–3]
for review). Special attention has been paid to the study of
ionization processes of these systems by means of the photon,
electron, and ion impact [3–12].

Photoionization of fullerenes, as well as other nanoscale
systems, represents a complex phenomenon and involves
a number of features which can be studied by means of
various theoretical methods. Being by its nature a quantum
phenomenon, the photoionization process can be described
within the ab initio framework based on the time-dependent
density-functional theory (TDDFT) [13]. It deals with the
time-dependent Schrödinger equation and allows one to obtain
information on the excited-state properties of a complex many-
electron system. However, it is well established that photoion-
ization of nanoscale carbon systems, fullerenes in particular,
as well as various metallic clusters and nanoparticles, takes
place through plasmons—collective excitations of delocalized
valence electrons that are induced by an external electric
field. The plasmon excitations correspond to oscillations of
the electron density with respect to the positively charged
ions [14,15]. Such collective excitations, appearing in many-
electron systems, are well known in classical electrodynamics
and are described in classical physics terms [14–16].

When a fullerene is ionized either by a photon or by
a projectile particle, various types of collective excitations,
which are characterized by prominent resonantlike structures
in the ionization spectra, are formed in the system. The most
prominent structure, positioned in the excitation energy range
from 20 to 30 eV, is formed due to collective oscillations
of both σ and π delocalized electrons of a system, while a
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smaller narrow peak in the low-energy region of the spectrum
(below 10 eV) is attributed to the collective excitation of only
π electrons. The σ and π electrons occupy, respectively, σ

and π orbitals of a fullerene, which are formed due to the sp2

hybridization of carbon atomic orbitals. The resonance peaks
in the ionization spectra are described by some characteristic
widths, �, which have a quantum origin and appear due to the
decay of the collective excitation modes into the incoherent
sum of single-electron excitations. Although the exact calcu-
lation of the plasmon widths should be performed within the
quantum-mechanical framework, they can be estimated using a
relation similar to the Landau damping of plasmon oscillations
[3]. Such an estimate results in � ∼ AvF /R, where vF is the
velocity of the fullerene electrons on the Fermi surface, R

describes a characteristic width of the electron density distri-
bution in the fullerene, and A is a factor on the order of unity.

In most cases, the excitation spectra, calculated within
the ab initio framework, can be obtained in a broad range
of excitation energies range only for small molecules or
clusters consisting of a few atoms. For larger system, such
as, for instance, fullerenes, a vast majority of contemporary
software packages for ab initio-based calculations can describe
accurately only a limited number of low-lying excited states
located below or just above the ionization threshold. A detailed
structure of the spectrum at higher excitation energies, where
the plasmon excitations dominate the spectrum, could be
hardly revealed due to significant computational costs. An
alternative approach for the description of electron excitations
in many-electron systems is based on the jellium model
[17]. During recent years, this approach has been used to
calculate the photoionization spectra of fullerenes and atoms
endohedrally confined inside the fullerene cages (see, e.g.,
Refs. [3,18–20]).

An effective tool for evaluation of the contribution of
plasmon excitations to the ionization spectra is based on the
plasmon resonance approximation [21–23]. The advantage of
this approach is that it provides a clear physical explanation of
the resonantlike structures in the photoionization [15,24] and
inelastic scattering cross sections [12,21–23,25] on the basis
of excitation of plasmons by the photon or electron impact.
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In this paper, we elucidate the contributions of various
classical and quantum physics phenomena appearing in the
ionization process. By comparing the ab initio TDDFT results
with those based on the plasmon resonance approximation,
we map the well-resolved features of the photoabsorption
spectrum of the C60 fullerene to different types of single-
particle and collective electron excitations having different
physical natures. We demonstrate that the peculiarities arising
in the spectrum atop the dominating plasmon excitations
have a quantum origin. In particular, we demonstrate that
a series of individual peaks in the continuous part of the
excitation spectrum can be assigned to particular single-
electron transitions and are caused by ionization of inner
molecular orbitals of the fullerene. It is also demonstrated
that the results of the ab initio- and model-based calculations
are in close agreement with the experimental results on the
photoabsorption of C60.

The atomic system of units, me = |e| = h̄ = 1, is used
throughout the paper.

