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Angular distributions for the electron-impact single ionization of sodium and magnesium
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We present angular distributions for the electron-impact single ionization of sodium and magnesium at
intermediate incident electron energies. The results are obtained from a full-dimensionality solution of the
two-active-electron time-dependent Schrödinger equation using the time-dependent close-coupling method. We
compare calculated angular distributions with existing measurements. We find good overall agreement with
measurements over a range of incident electron energies in both cases. We also calculate angular distributions
for ejection configurations in which no measurements are currently available.

DOI: 10.1103/PhysRevA.88.042713 PACS number(s): 34.80.Dp

I. INTRODUCTION

The determination of cross sections for the electron-impact
ionization of atomic targets is among the most fundamen-
tal problems in atomic collision physics. Typically, such
cross sections have applications in the astrophysical domain
and in transport modeling of plasmas occurring in fusion
experiments. Moreover, studies of angular distributions of
the outgoing electrons following electron-impact ionization
provide highly detailed information on electron-electron cor-
relation and polarization effects in the ionization process. For
few-electron systems, such as H and He, a good degree of
agreement has been obtained between theory and experiment
in predicting total and differential cross sections [1–6].
Some success has also been obtained in predicting angular
distributions for electron-impact ionization of H2 [7–9]. In
recent years, a greater emphasis has been placed on the
more complex collision dynamics occurring in multielectron
systems. A comprehensive set of measured angular distri-
butions is now available for electron-impact ionization of
alkali metals [10,11] and noble gases [12]. Recent theoretical
studies include convergent close-coupling calculations for
Na [13], distorted-wave Born approximation calculations for
Na [14–17], K [14], Ca [15], and Mg [16], and B-spline
R-matrix calculations for Ar [18,19] and Ne [20].

The low- and intermediate-impact energy regimes present
perhaps the most stringent test of both theory and experiment.
In these regimes, experiments must accurately control the
electron-beam energy while simultaneously measuring the
momenta of the ionizing electrons. For theoretical methods,
the challenge lies in the accurate treatment of electron-
electron correlation effects, electron-core interactions, and
tracking multiple scattering events. Postcollisional interactions
between the outgoing electrons play a particularly important
role in this domain, and an accurate treatment of such processes
is critical to obtain reliable differential cross sections.

In this paper, we present angular distributions for the
electron-impact ionization of Na and Mg for a variety
of intermediate incident electron energies, calculated using
the time-dependent close-coupling (TDCC) method [21].
We make a comparison with available measurements made
using the Manchester experimental apparatus [10,11] in both

coplanar symmetric and asymmetric geometries. We employ
a version of the time-dependent close-coupling approach to
electron-impact ionization, where the radial wave function is
calculated on a variable radial mesh and propagated in time
using an implicit propagator. This approach is important for
the accurate treatment of the electron-impact ionization of
atoms heavier than He, since a small radial mesh spacing
is required to track the rapid oscillations of the radial wave
function close to the nucleus. However, away from the nucleus,
a larger mesh spacing may be used, and so a variable mesh
approach is ideal. Moreover, when used in conjunction with
an implicit time propagator, the method proves to be highly
efficient, since the time step may take a much larger value than
the time step needed for an explicit scheme. Additionally, a
core orthogonalization method is used to avoid unphysical
deexcitations of the active electrons to any of the filled
subshells in the multielectron core during the time propagation.

II. THEORY

A. Time-dependent close-coupling method

Since the current work focuses on single ionization, we
treat the incident and ionized electrons as a two-active-electron
system, and the interaction with the multielectron core is
treated using Hartree-Slater direct and exchange potentials.
The two-electron wave function for a given spin S is given as
an expansion on a basis set of coupled spherical harmonics,
|l1l2L〉, of the form

�S(r1,r2,t) =
∑

l1,l2,L

P LS
l1l2

(r1,r2,t)

r1r2
|l1l2L〉. (1)

The above expansion may be used to obtain the set of time-
dependent close-coupling equations for each LS term, given
by

i
∂

∂t
P LS

l1l2
(r1,r2,t) = [Tl1 (r1) + Tl2 (r2)]P LS

l1l2
(r1,r2,t)

+
∑
l′1,l

′
2

V L
l1l2,l

′
1l

′
2
(r1,r2)P LS

l′1l
′
2
(r1,r2,t), (2)
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where Tl(r) is the atomic Hamiltonian, given by