II. THEORY

A. Time-dependent density-functional theory

In the present study we utilize the TDDFT approach to
calculate precisely the photoabsorption spectrum of C60. Being
a generalization of density-functional theory (DFT) [26],
TDDFT allows one to introduce time-dependent Kohn-Sham
equations [13] and to study various single-particle properties
of a many-electron system as a function of time. Within the
TDDFT approach the response function of the system can
be calculated either in the time domain or in the frequency
domain. In the former case, one uses the real-time propagation
method [27,28] to study the evolution of the dipole moment
due to an initial impulsive distortion of the system. The main
limitation of this approach is that stable integration of the time-
dependent Kohn-Sham equations requires a very small time
step, ∼10−3 fs, which decreases with increasing the number of
grid points [29] and, therefore, is very demanding from a com-
putational viewpoint. Within the alternative method [29,30]
based on the frequency representation of the response function,
it is possible to calculate the full photoabsorption spectrum in
a broad energy range without repeating time-consuming op-
erations for different excitation frequencies. In this approach,
the response function is represented by a matrix element of
the resolvent of the Liouvillian operator (see Refs. [30,31] for
details). This approach has been used recently to study pho-
toionization of noble gas atoms encapsulated in C60 [32,33].

In the present study the ab initio TDDFT calculations are
performed in the linear regime within the dipole approxima-
tion. The linear response theory aims to study the variation of
a given physical observable due to the application of a weak
external perturbation to a many-particle system. Within this
framework, the external potential acting on the system can be
represented as a sum of a time-independent part, v0

ext(r), and a
time-dependent perturbation, v′

ext(r,t):

vext(r,t) = v0
ext(r) + v′

ext(r,t). (1)

Application of the external perturbation leads to variation
of the electron density of the system. Therefore, the time

evolution of the electron density can be represented as a
sum of two terms, ρ(r,t) = ρ0(r) + δρ(r,t), where ρ0(r) is
the unperturbed ground-state density and δρ(r,t) describes
variation of the electron density due to the perturbation
v′

ext(r,t).
In order to consider the response of a system to an external

perturbation in the frequency representation, one performs the
Fourier transformation of time-dependent quantities. In the
linear regime, the Fourier transform of δρ(r,t) reads

δρ(r,ω) =
∫

χ (r,r′,ω)v′
ext(r

′,ω)dr′, (2)

where v′
ext(r

′,ω) is the Fourier transform of the external per-
turbation v′

ext(r,t) and χ (r,r′,ω) is the generalized frequency-
dependent susceptibility of the system.

For the external perturbation v′
ext(r,ω) = −E(ω) · r due to

a uniform electric field, the Fourier transform of the induced
dipole moment reads as follows:

di(ω) =
∑

j

αij (ω)Ej (ω), (3)

where i and j denote the Cartesian components, αij (ω) is
the dynamical polarizability tensor which describes the linear
response of the dipole to the external electric field,

αij (ω) = −
∫

riχ (r,r′,ω)r ′
j drdr′, (4)

and ri and r ′
j are the components of the position operators

r and r′. The photoabsorption cross section is related to the
imaginary part of αij (ω) through

σ (ω) = 4πω

3c

∑
j

Imαjj (ω), (5)

where c is the speed of light, and the summation is performed
over the diagonal elements of the polarizability tensor.

Within the approach introduced in Refs. [29,30], the
electron density variation, δρ(r,ω), is expressed via the so-
called Liouvillian operator L,

(ω − L) δρ(r,ω) = [v′
ext(r,ω),ρ0], (6)

whose action onto δρ(r,ω) is defined as

L δρ(r,ω) = [H0,δρ(r,ω)] + [v′
H(r,ω),ρ0] + [v′

xc(r,ω),ρ0],

(7)

where H0 is the ground-state Kohn-Sham Hamiltonian cal-
culated within the DFT approach and v′

H(r,ω) and v′
xc(r,ω)

stand for the linear variations of the frequency-dependent
electrostatic and exchange-correlation potentials, respectively
[30]. The polarizability tensor αij (ω) is defined then by
the off-diagonal matrix element of the resolvent of the
Liouvillian L:

αij (ω) = −〈ri | (ω − L)−1 [rj ,ρ0]〉, (8)

which is calculated using the Lanczos recursion method (see
Refs. [30,31] for details).

As stressed above, the advantage of the utilized approach
is that it makes possible to calculate the full photoabsorption
spectrum of complex molecular systems in a broad range of
excitation energies. However, this approach does not allow one
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to get information on partial ionization cross sections which
describe ionization of particular molecular orbitals. The reason
for this drawback is that only the occupied states are required
for performing the calculations and there is no need to calculate
any empty states [29,30]. It makes the method, introduced
in the aforementioned references, substantially different from
Casida’s approach [34], which is implemented in many codes
for ab initio calculations. Within the latter one, it is possible to
calculate each individual excitation and to assign it to a specific
transition. In general, this operation is feasible only in a limited
range of excitation energies, which is not typically larger than
10 eV and depends also on the density of the excitation energies
[35]. Alternatively, the method introduced in Refs. [29–31]
allows one to compute the absorption spectrum in a broad
energy range but a systematic way to assign the transitions is
missing.

B. Plasmon resonance approximation

In order to evaluate the contribution of plasmon excitations
to the cross section, we utilize the following model approach.
The fullerene is represented as a spherically symmetric system
with a homogeneous charge distribution within the shell
of a finite width, 
R = R2 − R1, where R1 and R2 are
the inner and the outer radii of the molecule, respectively
[12,36–38]. The chosen value of the shell’s width, 
R =
1.5 Å, corresponds to the typical size of the carbon atom [37].

Due to interaction with the uniform external field, E(ω), the
variation of the electron density, δρ(r,ω), occurs on the inner
and outer surfaces of the fullerene shell. This variation leads
to the formation of the surface plasmon, which has two normal
modes, the symmetric and antisymmetric ones [24,36–38]. It
has been shown [15,16,24] that only the surface plasmon can
occur in the system interacting with a uniform external electric
field, as it happens in the photoionization process. When
a system interacts with a nonuniform electric field created,
for instance, in collision with charged particles, the volume
plasmon [39] can also occur due to a local compression of the
electron density in the shell interior [25].

Within the plasmon resonance approximation (PRA)
[21–23] it is assumed that the main contribution to the cross
section comes from the collective electron excitations. Single-
particle excitations are not accounted for in the approximation,
since the single-particle effects give a small contribution
as compared to the collective modes [22,39]. Within this
approach the dynamical polarizability α(ω) has a resonance
behavior in the region of frequencies where collective electron
modes in a fullerene can be excited. In the present study, we
account for the both π and (σ + π ) plasmons, which involve
only π or both σ + π delocalized electrons of the system,
respectively. Thus, the photoionization cross section, σpl(ω) ∝
Im α(ω), is defined as the sum of the two plasmons, σpl(ω) =
σπ (ω) + σσ+π (ω), and the contribution of each plasmon is
governed by the symmetric and antisymmetric modes:

σ i(ω) = 4πω2

c

(
Ni

s �i
s[

ω2 − (
ωi

s

)2]2+ω2
(
�i

s

)2

+ Ni
a �i

a[
ω2 − (

ωi
a

)2]2 + ω2
(
�i

a

)2

)
, (9)

where the superscript i denotes the π or (σ + π ) plasmon.
Here ω is the photon energy, ωi

s and ωi
a are, respectively, the

resonance frequencies of the symmetric and antisymmetric
modes of the two plasmons, �i

s and �i
a are the corresponding

widths of the plasmon excitations, and Ni
s and Ni

a are the
number of delocalized electrons which are involved in each
collective excitation. These values should obey the sum rule
Nσ+π

s + Nσ+π
a + Nπ

s + Nπ
a = N , where N stands for the

total number of delocalized electrons in the fullerene (four
valence 2s22p2 electrons from each carbon atom result in
N = 240 in case of C60). The frequencies of the collective
excitations are defined as [36–38]

ωσ+π
s/a = ω0 +

[
Nσ+π

s/a

2
(
R3

2 − R3
1

) (3 ∓
√

1 + 8ξ 3)

]1/2

,

(10)

ωπ
s/a =

[
Nπ

s/a

2
(
R3

2 − R3
1

) (3 ∓
√

1 + 8ξ 3)

]1/2

,

where the signs “−” and “+” correspond to the symmetric
and antisymmetric modes, respectively, and ξ = R1/R2 is the
ratio of the inner to the outer radii. The term ω0 defines the
free-electron picture threshold for the (σ + π ) plasmon [37].
Below ω0, some of the valence electrons are treated as bound
ones and, therefore, are not involved in the formation of
plasmon excitations. Following Ref. [37], we use the threshold
value ω0 = 14 eV in the calculations.