Tl(r) = −1

2

∂2

∂r2
− Z

r
+ l(l + 1)

2r2
+ Ul(r), (3)

where Z is the nuclear charge and Ul(r) is an atomic core
potential. This potential may be defined as

Ul(r) = VD(r) − αl

(
24ρ(r)

π

) 1
3

, (4)

where VD(r) is the direct Hartree potential, αl is an adjustable
parameter, and

ρ(r) = 1

4πr2

∑
n,l

wnlP
2
nl(r) (5)

is the total spherically averaged radial probability density
of the core electrons, where Pnl(r) is a bound radial orbital
for the nl electron of the singly charged ion and wnl is
the occupation number. The bound radial orbitals required
to construct the atomic core potential Ul(r) are obtained
through solution of the Hartree-Fock equations [22] for the
singly charged ion. The two-electron term, V L

l1l2,l
′
1l

′
2
(r1,r2), is

the two-electron repulsion operator. For Na, diagonalization
of the one-electron Hamiltonian with α0 = 0.505, α1 = 0.55,
and α2 = 0.41 gave a binding energy of −5.1340 eV for the
3s orbital, within 0.1% of the measured value of −5.1390
eV [23], and also reproduced the binding energies of the first
few higher-lying orbitals to within 0.5% of measured values.

For Mg, diagonalization of the one-electron Hamiltonian with
α0 = 0.48, α1 = 0.55, and α2 = 0.41 gave a binding energy
of −7.6510 eV for the 3s orbital, within 0.1% of the measured
value of −7.6462 eV [23], and again reproduced the binding
energies of the first few higher-lying orbitals to within 0.5%
of measured values. This approach provides a reasonable
treatment of the interaction of the outgoing electrons with the
multielectron core, and has been employed recently to obtain
total cross sections for electron-impact ionization of Mg and
Al+ [24] and photoionization of Be and Mg [25].

The two-electron wave function for the initial state is
constructed as

P LS
l1l2

(r1,r2,t = 0) =
√

1

2

[
Gk0l1 (r1)Pnl2 (r2)

+ (−1)SPnl1 (r1)Gk0l2 (r2)
]
, (6)

where k0 is the linear momentum, Gk0l(r) is a Gaussian radial
wave packet of energy E0 = k2

0/2, and Pnl(r) is a bound radial
orbital. The close-coupling equations are then propagated in
time for each LS symmetry. During the time propagation,
consideration must be given to the possibility of unphysical
deexcitation of either of the active electrons to any of the
closed subshells of the multielectron core. To avoid this, we
use a core-orthogonalization method to prevent deexcitation
of the active electrons to any state including 1s, 2s, or 2p

character. For example, the P 00
00 (r1,r2,t) radial wave function

is orthogonalized at every time step of the propagation of the
1S state according to

P 00
00 (r1,r2,t) = P 00

00 (r1,r2,t) − P1s(r1)
∫

dr ′
1P1s(r

′
1)P 00

00 (r ′
1,r2,t) − P2s(r1)

∫
dr ′

1P2s(r
′
1)P 00

00 (r ′
1,r2,t)

−P1s(r2)
∫

dr ′
2P1s(r

′
2)P 00

00 (r1,r
′
2,t) − P2s(r2)

∫
dr ′

2P2s(r
′
2)P 00

00 (r1,r
′
2,t)

+P1s(r1)P1s(r2)
∫

dr ′
1

∫
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2P1s(r
′
1)P1s(r

′
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00 (r ′
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′
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∫
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1

∫
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′
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∫
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1

∫
dr ′

2P2s(r
′
1)P1s(r

′
2)P 00

00 (r ′
1,r

′
2,t)

+P2s(r1)P2s(r2)
∫

dr ′
1

∫
dr ′

2P2s(r
′
1)P2s(r

′
2)P 00

00 (r ′
1,r

′
2,t). (7)

Similar expressions may be obtained for all other radial wave functions, where additional projections will be required if either
electron is of p character. Following the time propagation of Eq. (2), at a final time t = T , the final-state radial wave functions
P LS

l1l2
(r1,r2,T ) are projected onto products of normalized continuum orbitals of the singly charged ion, Pkl(r), to obtain final-state

momentum-space wave functions PLS
l1l2

(k1,k2,T ) given by

PLS
l1l2

(k1,k2,T ) =
∫ ∞

0
dr1

∫ ∞

0
dr2 Pk1l1 (r1)Pk2l2 (r2)P LS

l1l2
(r1,r2,T ). (8)

The continuum orbitals are obtained through solution of the radial one-electron time-independent Schrödinger equation using
the direct and exchange potentials defined earlier.