III. COMPUTATIONAL DETAILS

In order to calculate the photoabsorption spectrum of C60

within the ab initio framework we utilized a combination of
various computer packages. The GAUSSIAN09 package [40]
was used to optimize the geometry of the molecule. The
optimization procedure was performed by means of DFT
within the local density approximation (LDA) using the
split-valence triple-ζ 6-311+G(d) basis set with an additional
set of polarization and diffuse functions. To account for the
exchange and correlation corrections, the Slater exchange
functional [26] and the local Perdew functional [41] were
used. The photoabsorption spectrum of the optimized sys-
tem was obtained using the TDDFPT module [42] of the
QUANTUMESPRESSO package [43]. The optimized structure of
the C60 molecule was introduced into a supercell of 20 ×
20 × 20 Å. Then, the system of Kohn-Sham equations was
solved self-consistently for 240 valence electrons of fullerene
to calculate the ground-state eigenvalues using a plane-wave
approach [43]. It should be noted that a similar approach was
utilized in Refs. [32,33] to study photoionization of noble gas
atoms encapsulated in C60. In the present calculations, we
used an ultrasoft pseudopotential of the Rappe-Rabe-Kaxiras-
Joannopoulos type [44], which substitutes real atomic orbitals
in the core region with smooth nodeless pseudo-orbitals [31].
For the plane-wave calculations we used the kinetic energy
cutoff of 30 Ry for the wave functions and 180 Ry for the
electron densities. The results obtained were validated by
performing a series of calculations with different values of
the supercell size and the energy cutoff.

It should also be noted that a pseudopotential local-density
method, based on ab initio principles, was also used earlier to
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FIG. 1. (Color online) The photoabsorption cross section of C60

calculated within the TDDFT method (thin black line) and the
plasmon resonance approximation (thick green line). The curves,
obtained within the classical approach, describe the dominating
plasmon resonance, which is formed due to collective oscillations of
(σ + π ) delocalized electrons of the system, and a narrow low-energy
peak below 10 eV (shown in the inset) which is attributed to
the collective excitation of only π electrons. Contributions of the
symmetric and antisymmetric modes of the plasmons are shown by
the dashed (red) and dash-dotted (blue) lines, respectively.

calculate the electronic structure of solid C60 [45]. The analysis
performed showed that the occupied states of C60 and some
of the empty states can be described as either σ or π states,
which are formed due to the sp2 hybridization of carbon atomic
orbitals.

IV. RESULTS

A. Contribution of plasmon excitations

Figure 1 shows the photoabsorption spectrum of C60

calculated within the ab initio and classical approaches in
the photon energy region up to 100 eV. The thin solid (black)
line represents the results of TDDFT calculations within the
LDA approach, and the thick solid (green) line represents the
contribution from the plasmon excitations. The main resonant
structure presented in Fig. 1 is formed due to collective
oscillations of both σ and π electrons of the system, while
a prominent peak in the low-energy region of the spectrum
(shown in the inset) is attributed to the collective excitation
of only π electrons. The dashed (red) and dash-dotted (blue)
lines show, respectively, contributions from the symmetric and
antisymmetric modes of the plasmons to the cross section. The
resonance frequencies, ωs and ωa , for the two modes of the
(σ + π ) and π plasmons as well as the corresponding widths,
�s and �a , are summarized in Table I. The width �σ+π

s =
11.4 eV of the symmetric (σ + π )-plasmon mode corresponds
to the experimental values obtained from the photoionization
and energy loss experiments on neutral C60 [5,11]. For the
antisymmetric mode, we used the value �σ+π

a = 33.2 eV
which corresponds to the widths of the second plasmon
resonance obtained in the study of photoionization of Cq+

60
(q = 1 − 3) ions [8].

TABLE I. Peak positions and the widths of the two modes of the
(σ + π ) and π plasmons used in the present calculations. All values
are given in eV.

ωs �s ωa �a

(σ + π ) plasmon 20.3 11.4 33.5 33.2
π plasmon 5.8 1.2 7.9 3.5

The plasmon resonance approximation describes quite well
the main features of the spectrum, such as height, width,
and position of the plasmon resonance peaks. The spectrum
calculated within the TDDFT approach reveals a more detailed
structure which is formed atop the plasmon resonances and
represents a series of individual peaks. The oscillator strengths,
calculated by means of TDDFT and within the plasmon
resonance approximation in the photon energy range up to
100 eV, are equal to 224 and 195, respectively. Analysis of the
plasmon contribution to the cross section shows that about 9 π

electrons are involved in the low-energy collective excitation
below 10 eV. This value corresponds to the experimentally
evaluated sum rule of the oscillator strength up to the ionization
threshold of C60, Ip ≈ 7.6 eV, which gives a value of 7.8 [6].

In Fig. 2, the theoretical curves are compared to the results
of recent experimental measurements of photoabsorption of
C60 [9] (open squares). The oscillator strength, calculated by
means of TDDFT, is very close to the experimentally measured
value of 230.5 [9]. It should be noted that the detailed structure
of the spectrum, which is described within the TDDFT
approach, is not seen in the experimental curve due to a high
operational temperature of 500–700 ◦C [6]. In the experiments,
the linewidths of single-electron excitations are broadened in
the vicinity of the main plasmon resonance due to the coupling
of electron excitations with the vibrational modes of the ionic
background [46]. The analysis, performed in the present study,
shows that the plasmon resonance approximation gives an

FIG. 2. (Color online) The photoabsorption cross section of C60

calculated within the TDDFT method (thin black line) and the
plasmon resonance approximation (thick green line). The curve,
obtained within the classical approach, describes both the (σ + π )
and π plasmons. Theoretical curves are compared to the experimental
data of Kafle et al. [9].
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FIG. 3. (Color online) The photoabsorption cross section of
C60 calculated within the TDDFT approach (thin black line) and
the modified plasmon resonance approximation (thick red line),
which estimates in a simple way the single-particle contribution
[see Eq. (11)]. Dashed (black) and dash-dotted (red) lines represent
the integrated oscillator strengths calculated within the TDDFT-
based approach and the modified plasmon resonance approximation,
respectively.

adequate description of the experimental results. A better
agreement can be obtained if one incorporates the broadening
of the linewidths of single-electron excitations into the model
and uses the calculated values of the widths. This problem
requires a separate detailed analysis and will be a subject for
a further investigation.

The difference between the oscillator strengths, calculated
within the TDDFT approach, and the plasmon resonance
approximation is due to the contribution from single-particle
excitations, which are neglected in the model. This contribu-
tion can be estimated and added to the model-based results by

describing individual peaks in the TDDFT-based spectrum by
a number of Lorentzian functions. Then, the total cross section
reads as

σ (ω) = σpl(ω) + 4πω2

c

∑
j

fj �j(
ω2 − ω2

j

)2 + ω2�2
j

, (11)

where σpl(ω) is the contribution from the (σ + π ) and π

plasmons, defined by Eq. (9), the index j represents the
number of Lorentzian functions used, and fj stands for the
summarized oscillator strength of one or several individual
peaks in the TDDFT spectrum, which are modeled by a
single Lorentzian function. In order to estimate the single-
particle contribution to the cross section in the range from
10 to 25 eV, we introduced four Lorentzian profiles, as it is
shown in Fig. 3. The summarized curve, which comprises
the contribution from the plasmon excitations and a simple
estimate for the single-particle excitations, is shown by the
thick red line. Figure 3 represents also the comparison of the
integrated oscillator strengths, calculated within the TDDFT-
based approach (dashed black curve) and the modified plasmon
resonance approximation defined by Eq. (11) (dash-dotted red
curve). The analysis of the two curves demonstrates that such
a simple estimate for the single-particle contribution covers
the difference in the oscillator strengths calculated within the
TDDFT and the model approaches. The oscillator strengths,
calculated by means of TDDFT and within the modified
plasmon resonance approximation in the photon energy range
up to 100 eV, are equal to 224 and 223.5, respectively.

B. Quantum nature of individual peaks

Let us focus now on the origin of individual peaks which
are formed in the photoionization spectrum of C60 atop the
plasmon resonances. These peaks can be assigned to discrete
transitions between particular molecular orbitals (MOs). The

FIG. 4. (Color online) Left panel: The ground-state electronic structure of C60 obtained within the ab initio framework accounting for the
real Ih symmetry of the molecule. Each line corresponds to one molecular orbital which accommodates (or may accommodate) two electrons.
Black and red lines (in the range −6 to −25 eV) represent the MOs, which are occupied by 240 delocalized valence electrons of C60. Blue
lines (above −5 eV) represent virtual bound states. Right panel: Electronic structure of the corresponding spherically symmetric nl orbitals.
The horizontal lines indicate the occupation numbers for each orbital and correspond to the summarized number of electrons which occupy the
corresponding MOs.
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TABLE II. Molecular orbitals occupied by delocalized electrons
of C60 (left column) and the corresponding spherically symmetric
orbitals which are obtained by the expansion of real MOs in terms of
spherical harmonics in the angular momentum l (right column).