The general form of the triple differential cross section (TDCS) for electron-impact single ionization of atomic targets is

d3σ

dE1d�1d�2
= wt

lt + 1

π

k2
0

1

k1k2

∑
S

wS

∫ ∞

0
dk1

∫ ∞

0
dk2 δ

[
α − tan−1

(
k2

k1

)]
|M|2, (9)
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where k0 is the momentum of the incident electron, k1 and k2 are the momenta of the outgoing electrons (ejected into
solid angles �1 and �2), α is the hyperspherical angle between k1 and k2, and wt and lt are the occupation number and angular
momentum of the target subshell, respectively. The spin-dependent terms wS are the appropriate statistical weights of the singlet
and triplet states, namely, w0 = 1/4 and w1 = 3/4, and

M =
∑

l1,l2,L

iL
√

2L + 1(−i)l1+l2ei(σl1 +σl2 )ei(δl1 +δl2 )PLS
l1l2

(k1,k2,T )|l1l2L〉. (10)

Here, δl1 and δl2 are distorted-wave phase shifts, σl1 and σl2 are Coulomb phase shifts, and |l1l2L〉 is a momentum-space spherical
harmonic. The close-coupling equations are propagated in time using an implicit time propagator with time step 
t , according
to

P LS
l1l2

(r1,r2,t + 
t) =
∑
l′1,l

′
2

exp

[
− i


t

2
V L

l1l2,l
′
1l

′
2
(r1,r2)

][
1 + i


t

2
Tl′1 (r1)

]−1[
1 + i


t

2
Tl′2 (r2)

]−1

×
[

1 − i

t

2
Tl′2 (r2)

][
1 − i


t

2
Tl′1 (r1)

] ∑
l′′1 ,l′′2

exp

[
− i


t

2
V L

l′1l
′
2,l

′′
1 l′′2

(r1,r2)

]
P LS

l′′1 l′′2
(r1,r2,t) . (11)

This time propagation scheme has previously been used in
TDCC studies of the double photoionization of Be and Mg
[25] and in the electron-impact ionization of H2 [7] and
H2

+ [26]. When used in conjunction with a variable mesh
finite-difference grid, the implicit propagator has a number
of key advantages over an explicit propagator. First, as the
radial mesh size is decreased, the time step 
t in the explicit
scheme must also be decreased, whereas the time step in
the implicit scheme can remain roughly constant and still
ensure accurate time propagation. Second, when high angular
momenta (l1,l2) are included in the calculation, the time step
in the implicit scheme can be significantly larger than the
time step required in the explicit scheme. This is particularly
important for electron-impact ionization of multielectron
atoms, where convergence of the close-coupling expansion
is typically slower than for smaller atoms such as He.

III. RESULTS

A. Electron-impact ionization of sodium

Calculations pertaining to electron-impact ionization of the
Na ground state were carried out at four different incident
electron energies between 11.15 and 25.15 eV. At electron-
impact energies of 11.15 and 15.15 eV, TDCC calculations
were performed using a total of 425 coupled channels, with
0 � L � 12. At 20.15 and 25.15 eV, a total of 513 coupled
channels were required for convergence, with 0 � L � 14. A
finite-difference grid consisting of (960)2 points with variable
mesh spacing 0.01 � δr � 0.2 Bohr was used for the radial
wave functions. This resulted in a total radial extent of
173.8 Bohr. The radial mesh spacing δri between two neigh-
boring points i and i + 1 was gradually increased according
to δri+1 = δri + 0.001, until the mesh spacing reached a value
of 0.2 Bohr. In Fig. 1, we make a comparison between angular
distributions from TDCC calculations and measurements made
by the Manchester group [10]. The measurements employ a
coplanar symmetric geometry, in which the outgoing electrons
are detected in the plane containing the electron beam, and at
equal polar angles on either side of the electron beam (i.e.,
θ1 = θ2, φ1 = φ2 = 0◦). In this highly symmetric geometry,
the Pauli exclusion principle dictates that only singlet channels