ag s (l = 0)
t1u p (l = 1)
hg d (l = 2)
gu + t2u f (l = 3)
hg + gg g (l = 4)
hu + t1u + t2u h (l = 5)
ag + t1g + gg + hg i (l = 6)
hu + t1u + t2u + gu k (l = 7)
hg + gg + t2g + hg l (l = 8)
gu + hu + gu + t1u + t2u m (l = 9)

C60 fullerene belongs to the icosahedral (Ih) symmetry group;
therefore its MOs can be classified according to the Ih

irreducible representations. The icosahedral symmetry allows
the maximum orbital degeneracy equal to 5. Thus, the MOs
can be singly (ag , au), triply (t1g , t1u), (t2g , t2u), fourfold
(gg , gu), and fivefold (hg , hu) degenerated. The subscripts
“g” and “u” denote, respectively, symmetric (“gerade”) and
antisymmetric (“ungerade”) MOs with respect to the center of
inversion of the molecule. Due to the quasispherical structure
of the molecule, the MOs can be expanded in terms of spherical
harmonics in the angular momentum l [47] (see Fig. 4). Thus,
the innermost ag , t1u, and hg MOs in the Ih symmetry represent,
respectively, the s, p, and d orbitals, which correspond to
l = 0, 1, and 2. The orbitals which correspond to higher
angular momenta are constructed as a combination of several
MOs. The correspondence between the MOs of C60 and the
spherically symmetric orbitals with a given value of angular
momentum l is given in Table II.

In the spherical representation of C60, the delocalized
electrons are considered as moving in a spherically symmetric
central field. Therefore, one can construct the ground-state
electronic configuration described by the unique set of quan-
tum numbers {n,l}, where n and l are the principal and orbital
quantum numbers, respectively [48]:

1s22p63d104f 145g186h227i268k309l3410m18

2s23p64d105f 146g187h10.

The superscripts indicate the occupation numbers for each
spherically symmetric orbital and correspond to the summa-
rized number of electrons which occupy the corresponding
MOs (see the left and right panels of Fig. 4). One may consider
the icosahedral symmetry of C60 as a perturbation of the
spherical one, so the correspondence between the real MOs
and the spherically symmetric nl orbitals can be explained in
terms of splitting of the latter ones due to reduction of the
symmetry.

Using the GAUSSIAN09 package [40], we calculated a
number of virtual bound states of C60 (t1u,t1g,t2u,hg,ag,hu,gu)
which can be assigned in the spherical representation to the
unoccupied or partially occupied 7h, 8i, and 10m orbitals
(see the blue dashed lines in Fig. 4). The optically allowed
discrete transitions should result in the change of the MO’s
symmetry (g ↔ u) or satisfy the l → l ± 1 selection rule

FIG. 5. (Color online) Upper panel: Excitation energies of the
optically allowed discrete transitions to the virtual bound states which
correspond in the spherical representation of C60 to the unoccupied or
partially occupied 7h, 8i, and 10m orbitals (see the text for details).
Lower panel: Ionization thresholds of the HOMO, hu (partially
occupied 7h orbital), as well as of the following innermost valence
orbitals: hg and gg (5g), gu and t2u (4f ), hg (3d), t1u (2p), and ag

(1s). In the LDA calculations, the ionization thresholds for the HOMO
(hu) and the innermost valence (ag) molecular orbitals are 6.65 and
24.8 eV, respectively.