contribute to the TDCS in the case of equal energy sharing. In
all cases, the relative measurements have been normalized
to the TDCC calculations at the peak of the TDCS. At
11.15 eV, the calculated total ionization cross section is
390 Mb, in good agreement with convergent close-coupling
(CCC) calculations [27] and in reasonable agreement with
measured values of (462 ± 50) Mb [28] and approximately
410 Mb [29]. For each of the incident electron energies shown
in Fig. 1, the TDCC calculations are in excellent agreement
with experiment over the full range of ejection angles. Over this
range of incident electron energies, the angular dependence of
the TDCS varies significantly. As incident electron energy is
increased, the forward-scattering peak decreases in width and
shifts to noticeably lower ejection angles. The backscattering
peak appears close to θ2 = 120◦ in all cases, but strongly
decreases in magnitude (relative to the forward-scattering
peak) as the incident electron energy increases. Between
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FIG. 1. (Color online) Triple differential cross sections (TDCS)
for electron-impact ionization of sodium for equal energy sharing
(E1 = E2) in the coplanar symmetric geometry (θ1 = θ2, φ1 = φ2 =
0◦) at four incident electron energies (E), as labeled. We compare
with relative measurements [10], which are normalized to the TDCC
calculations at the peak of the cross section.
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FIG. 2. (Color online) Triple differential cross sections for
electron-impact ionization of sodium for equal energy sharing at
an incident electron energy of 11.15 eV (E1 = E2 = 3 eV) in the
coplanar asymmetric geometry (φ1 = φ2 = 0◦). Note the change of
scale in the lower panels. The arrows indicate the positions of the
momentum transfer vectors q and −q.

these features, an increasingly deep minimum appears. The
TDCC calculations reproduce both the angular location and
relative magnitudes of these features to a good degree of
accuracy, even at the highest electron impact energy where
features in the angular distribution span almost four orders of
magnitude.

Further information on the ionization dynamics may be
obtained by calculating angular distributions in a coplanar
asymmetric geometry, where one ejection angle is fixed and the
other is varied. No measurements are currently available for Na
in such cases, but extensive convergent close-coupling (CCC)
calculations have been performed for a wide range of coplanar
geometries [13]. In Fig. 2, we show the triple differential cross
section for a number of different double ejection configurations
at an incident electron energy of 11.15 eV. Both the singlet
and triplet contributions to the TDCS appear to be in very
good agreement with CCC calculations. As noted in [13],
there is a noticeable preference for ejection of one electron
at an angle θ1 � 30◦, with the second electron ejected almost
perpendicular to the electron beam (θ2 = 90◦). We also note
that, when one electron is ejected at a small angle to the
electron beam, antiparallel emission (θ2 = θ1 + 180◦) tends
to make a noticeable contribution to the TDCS. This is
particularly evident for θ1 = 0◦,150◦, and to some extent for
θ1 = 30◦, where forward scattering provides the dominant
contribution. It would be interesting to see new experimental
data in this regime to test these predictions.

B. Electron-impact ionization of magnesium

Calculations pertaining to electron-impact ionization of the
Mg ground state were carried out at four different incident
electron energies between 27.65 and 57.65 eV. In all cases, a
total of 524 coupled channels were required for convergence,
with 0 � L � 14. These calculations used the same variable
radial mesh as was used for the Na calculations.
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FIG. 3. (Color online) Triple differential cross sections for
electron-impact ionization of magnesium for equal energy sharing
(E1 = E2) in the coplanar symmetric geometry (θ1 = θ2, φ1 = φ2 =
0◦) at four incident electron energies (E), as labeled. We compare
with relative measurements [10], which are normalized to the TDCC
calculations at the peak of the theoretical cross section.

In Fig. 3, we make a comparison between angular distri-
butions from TDCC calculations and measurements made by
the Manchester group [10] for electron-impact ionization of
Mg in coplanar symmetric geometry. In all cases shown in
Fig. 3, the TDCC calculations are in good agreement with
experiment over the full range of ejection angles θ2. The
level of agreement between the calculations and measurements
appears to improve slightly as the incident electron energy
increases. At E = 27.65 eV, the forward-scattering peak in
the calculations appears at a lower ejection angle than in the
measurements, and the calculations tend to underestimate the
magnitude of the TDCS for θ2 < 70◦. The angular position
of the minimum is well reproduced, but is now larger in
magnitude than the measured value. The angular position
of the backscattering peak is in excellent agreement with
experiment. The discrepancies observed in this case may be
due to an incomplete treatment of correlation in the doubly
occupied valence shell. At the same excess energy of 20 eV,
the measured TDCS for Na in this geometry was accurately
reproduced, as shown in Fig. 1. In all other cases, the angular
position and width of the measured forward-scattering peak
is well reproduced in the calculations. It is possible that as
incident electron energy increases, the more rapid ejection
of the 3s electron reduces the sensitivity of the TDCS to
valence-shell correlation. Sensitivity to such correlation can
only be tested using a three-electron calculation, in which
both valence-shell electrons are considered to play an active
role in the dynamics, although only one is ionized. However,
both the calculation of three-electron wave functions and the
extraction of angular distributions are highly challenging from
a computational standpoint. The convergence with respect to
the number of coupled channels is generally slow, and large
radial grids are required to calculate accurate radial wave
functions for low-energy scattering.

In the remaining cases, the position and relative magnitude
of the minimum at around θ2 = 75◦ are in excellent agreement
with the measurement for each case. At E = 57.65 eV, the
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FIG. 4. (Color online) Triple differential cross sections for
electron-impact ionization of magnesium for equal energy sharing
at an incident electron energy of 47.65 eV (E1 = E2 = 20 eV), in the
coplanar asymmetric geometry (φ1 = φ2 = 0◦). We compare with
measurements presented in [11]. Note the change of scale in the
lower panels. The arrows indicate the positions of the momentum
transfer vectors q and −q.

TDCC calculations are also able to match measured features
close to the minimum whose magnitude is several orders
lower than the forward-scattering peak. The position of the
calculated backscattering peak is in good agreement with
measurements in all cases. The calculations also accurately
predict the relative magnitude of the backscattering peak, with
the slight exception of E = 47.65 eV, where the calculations
overestimate the magnitude by a small amount. We find that,
at 47.65 eV, the calculated total cross section of 275 Mb is
in good agreement with previous TDCC and R-matrix with
pseudostates calculations, but somewhat lower than measured
values [24].

In Fig. 4, we show angular distributions calculated at an
incident electron energy of 47.65 eV for a coplanar asymmetric
geometry, in which the ejection angle of one electron is
held fixed while the other is varied. For θ1 = 30◦, we make
a comparison with previous measurements given in [11].
In this case, the TDCC calculation is generally in good
agreement with experiment. The position of the calculated
forward-scattering peak close to θ2 = 45◦ is approximately
5◦ lower than in the measurement, although this is within
the experimental range of uncertainty. The measured position
and relative magnitude of the minimum close to θ2 = 100◦ are
again well reproduced in the calculations. As in the case of Na,
we find a strong preference for ejection of one electron at an
angle 30◦ < θ1 < 60◦. However, in the case of Mg, the second
electron is predominantly emitted at an angle close to θ2 = 45◦
for both θ1 = 30◦ and θ1 = 60◦. For Na, the forward-scattering
peaks occur at θ2 = 75◦ and θ2 = 35◦, respectively, in these
two cases. This change in the angular location of the forward-
scattering peak is likely due to both the increase in incident
electron energy and the differing core-valence interactions in
Na and Mg. We note that, in addition to some variation in
the forward-scattering peak position, additional structure is
observed in the TDCS for Mg compared to those obtained
for Na. We also note significant differences in the balance
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FIG. 5. (Color online) Triple differential cross sections for
electron-impact ionization of magnesium for equal energy sharing
at an incident electron energy of 47.65 eV (E1 = E2 = 20 eV), in the
coplanar asymmetric geometry (φ1 = φ2 = 0◦). We compare with
measurements presented in [11] and with TDCC calculations for He
at incident electron energy of 64.6 eV (E1 = E2 = 20 eV). Note the
change of scale in the lower panels.

between singlet and triplet contributions to the respective
angular distributions for Na and Mg. As is to be expected,
for θ1 = 0◦, the relative contribution of antiparallel emission
(θ2 = 180◦) has decreased in comparison to the results of
Fig. 2, due to the increased incident electron energy, which
ought to reduce the effect of any dynamics mediated by
electron-electron repulsion.