within the spherical representation. We listed all possible
optically allowed discrete transitions and calculated the corre-
sponding transition energies. The results of this analysis are
summarized in the upper panel of Fig. 5. The peaks in the
TDDFT spectrum can be assigned to 5g,6g → 7h; 7i → 7h;
6h,7h → 8i; 8k → 8i, and 9l → 10m transitions (in order to
simplify the analysis we use here the spherical representation
of orbitals). The discrete transitions are shown in the upper
panel of Fig. 5 by thin solid and dash-dotted vertical lines. The
six lowest optically allowed π − π∗ excitations (hu → t1g ,
hg → t1u, hu → hg , gg → t2u, hg → t2u, and hu → gg) [47]
from 3 to 6 eV correspond to 7h → 8i and 6g → 7h transitions
(see solid red and dash-dotted green lines), which are involved
in the formation of the π plasmon. The 9l → 10m, 7i → 7h,
and 8k → 8i transitions (violet, aquamarine, and blue lines,
respectively) result in the formation of individual peaks in
the region from 9 to 14 eV, which are formed atop the
(σ + π )-plasmon excitation. Features in the energy range from
14 to 18 eV are assigned to the single-electron 6h → 8i

and 5g → 7h transitions from the lower-lying 5g and 6h

orbitals. Thus, accounting for the optically allowed discrete
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transitions it is possible to reveal a detailed structure of the
photoionization spectrum of C60 up to 18 eV. However, one can
extend the analysis and characterize a number of subsequent
peaks.

In the lower panel of Fig. 5, vertical lines represent
the ionization thresholds of several particular orbitals. The
highest-occupied molecular orbital (HOMO) (hu) of C60

corresponds in the spherical representation to the partially
filled 7h orbital. In the present calculations performed within
the LDA approach, the hu ionization threshold is 6.65 eV
(solid blue line) which is slightly lower than the experimentally
measured ionization potential of C60, approximately equal to
7.6 eV [5]. Since there are no discrete optical transitions with
the energy above 20 eV, a series of peaks, arising between
20 and 25 eV, can be assigned to the ionization of the
innermost fullerene MOs (the corresponding nl orbitals are
given in parentheses), namely, hg and gg (5g), gu and t2u

(4f ), hg (3d), t1u (2p), and ag (1s). The calculated ionization
thresholds of these orbitals are shown in the lower panel
of Fig. 5. Within the LDA approach, the threshold of the
innermost molecular orbital (ag) equals 24.8 eV (solid cyan
line).

The information, which can be obtained within the ab
initio framework, allows one to reveal clearly the origin of the
individual peaks in the photoionization spectrum of C60 for the
photon energies up to 25 eV. The nature of several subsequent
peaks, located at about and above 30 eV, cannot be explored
by the ab initio approach and should be investigated by means
of the model one. One may suppose that these peaks should
be caused by the excitation of particular molecular orbitals to
the continuum.

V. CONCLUSION

To conclude, we have performed a detailed theoretical
analysis of the photoabsorption spectrum of the C60 fullerene
and revealed the contributions coming out from single-particle
and collective electron excitations. On the basis of the ab initio
calculations, performed within the TDDFT framework, we

elucidated the origin of various quantum phenomena which
manifested themselves atop the plasmon excitations.

We have demonstrated that the individual peaks lying below
and above the ionization threshold, in the photon energy
region from 3 to 18 eV, are due to optically allowed discrete
transitions which are formed atop the collective excitation of
(σ + π )-delocalized electrons. In the spherical representation
of molecular orbitals in terms of the angular momentum l,
these transitions correspond to the following ones: 5g,6g →
7h; 7i → 7h; 6h,7h → 8i; 8k → 8i; and 9l → 10m. The
analysis performed shows that the peaks in the vicinity of
the dominating (σ + π )-plasmon resonance, between 20 and
25 eV, are caused by the ionization of the innermost fullerene
orbitals, namely, hg and gg (5g), gu and t2u (4f ), hg (3d), t1u

(2p), and ag (1s). Finally, the peaks around 30 eV and above
cannot be explained within the pure ab initio framework due
to lack of information; therefore one should use some model
approaches to explore the origin of these peaks.

The broad resonance peak in the photoabsorption cross
section of C60 is formed due to the (σ + π )-plasmon. A
number of discrete excitations, lying below and just above
the ionization threshold of C60, are attributed to a collective
excitation of delocalized π electrons. The spectrum calculated
within the model approach is in good agreement with that
obtained by means of the more sophisticated TDDFT method
and corresponds to the results of experimental measurements.
Therefore, the plasmon resonance approximation, utilized in
the present work, represents a useful tool for the interpretation
of ab initio calculations and experimental measurements. A
better agreement of the model approach with the experimental
data can be obtained if one incorporates the broadening of the
linewidths of single-electron excitations into the model and
uses the calculated values of the widths. This problem will be
a subject for a further investigation.
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