Finally, in the case of Mg, where a single 3s electron is
ionized from a closed 3s2 shell, it is instructive to make a
comparison with angular distributions for ionization of He (for
the same final kinematics), where a 1s electron is ionized from
a closed 1s2 shell. In Fig. 5, we compare TDCC calculations for
Mg at an incident electron energy of 47.65 eV with those for He
at an incident electron energy of 64.6 eV (i.e., a common excess
energy of 40 eV). The TDCC calculations for He are similar to
those described in [2] and are in good agreement with previous
CCC calculations [30]. For θ1 = 0◦, the He TDCS shows a
slight preference for antiparallel emission, although emissions
at other angles make sizable contributions. For Mg, the
dominant emission configurations are more strongly marked
by relatively narrow peaks at θ2 = 60◦, 120◦, 180◦, 240◦, and
300◦. The magnitude of the strongest peak in each of the
distributions is approximately equal. However, for θ1 = 30◦, a
large difference in the respective TDCS magnitudes becomes
apparent. As noted previously, the Mg TDCS displays a strong
preference for this emission configuration, whereas the He
TDCS decreases in magnitude as θ1 is increased from 0◦ to 30◦.
For Mg, the forward-scattering peak occurs at a lower angle
and also dominates the TDCS to a greater degree than
for He. The backscatter peak occurs at a similar angle to
that observed in He. For θ1 = 60◦, a similar difference in
magnitude is again observed between the respective angular
distributions. The forward-scattering peak for Mg is now at
a larger angle than for He, while the backscattering peak is
again in a similar position close to 180◦ in both cases. For
θ1 = 90◦, the respective angular distributions are now of a
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similar magnitude, mainly due to the sharp decrease in the
Mg TDCS as θ1 is increased from 60◦ to 90◦. Here, the
main difference lies in the nature of the forward-scattering
peak, which in He appears as a broad peak centered close
to θ2 = 0◦. For Mg, two peaks appear, one close to θ2 = 0◦
and a larger peak close to θ2 = 40◦. A similar double-peak
structure is observed in the Mg TDCS for θ1 = 120◦ and
θ1 = 150◦, where the He TDCS continues to display a single
peak centered close to θ2 = 0◦. In these cases, the high mutual
angle between the outgoing electrons reduces the Coulomb
interaction, and therefore interactions with the multielectron
core should become more dominant. It is possible in these cases
that the double-peak structure in the Mg TDCS occurs due to a
greater degree of interplay between the electron-electron and
electron-core interactions in a multielectron atom. The richer
structure in the angular distributions from the multielectron
atom has also been observed in comparisons of the double
photoionization of Be and He [31].

The respective characters of the angular distributions for
He and Mg naturally depend on the differing core-valence
interactions and the differing radial extents of the valence
shells. The noticeable dominance of forward scattering in
the Mg TDCS is likely due to the diffuse (compared to He)
nature of the Mg valence shell. This trend has been observed
previously when comparing angular distributions for H and Na
[13]. More general differences in the TDCS angular features
are likely to be caused by both the differing nature of the
inactive He+ and Mg+ cores and the differing characters of
the ionized 1s electron from He compared to the 3s electron
from Mg, which has more radial nodes.

IV. SUMMARY

In this paper, we have used a version of the time-dependent
close-coupling method to calculate differential cross sections
for electron-impact ionization of the Na and Mg atoms. Use of
an implicit time propagation scheme allows the two-electron
wave function to be tracked on a fine variable radial mesh in
a highly efficient manner. A core-orthogonalization method
is used to prevent unphysical deexcitation of the active
electrons to filled core subshells during the time propagation.

We have demonstrated that the method is able to determine
accurate triple differential cross sections for electron-impact
ionization of multielectron atoms over a range of intermediate
impact energies. We have performed further calculations of
triple differential cross sections for Na and Mg where no
experimental data is currently available. We have made a
further comparison between the angular distributions for Mg
and He for the same final kinematics. This comparison has
uncovered features in the Mg TDCS that are not seen in
the case of He. We observe a double-peak structure in the
Mg TDCS when one electron is ejected at 90◦ or more to
the electron beam. This effect may be due to the influence
of the multielectron core in Mg, which competes with the
Coulomb interaction between the outgoing electrons to a
greater degree than in He. We plan to extend the calculations
presented here to the case of electron-impact ionization of the
first excited state of Mg. Recent experiments have measured
the TDCS for the [Ne]3s3p 1P state of Mg, and are also
able to vary the alignment of the 3p orbital using a dye laser.
Here, the anisotropy of the target coupled with its rotation
both in and out of the detection plane ought to facilitate
interesting collisional dynamics. The version of the TDCC
method presented here will be ideal for this task, since a
much larger number of couplings will be required to describe
the intricate dynamical response of the excited state target.
The efficient use of a variable radial mesh and implicit time
propagation should make this problem more tractable. We also
plan to use the three-electron TDCC method to investigate
valence-shell correlation effects in this complex problem.
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